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Abstract 

 The idea for this project was to use symbolic execution to create an architecture-agnostic 
representation of a function to use for function matching.  We were motivated because reverse 
engineering is a difficult job to do because of the many limitations of static analysis.  Simply 
looking at assembly code and attempting to determine what a function does based on different 
inputs is difficult and time consuming.  Using symbolic execution, a reverse engineer no longer 
must read and interpret assembly language and can rather focus on the core behavior of the 
function by interpreting the symbolic analysis results.  Symbolic execution is a dynamic analysis 
method that provides the reverse engineer with a better understanding of what a binary does 
during run-time.  Using symbolic execution for a function matcher allows for functions to be 
matched based on how they react to symbolic variables such as parameters, memory reads and 
more. 

 Our matcher uses symbolic constraints to match functions cross architecture.  This 
project uses angr to extract symbolic information about the program and generate an architecture 
agnostic representation of a function. We then use this representation to match functions from 
different binaries.  We evaluated our work using a variety of test binaries compiled for different 
architectures and the same binary from multiple versions of a project.  Our matcher gave us 
upwards of 87% of functions matched when it came to ideal functions for this matcher type.  
Ideal functions for this matcher are functions whose control flow relies on run time data.  Where 
we could match functions cross architecture, the leading tool for function matching, BinDiff, 
could not.  Our proposed matcher attempts to solve the problem of cross architecture 
comparisons of binaries while also allowing full code coverage. 
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1. Introduction 

 For cyber security, analyzing binaries is an important component to malware analysis, 
software analysis and many other types of analysis.  Reverse engineers spend a lot of time 
reading assembly language and attempting to infer what a binary does, whether it be for malware 
analysis or something as simple as bug detection.  To save time, developers have written 
function matchers such as BinDiff [1].  Function matching is the concept of taking two functions 
from different binaries and attempting to determine how similar the functions are with 
confidence.  Some reasons that two separate binaries would share the same functions include: 
upgrading versions, shared imported library functions, and more.  Ultimately, this saves the 
reverse engineer time because they can first run automated analysis before needing to manually 
analyze functions to determine which are harmful.  

 This problem is known as binary code similarity detection [2].  Using function matchers 
to solve this problem can save a reverse engineer time because they then avoid needing to re-
analyze the same function twice [3] and they can also use this to find functions that did not 
match and then manually analyze the interesting new functions.  Another advantage to knowing 
what functions from different binaries match is potentially knowing who the code was written by 
if they have the same coding style or reuse the same exact functions.  This aids malware reverse 
engineers in finding similar binaries and using social engineering to analyze the malware author. 
Automated function matching has the potential to save the human reverse engineer days or 
weeks of ground work. 

 There are many challenges in developing robust function matchers. Simply attempting to 
compare the instructions from one function to the instructions from another is typically 
inaccurate.  This comes from differences in architecture instruction sets, choice of compiler and 
compiler options, such as optimization levels.  This creates a growing need for functions to be 
matched using different techniques so they can cover all cases and classes of functions and 
binaries.  With the expansion of the Internet of Things, reverse engineers have the need to 
analyze many different architectures including, x86, ARM and MIPS.  These architectures are 
incredibly common for IOT processors [4].  Many new types of function matchers have been 
released to solve some of these function matching problems as the computer science community 
evolves to explore new areas.  These new areas include deep learning [3], graph matching and 
more.   

This project aims to create a function matcher using symbolic execution.  This approach 
is attractive for a few key reasons.  This matcher attempts to solve the problem of cross 
architecture comparison and allows full code coverage.  Symbolic execution allows us to 
generate a model of a function’s code flow during execution.  This model is consistent across 
different architectures regardless of the underlying instructions.  Therefore, even if the 
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instructions are completely different the basic logic of the program is the same.  Allowing cross 
architecture matching allows for reverse engineers to get more out of their matchers.  For reverse 
engineers to stay current with new firmware’s, programs and other developments, the need for 
cross architecture matching techniques grows.    

Contributions of MQP 

For the Major Qualifying Project, we make three main contributions. 

Generate an architecture-agnostic representation of a function using constraints derived 
from symbolic execution.  To generate an architecture-agnostic representation of a function we 
had to first determine all the different analysis possibilities that are presented when using 
symbolic execution, which led us to use path constraints.  We need to first run symbolic 
execution on a binary for every individual function until we reach the end of the function.  We 
then extract the constraints that were placed on every possible path through the function and use 
this information to generate a representation of the function. 

Develop a novel algorithm to match functions based on the symbolic representation.  Our 
contribution of the function matcher was accomplished through developing an algorithm that can 
be used to match our symbolic representations of functions.  This involves first generating the 
symbolic representation of each of the functions contained in two binaries.  We can then pairwise 
match the functions from the first binary to the functions from the second using our algorithm.  
This involves looping through the paths and finding which paths are the same as each other 
based on what constraints they have.  Ultimately, we have automated this process to the point 
where, the reverse engineer just needs to run the extraction script and then the matcher script on 
the binaries they would like to match and then analyze the matcher results.  

Evaluate the effectiveness and usability of the function matcher.  Our final contribution 
included testing the usability of symbolic execution for function matching and the effectiveness 
of our implemented algorithm.  We first found and generated test data to represent a wide variety 
of different situations that would affect our matcher including looping situations, recursive 
functions and a variety of binary sizes.  These were then used for accuracy and efficiency tests 
on both our extractor and class of matchers.   

Novelty 

To the best of our knowledge, we are the first to propose a symbolic function matcher.  
However, there is one similar function matcher that matches Abstract Syntax Trees (AST).  
There are similarities between our proposed matching technique and this AST matcher.  Our 
proposed matcher relies on symbolic constraints which are stored as Abstract Syntax Trees and 
the AST matcher also matches ASTs.  The difference however is in the algorithm we developed 
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to match these trees.  We match based on values whereas the AST matcher uses hashing and 
graph matching techniques.  The methods they use could complement our class of matchers. 

Results 

 The results of this symbolic execution function matcher show a strong reliance on the 
type of function that is being matched.  It’s important to consider the different types of functions 
because these symbolic matchers can only do well on certain types of functions.  The ideal 
function type for this function matcher is a function that relies on run time data to affect code 
flow.  Overall, for these ideal functions with constraints, the fuzzy matcher matched 87% of the 
functions and the value matcher matched 82% of the functions.  
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2. Background  

2.1 Computer Architectures and Compilers 

 The specific code contained in a binary executable depends on myriad factors, including 
choice of compiler, optimization level, and target architecture.  In order words, the same source 
code will produce very different end binaries based on these factors.  These binaries are the 
machine-readable code that comes from compiling source code written in languages like C.  
Compilers are important because they generate the machine-readable code from source code, and 
based on the specified options, this will generate different binaries for the same source code.  
These concepts are imperative to understand for reverse engineers wishing to accurately analyze 
code. 

 Considering the intricacies of binary creation is important because it affects function 
matching techniques.  In general, each function matching technique has pre-conditions that must 
be satisfied.  For example, for many matching techniques, functions must be compiled for the 
same architecture to be matched.  These pre-conditions affect the accuracy and usability of many 
existing function matching techniques.  The proposed class of matching techniques using 
symbolic execution attempt to match regardless of many common pre-conditions being 
unsatisfied achieving this requires previous in depth knowledge of the differences between 
architectures and the methodology behind compilers.  To leverage the analysis provided by a 
symbolic execution engine, understanding of how this analysis was affected by architectures and 
other differences is integral to utilizing the results. 

Architectures 

 An architecture is a set of the rules and methods that are used to support an operating 
system regarding structure, organization, performance and the implementation of computer 
systems [5].  Instruction sets between architectures are completely different.  There are multiple 
types of architectures but this project focuses on the control-driven architectures, RISC, reduced 
instruction set computer, and CISC, complex instruction set computer [6].  

 Within the categories of RISC and CISC lie the architecture implementations.  Some 
examples of common architectures include ARM, x86, MIPS and more.  ARM is a RISC 
architecture and x86 is a CISC architecture.  Comparing these two architectures allows the 
differences in instruction set and speed to be easily demonstrated. 
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Figure 1. Source code used to generate the instructions shown in 
Figure 2. 

  

Figure 2. Source code in Figure 1 compiled for x86 on the left and 
ARM on the right. 

Depending on the instruction set of the architecture this causes the variables in the 
program to be stored differently.  This difference between architectures creates the need for a 
generic method of representing a binary regardless of architectures. This concept is defined as an 
Intermediate Representation, which is discussed more in the next section.   

int func(int i){ 
 if (i==0){ 
  return 0; 
 } else if (i>0) { 
  return 1; 
 } else { 
  return -1; 
 } 
} 

push   %rbp 
mov    %rsp,%rbp 
mov    %edi,-0x4(%rbp) 
cmpl   $0x0,-0x4(%rbp) 
jne    400501 <func+0x14> 
mov    $0x0,%eax 
jmp    400513 <func+0x26> 
cmpl   $0x0,-0x4(%rbp) 
jle    40050e <func+0x21> 
mov    $0x1,%eax 
jmp    400513 <func+0x26> 
mov    $0xffffffff,%eax 
pop    %rbp 
retq 

push    {r7} 
sub     sp, #12 
add     r7, sp, #0 
str     r0, [r7, #4] 
ldr     r3, [r7, #4] 
cmp     r3, #0 
bne.n   83ce <func+0x12> 
movs    r3, #0 
b.n     83dc <func+0x20> 
ldr     r3, [r7, #4] 
cmp     r3, #0 
ble.n   83d8 <func+0x1c> 
movs    r3, #1 
b.n     83dc <func+0x20> 
mov.w   r3, #4294967295 ;      
            0xffffffff 
mov     r0, r3 
adds    r7, #12 
mov     sp, r7 
ldr.w   r7, [sp], #4 
bx      lr 
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Compilers  

 Compilers are programs that translate source code into machine code. In the context of 
reverse engineering, understanding compilers and how the source code is transformed is 
necessary to understand the final output, which is the binary or executable.  Generally, the code 
is translated into machine code and there are variations on how this process is applied when it 
comes to different architectures and different compilers.   

 

Figure 3. Compiler flow diagram that demonstrates the transition 
from source code to assembly code through the compiler.  Based 

on GCC’s functionality.  

 Compilers can be configured to also store additional information alongside the basics.  
One piece that is important for reverse engineering is the symbol table.  Symbol tables are 
binding information about naming schemes in the binary [7].  The symbol tables store 
information such as the function names in a lookup table.  As the compiler is working through 
the source code, it will add and modify this table continuously [7].  This information is useful to 
reverse engineers because having access to the function names aides in understanding what a 
function does. This information aides in static analysis techniques and can also be used to match 
functions based solely on their name.  This information is only available when the compiler is 
directed to store this information.    

 Cross compilation is something to consider for this project. It is used to build test binaries 
and it is also important to understand the differences between cross compiling and regular 
compiling.  Cross compiling is the action of running a compiler on one architecture, which 
compiles for a different architecture [8].  When regular compilation happens, the correct 
toolchain is often already installed on that operating system for the architecture it is running.  
However, when someone wishes to cross compile a program, the toolchain for the desired 
architecture is typically not installed on the current operating system.  There are many different 
tools to implement cross compilation such as Dockcross [9], crosstools-ng [10], buildroot, and 
more which implement the proper toolchains for the user.  In theory, a binary compiled for ARM 
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on a machine running ARM and the same binary compiled with the same compiler on a machine 
running x86 for ARM should be the same.  

2.2 Function Matching 

 A match between functions can have many definitions.  Our definition of a function 
match is a function that is attempting to do the same thing.  This could be along the lines of 
comparing two strings and returning 1 if they are the same, and if the other function does the 
same thing, then these two functions are a match.  There can be varying similarities in function 
matches such as saying a function has 90% similarity using BinDiff.  This field of research is 
constantly growing through adding new techniques to determine what functions are similar, or 
fully the same, from different binaries.  Some people define a function match as having a long 
Longest Common Subsequence of instructions or bytes, however others would determine this to 
be an inaccurate match.  There are many methods for matching functions from different binaries. 
For function matching many researchers have set out to try to find the perfect method of 
determining if two functions from different binaries are the same.   

There is a bounty of tools in the field of binary function matching.  One tool, called 
BinSim, is a tool that aims to match functions based on execution traces.  This method uses 
symbolic execution and dynamic slicing to compare instructions that impact observable 
behaviors [11].  This tool specifically works on malware samples and crypto ransomware to find 
matches between binaries. 

 Another tool, BinDNN, is a tool that uses deep learning and natural language processing 
to find matches regardless of compiler optimization levels [3].  In many cases, matching 
functions can rely on architecture or compiler, however this tool matches regardless of compiler 
optimization.  The tool also uses machine learning due to machine learning’s known success at 
building classifiers and its ability to accurately detect malware and network intrusion [3].  A 
combination these tools allows BinDNN to accurately match functions from different binaries 
with improved accuracy.   

 The most common and widely known function matching tool is BinDiff [1].  This tool 
uses an IDA Pro saved state in order to compare functions from two different binaries.  BinDiff 
uses a variety of techniques to determine the similarity of two functions.  The similarity is a 
number they assign to the two functions and the confidence is how confident in that similarity 
score they are.  Some of the techniques BinDiff uses includes: CFG matching, hash matching, 
name hash matching, MD index matching, string references, address sequence and many more 
techniques.  Therefore, BinDiff is reputable for rapidly producing true matches between binaries. 

 Our proposed function matching technique leverages symbolic execution.  Using 
symbolic execution will allow for cross architecture comparisons of functions.  This allows for 
the possibilities of matching with constraints, using system state such as the stack and registers at 
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different points in the program and more.  These concepts are described more in the system 
design chapter. 

2.3 Binary Analysis Techniques 

Reverse engineering in general is the concept of taking something apart to determine how 
the object was originally configured [12].  In industry, this process is used to look at competitor’s 
code and for academia, it is used to get hands on experience with decompilation [13]. For 
cybersecurity, reverse engineers take executable code, whether it be a binary for a Linux 
machine or an application for an Android device, and try to reverse engineer the code to 
determine what it does.   

A binary file is a combination of many things.  The main executable portion of the binary 
comes from the source code and includes all the functions from the binary.  These functions are 
further broken down into basic blocks.  A basic block is any section of code that does not branch.  
For example, if a function has an if statement, that will cause a branch in the code.  During a 
conditional branch, at the end of the first basic block there is a jump from that address to the two 
other addresses, depending on which path the execution will take next.  Binaries are analyzed at 
a function and basic block level, for different reasons and purposes.  Most commonly they are 
analyzed function to function because this is a simple way to break up code into chunks however 
in cases where code flow is involved, consideration needs to be given to the interactions between 
basic blocks for a specific function. For this project, they are analyzed at the function level, but 
the interactions between basic blocks is important to consider during analysis. 

 There are many purposes behind reverse engineering machine code for cybersecurity. A 
purpose behind reverse engineering machine code is to find bugs.  Detecting potential buffer 
overflows, unbounded jumps, memory corruption and other bugs can be detected using reverse 
engineering.  Function matching can aid reverse engineering by allowing common functions like 
imported functions or trampoline functions to be easily paired together as a match.  This can be 
summarized into the main purposes of version differentiating, patch and exploit management, 
bug discovery, and increased productivity in general.  Function matching will allow reverse 
engineers to save time, find new or interesting functions, and identify similar security flaws 
between binaries.  Once function matching is done, manual analysis must be applied to the new 
functions. 

One technique of manual analysis is static analysis [14].  This form of analysis involves 
looking at assembly code through dissasembly and attempting to infer what a function does 
through solely reading and coming to conclusions based on previous knowledge or experience.   
Another method of analysis is dynamic code analysis.  Dynamic code analysis allows the reverse 
engineer to simulate running a program to see what happens during run time.  Symbolic 
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execution is a mix of static and dynamic analysis that also allows the reverse engineer to see 
what inputs cause what paths of a program to run.  

Symbolic Analysis 

 Symbolic execution refers to a class of analysis techniques that allow a user to 
dynamically gather information from a program.  This is done through supplying arbitrary values 
instead of concrete values during dynamic analysis.  At the beginning of execution, a symbolic 
execution engine will make any variables that cannot be determined at run time symbolic, 
meaning they have no concrete value.  Then it will execute through the program stepping until it 
reaches a conditional branch.  A constraint is then added to the symbolic variable and two new 
paths spawn from this branch.  The engine will continue throughout the function this way until it 
has reached the end of all the possible paths.  This analysis provides full code coverage however 
it is computationally expensive.  Symbolic execution is the chosen method of analysis for this 
project because of its code coverage, supported architectures, and the projected accuracy it could 
provide for function matching. 

2.4 angr’s Symbolic Execution Engine 

 angr’s symbolic execution engine version 6.7.6.9 was chosen for this project.  This is a 
binary analysis framework written by researchers at UC Santa Barbara [15]. It provides both 
static and dynamic analysis techniques.  One analysis technique it provides is the extraction of 
Control Flow Graphs that allow a user to see how execution flows through the binary, including 
information on functions, basic blocks, states and more. 

 Injecting a binary into angr for our purposes involves executing a function and analyzing 
the final state of the function.  A sample program in Figure 4 can demonstrate how symbolic 
variables are created during execution of a function. 

 

Figure 4.  This is a sample program.  The parameter ‘a’ will be 
made symbolic at the beginning of the function analysis and then 

later ‘final_value’ will also be symbolic because of its dependency 
on a symbolic variable.  

 For the function in Figure 4, angr will first make the input symbolic because of our 
specifications.  Then final_value will concretely be assigned to 0.  In the next step final_value 

int add_5(int a) { 
 int final_value = 0; 
 final_value = a + 5; 
 return final_value; 
} 
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will be reliant on the symbolic value ‘a’ and 5, with the operation of ‘add’.  This creates a 
tree that looks like the diagram in Figure 5. 

 

Figure 5. The data dependency tree for ‘final_value’. 

 This a small example of how angr would begin to keep track of symbolic analysis during 
execution.  Once conditionals are added to a function this process becomes much more 
complicated and this is described more later. 

Basics  

 angr needs to be initialized by loading a project.  From there the user can define the state 
to begin analysis at.  This state can start at a specific entry point, it can be forced to make the 
environment symbolic and unconstrained, or it can be unspecified and the program will run 
normally by starting at the entry point of the binary.  Then the user must create a path and path 
group for execution.  A path is a collection of basic blocks that have been traveled up to the 
current state and the path’s state stores all the information such as the constraints that caused that 
path to be taken and additional metadata.  A path group is a collection of paths.  angr will 
initialize the path group to solely contain the initial path to start the program analysis.  Below is a 
sample script for starting up the analysis. 

 

Figure 6. Initializing a project in angr. 

 The script in Figure 6 demonstrates how to set up a project in angr using python.  When 
angr first gets a new binary to analyze symbolically it will begin by first lifting the binary into an 
intermediate representation known as VEX.  The conversion to intermediate representation 
transforms instructions into a new non-architecture dependent representation of the code.  This 
allows angr to support many architectures including ARM, MIPS, PowerPC, X86 and more.  All 
the analysis techniques from angr used for this project rely on this intermediate representation. 

import angr 
 
project = angr.Project(<Binary file>) 
state = project.factory.entry_state() 
path = project.factory.path(state) 
pathgroup = project.factory.path_group(path) 
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 After initialization of the project, state, path and path group, there are many analysis 
techniques that could be applied using angr. The Control Flow Graph structure in angr is the 
most important collection of analysis results since almost everything else relies on it. 

Control Flow Graphs 

angr has a structure that they term a Control Flow Graph.  An angr CFG is a graph that 
has basic blocks as its nodes and its edges are jumps and returns.  The term CFG is not specific 
to angr and, in fact, angr adds a lot of other analysis and tracking data into the CFG, where other 
CFG’s would not contain this information.  In a CFG, each edge represents a call, branch, jump 
or return to the basic block it’s directed to.  The basic blocks are the nodes because each basic 
block defines a section of code without any branches.  Each time there is a branch, such as a 
conditional statement, a constraint is added to both new paths and the CFG splits to show the 
possible successors for that return.  A constraint is the condition or limitation of each path that 
spawns from a conditional statement. 

Our proposed function matcher relies on the code flow throughout a function.  This 
visual, in Figure 7, allows us to see the interactions between basic blocks.  These interactions are 
important because together, they form a possible path through a function.  Each time a basic 
block splits into two more basic blocks that is creating two potential paths of execution.  Each 
possible path that could be taken is denoted by the decisions made during execution.  At the end 
of each basic block there is a jump, return or some sort of change in code flow.  For example, in 
the func+0x14 block we can see the jle 0x400533 instruction.  This represents a 
conditional statement and a constraint that is being added to both subsequent possible paths.  
These constraints and paths are used in our function matcher. 
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Figure 7. A CFG demonstrating relationships between basic 
blocks. 

angr stores the active paths in a stash of paths separately and the Control Flow Graph is 
generated through stepping each active path until every path has dead-ended, meaning it steps 
through execution until there are no more successors.  More information on Control Flow Graphs 
in angr can be found in Appendix A.  

Constraints 

 When angr is performing symbolic execution each time a path reaches a conditional 
statement, a jump call, or any branch, this causes the path to be split into two new paths.  When 
this occurs, the solver engine adds a constraint to each path which denotes what conditions 
would allow that path to continue based on what the condition in the branch causing operation 
was.  For example, if the code contained a statement of if(counter < 6){},this would 
cause one active branch to branch into two paths.  One of these paths would contain the 
constraint of counter is less than 6 and the other path would have a constraint of 

counter is greater than or equal to 6. These constraints are stored as abstract 
syntax trees. 

 

Figure 8.  Constraints in angr are stored as abstract syntax trees.   

<BV32 reg_10_9_32> __SLE__ <BV32 0x0> 
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 Figure 8 provides an example of a constraint on a path for x86 where the register is 
signed less than or equal to 0.  Here the left leaf is symbolic because it does not have a concrete 
value however the right leaf is concretely assigned to 0.  This figure also demonstrates the 
BitVector naming notation. 

System State 

 During the dynamic analysis that angr provides, a user can look at the program state at 
any point in the program.  This state provides information on the stack, registers and more.   
Figure 9 demonstrates what printing register values would look like from the terminal with the 
register name, value and whether it is symbolic at that point in time. 

 

 

Figure 9.  This shows a sample program state for the values stored 
in each register and whether the value is currently symbolic.  This 

is an x86 program. 

Summary 

 Overall angr’s symbolic execution engine provides a wide array of analysis techniques.  
These techniques ensure full code coverage because symbolic execution ventures down every 
possible path.  Using symbolic execution to analyze binaries is a useful technique because it 
gives a functional analysis of a program rather than a static and string based analysis.  Using 
these different forms of analysis provides a multitude of possibilities for matching techniques.  
More information on Value Set Analysis, Control Flow Graphs and more can be found in the 
Appendix. 

2.5 Related Work 

Symbolic Execution Engines 

 Symbolic execution has been around for at least a decade and just recently has been 
gaining interest again.  The DARPA Cyber Grand Challenge, a challenge created by the Defense 

eax <BV32 0x0>      False 
ecx <BV32 reg_18_13_32>    True 
edx <BV32 reg_20_14_32>    True 
ebx <BV32 reg_28_15_32>    True 
esp <BV32 oxffff0000>    False 
sbp <BV32 Reverse(Reverse(reg_38_11_62)) True 
esi <BV32 reg_40_16_32>    True 
edi <BV32 Reverse(Reverse(reg_48_12_64)) True 
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Advanced Research Projects Agency to develop automatic defense systems that can discover, 
prove and correct software flaws in real-time [16],  brought forth a new frontier in symbolic 
executions capabilities.  This included tools like angr, Mayhem [17] and more.  Mayhem was the 
ultimate winner of the competition with a symbolic executor and directed fuzzer [17].  Alongside 
Mayhem there are plenty more symbolic executors, assisted fuzzers, and more in the field of 
symbolic execution. 

 Another one of these symbolic executors is CUTE.  This is a tool that is used to test C 
programs and concurrent Java programs.  This uses symbolic execution to generate test cases and 
improve code coverage.  While angr is used for reverse engineering, CUTE is generally used as 
a software testing tool.  Their goal is to generate concrete values for inputs that would allow all 
paths of a function to be taken [18].  To do this they combine concrete execution with symbolic 
execution.  Often there will be techniques added alongside using symbolic execution to avoid the 
memory and computation issues that symbolic execution presents. 

 Symbolic execution can be used for a variety of use cases.  It is most commonly used for 
its full code coverage.  Tools like CUTE, Cloud9 and more use symbolic execution in 
conjunction with other tools to provide support for software testing.  Some tools use symbolic 
execution for vulnerability analysis, such as Kudzu.  Tools such as SAGE, implement symbolic 
execution in conjunction with fuzzing to create a smart fuzzer.  Symbolic execution provides 
support for a variety of use cases within the testing and vulnerability analysis fields.  

Symbolic Execution and Function Matching 

 To the best of our knowledge, we are the first to apply symbolic execution to function 
matching.   The most similar matchers in the field, however, are Abstract Syntax Tree matchers 
[19] [20].  Abstract Syntax Trees are the tree of variables and how they relate to each other 
throughout a program.  Most commonly, they are generated for an entire binary, however 
specifically for angr they are only generated for a single constraint.  These Abstract Syntax Trees 
for the full binary have been researched in relation to binary function matching.  Our matcher has 
advantages over this matcher because it provides a more accurate match through matching by 
value rather than matching using hashing. 

Clone detection is the concept of attempting to match binaries to fine sections of code 
that are performing the same comparisons.  This technique is generally applied to student work 
to detect students cheating on computer science assignments.  In a study on clone detection, the 
authors were attempting to detect near miss clones.  In their paper, they reference hashing the 
ASTs for an entire binary to determine exact tree matches [19].  This is a concrete technique to 
find a perfect match however they also implement methods to find the near miss matches.  This 
involves comparing every subtree to other subtrees for equality [19].  One way that their method 
of comparing ASTs is different than this proposed method using angr, is that they have a single 
Abstract Syntax Tree for the entire binary.  Their tree is linked, meaning that sometimes the 
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leaves in a tree can also have leaves of its own.  angr however, does not store constraints as 
linked Abstract Syntax Trees.  This would lead to more complexity and scaling problems with 
their constraint solver.  If given linked Abstract Syntax Trees in angr this would provide the 
opportunity for graph matching techniques to be applied as well as value comparison however it 
would introduce recursion issues and other memory issues.  The full binary AST for the clone 
detection research was solely hashed then compared, whereas these matchers put in the time to 
do a value comparison as well as the string comparison.  Regular ASTs provide enough 
information for the matchers written during this project. 
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3. System Design 

3.1 Overview 

Approach 

 We used constraint comparison to match functions based on the constraints placed on 
each path within a function.  This allows for the functions to be matched based on what they rely 
on for input.  This could include dependencies on user input, parameters to the function, memory 
reads and more. This allows functions to be matched regardless of the target architecture.  Using 
symbolic analysis, the function is guaranteed to be fully analyzed.  Through using this 
information, we can match functions based on what they rely on and how this affects their code 
flow.   

An overview for how the different pieces interact for this project is shown in Figure 10.  
This involves at least two binaries being extracted.  After extraction, this provides us our 
architecture-agnostic representation of all functions in the binary.  We can then ingest these 
functions into our pairwise matchers.  This class of matchers will then provide matches between 
functions from the two binaries. 

 

Figure 10. Overall flow chart of our proposed matching and 
extraction techniques. 

We designed three matchers for this project.  The first is the symbolic constraint value 
matcher.  This matcher attempts to exactly match constraints with between functions found in 
different binaries.  The second is a symbolic constraint string matcher.  This matcher hashes and 
then uses LCS, described in Appendix C, to match the constraints and only works for the same 
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architecture binaries.  The final matcher is a symbolic constraint fuzzy matcher.  This matcher 
allows for functions to be matched even with some constraint mismatches.  

3.2 Constraint Extraction 

 

Figure 11. Constraint extraction design for our system. 

Constraint extraction is the process of running symbolic execution on every function in a 
binary for extracting the function’s paths and constraints. Constraint comparison relies on the 
function to be symbolically executed to determine what the constraints are.  The first step taken 
here is finding the functions.  Through looking at the Control Flow Graph we can find the start 
address of all the functions in the binary.  We can then ingest the function into symbolic 
execution by setting the start state to be blank and to start at the beginning of the function using 
the entry address.  A blank start state means that everything is symbolic and unconstrained 
including all the registers and memory.  Doing this allows the function that is being analyzed, to 
be analyzed standalone, meaning whatever has happened before this function began is not 
considered.   

The callout sites, places in a function where the function calls another function or jumps 
to an outside location, also need to be considered.  During symbolic execution of a function the 
default of angr is to call any callout sites with the appropriate parameter values and attempt to 
execute through the function with those concrete parameters. Sometimes this is a simple process 
however, sometimes this will cause many more constraints to be added to the path from the 
called function, to the function in analysis.  This large number of constraints is too much of a 
performance burden therefore during analysis of a function all we overwrite all callout functions 
using a hook procedure that effectively no-ops, removes through adding instructions that do 
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nothing, the function call.  When this hook procedure is implemented to no-op the function calls, 
this includes tail calls.  These cases are handled during execution. 

After the function is set up and ready, the extractor will execute through the function with 
parameters being made symbolic, any memory reads or user input is also made symbolic since 
these cannot be concretely determined during symbolic run time.  Symbolic execution does have 
some limitations, e.g., loop detection and handling.  During execution, the extractor will attempt 
to determine the path is in a loop by looking at the current address and the past addresses of that 
path.  If the current address is in the list of past addresses, this means that the program is in a 
loop.  To avoid looping without concrete boundaries, the script will check the possible 
successors of that basic block.  If there is only one successor to the basic block, that means the 
loop is concrete and therefore can be feasibly run during symbolic analysis.  However, if there is 
more than one successor, this is a symbolic loop and the script will dead-end the path that 
continues through the loop and allow the path that exits the loop to continue execution.   

One use case to consider when looking at successors is the tail call scenario.  Since 
function calls are callee cleanup, meaning the function that is called will clean up the stack and 
instruction pointer after execution, and are also overwritten using blank operations, being no-
op’d, at the beginning of the script, this causes an issue when it comes to looking at the possible 
successors of a basic block.  Since the actual successor of the final basic block of a function is 
the address of the next function and that address is overwritten, angr determines based on the 
path that the next successor should be the next possible address.  This address could be the start 
address of another function, or depending on the compiler, the address could be in the middle of 
the current function because of the way the code aligned during compilation.  Both scenarios are 
unsatisfactory since the only actual successor of that basic block during normal execution was 
the exit function call.  The CFG for the project, however, recognizes the actual successors and 
solely lists the address of the exit function call as the successor to the final basic block.  This 
allows us to compare the proposed successor of the path with the no-op’d function calls to the 
actual CFG projected successors to determine if this successor is attempting to execute a 
reasonable address. 
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Figure 12. Demonstrates how the extractor stores the results in the 
graph database. After symbolic execution, each function has 

different possible paths of execution with their constraints stored 
on the path. 

After symbolic execution, has completed through the function ignoring all function calls 
and avoiding symbolic loops, a group of paths is the outcome.  These paths are considered dead-
ended, which means they have executed until there are no more successors in that function for 
them to execute at.  Each of these paths contains the constraints that allowed this path to execute.  
An example of what this output looks like is in Figure 12.  This just shows the view of the 
structure however there is more data stored inside each of the components that are printed. 

These paths and constraints are the focus of our class of matchers.  As shown in Figure 
13 these constraints can appear complex due to the naming scheme.  This is because of the 
register, memory and temporary variable names assigned during the intermediate 
representation’s single static assignment.  When interpreting the meaning of this constraint the 
most important pieces of information come from determining if the leaves are symbolic or 
concrete and what operation resides between them.  These pieces of information can be extracted 
through formatting the string representation.  Something to consider here is that depending on 
the computer architecture the same constraints could be different, such as in a different order, 
although the original C source code is the same.  The ordering of leaves is dependent on the 
architecture so, to analyze these, considering the communitive property allows us to determine if 
swapping the arguments constitutes a match.  These considerations are applied during the 
matching process. 
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Figure 13. A demonstration of 3 different possible paths and the 
constraints that live on those paths.  This is from a binary 

compiled for x86. 

During constraint extraction, some error handling techniques need to be applied.  
Sometimes, angr cannot concretize variables into nice comparisons as shown in Figure 14.  This 
will lead to an incredibly long representation of variables that contain every possible value, or 
sometimes even just one randomized value.  For example, if the program has a segment that 
states eax != mem_addr and both of these variables are symbolic, this can lead to 
concretization issues.  If neither of the symbolic variables can be neatly concretized into a value, 
then sometimes angr will store one of the variables in every possible form with the given 
constraints that previously existed on that variable.  Say earlier in the program mem_addr was 

set to be between 0x400000 and 0x400010 and angr couldn’t determine the final value, then 

the constraint could be stored like this: if <BV32 eax == 0x400000> if <BV32 eax 
== 400001> if… and so on.  An actual example of this is shown in Figure 14. 

<Path with 5 runs (at 0x4000040 : ##angr_externs##)> 
[<Bool reg_48_10_64[31:0] >s 0x63>] 
<Path with 7 runs (at 0x4000040 : ##angr_externs##)> 
[<Bool reg_48_10_64[31:0] <=s 0x63>, <Bool reg_48_10_64[31:0] >s 
0x31>] 
<Path with 8 runs (at 0x4000040 : ##angr_externs##)> 
[<Bool reg_48_10_64[31:0] <=s 0x63>, <Bool reg_48_10_64[31:0] 
<=s 0x31>, <Bool reg_48_10_64[31:0] <=s 0x18>] 
<Path with 8 runs (at 0x4000040 : ##angr_externs##)> 
[<Bool reg_48_10_64[31:0] <=s 0x63>, <Bool reg_48_10_64[31:0] 
<=s 0x31>, <Bool reg_48_10_64[31:0] >s 0x18>] 
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Figure 14. Example of an error that can occur in angr when the 
constraint solving does not concretize properly. 

 When this happens, the constraint is unusable for any sort of matching technique and 
therefore an error is appended to the constraint instead.  This error is later handled during 
matching. 

 Another possible error in angr’s concretization strategies occurs when the framework 
accidentally stores both leaves with the operation in one leaf.  There are a few causes behind this 
happening.  The not operation only takes one argument therefore sometimes the second leaf is 
unnecessary for the instruction.  Also, the important leaf could be complex due to previous 
operations.  An example of what this would look like is leaf1: <BV32 reg_11_30_32 
__SLE__ BV32 0x1> operation: NOT leaf2: ‘’.  Trying to match this with another constraint 
and hoping the same error happened during symbolic execution is not reasonable.  Therefore, an 
error is added to this constraint as well which is also handled during matching.  

3.3 Matcher Overview 

 Using constraints to match functions gives full code coverage and allows the user to 
match based on what the function relies on.  To match constraints, they must first be extracted 

<BV64 if (mem_ffffffffff000000_145_2048[7:0] == 0) then 
0xffffffffff000000 else (if (mem_ffffffffff000000_145_2048[15:8] == 
0) then 0xffffffffff000001 else (if 
(mem_ffffffffff000000_145_2048[23:16] == 0) then 0xffffffffff000002 
else (if mem_ffffffffff000000_145_2048[31:24] == 0) then 
0xffffffffff000003 else (if (mem_ffffffffff000000_145_2048[39:32] == 
0) then 0xffffffffff000004 else (if 
(mem_ffffffffff000000_145_2048[47:40] == 0) then 0xffffffffff000005 
else (if (mem_ffffffffff000000_145_2048[55:48] == 0) then 
0xffffffffff000006 else (if (mem_ffffffffff000000_145_2048[63:56] == 
0) then 0xffffffffff000007 else (if 
(mem_ffffffffff000000_145_2048[71:64] == 0) then 0xffffffffff000008 
else (if (mem_ffffffffff000000_145_2048[79:72] == 0) then 
0xffffffffff000009 else (if (mem_ffffffffff000000_145_2048[87:80] == 
0) then 0xffffffffff00000a else (if 
(mem_ffffffffff000000_145_2048[95:88] == 0) then 0xffffffffff00000b 
else (if (mem_ffffffffff000000_145_2048[103:96] == 0) then 
0xffffffffff00000c else (if (mem_ffffffffff000000_145_2048[111:104] 
== 0) then 0xffffffffff00000d else (if 
(mem_ffffffffff000000_145_2048[119:112] == 0) ETC… 
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using the techniques discussed in the above section. After the extraction has completed, this 
provides all possible paths that could have been taken during execution of the functions in a 
binary and the constraints that allowed the program to take those paths.  These are then 
compared using a combination of techniques.  Matching is done at a functional level rather than 
a full binary being compared to another binary.  It will take in two full binaries and pairwise 
match the functions from each binary. 

 

Figure 15.  A demonstration of the output from extraction.  
Depending on the function there can be more or fewer paths and 
depending on the path there could be more or fewer constraints. 

 

 Looking at this sample output from the extractor allows us to demonstrate how the 
matcher will use this information.  First Function 1 and Function A will be matched.  Once these 
two functions have been ingested into the matcher the matcher will first look at Path 1 and Path 
A.  Looking deeper, this involves looking at the constraints from these paths.  Constraint 1 will 
be matched to Constraint A.  After this similarity is determined, Constraint 1 will be matched to 
Constraint B.  Every constraint pair must be matched.  This would continue until Constraint 1 
had been matched to every constraint from Path A.  Constraint 2 will the follow the same 
process; first being matched to Constraint A, Constraint B and so on.  Once these are done this 
gives us the constraint scoring matrix for Path 1 and Path A.  This will be described more in 
depth later.  Path 1 must then be compared to Path B and so on.  This continues until Path 1 has 
been matched to all the paths from Function A.  Path 2 will then be compared to all the functions 
from Function A.  Once these have completed there will be a path matrix which is then scored to 
provide a final similarity between Function 1 and Function A.  Function 1 will then be matched 
to every possible function from Binary 2.  Following this Function 2 will be matched to every 
possible function from Binary 2 and so on for the rest of the functions. 
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Figure 16. Flow graph for all matchers. The only place where 
matchers differ is within the Constraint Matching methodology.   

Ingesting pairwise functions into the matcher is demonstrated in Figure 16.   Through 
using preprocessing techniques, we will avoid wasting time matching functions that clearly will 
not provide a match.  These techniques are described in Appendix C.  The process described 
above involving looping through paths and constraints is demonstrated here as well.  Once the 
matcher determines that the function, path, and list of constraints can be reasonably matched, 
each of these constraints needs to be compared; this process is described in Figure 16 as 
Constraint Matching.  This is the part where each of the matchers from the class of matchers 
differ.  The actual constraint comparison for each matcher is described in their respective 
chapter. 

3.4 Symbolic Constraint Value Matcher 

Since constraints are stored as abstract syntax trees, it is reasonable to match them with 
100% similarity in this value matching scenario.  Given there were no errors during extraction 
stored on the constraint, each leaf can be matched and the operation between the two will also be 
checked to make sure that they are the same.  These three conditions being satisfied constitutes a 
100% match.  The actual matching of constraints is done by first comparing the first leaf to the 
other first leaf.  If these are a match then the second leaves are matched, finally the operation is 



 

24 
 

matched between them.  If the first two were not a match, the first leaf will be matched to the 
second leaf.  If they are a match the second leaf of the first constraint will be matched to the first 
leaf of the second constraint and the operation will be swapped.  A simpler example of this is 
demonstrated in Figure 17 where x, leaf1, <, operation, and 5, leaf2, are all a perfect match to 

x<5 on the other axis and therefore it is a 100% match.  After each constraint has been matched 
with every other constraint from the other path, there is a final constraint matching matrix like 
Figure 17.   

 X<5 X>=5 Y!=0 A=True 

X>=5 0 100 0 0 

X<5 100 0 0 0 

A=True 0 0 0 100 

Y!=0 0 0 100 0 

Figure 17. An example of a constraint matrix. 

 Once there is a matrix for the constraints from the first pass of matching a pair of paths 
the Hungarian method, described in Appendix C, is implemented to find the best one to one 
match between constraints.  If there are too many constraints however, a brute force method is 
applied to save time and memory.  After one of these methods of matrix scoring is applied, the 
return is a list of the ideal constraint matches and the similarity between them.  These similarity 
values are then averaged together to create a final similarity between the two paths.  The script’s 
loop will then loop through the rest of the possible path pairs from each function and compare 
their respective constraints.  Finally, a matrix will have been created for the paths from function 
one and the paths from function two.  This can then be scored using the same methods applied 
for matrix scoring for constraints.  This gives a final similarity value between the two functions. 

 One consideration to make when comparing constraints is that the leaves can be stored 
with indexes in their naming scheme that could cause a missed match.  The names of the 
temporary variables need to be altered to dis-include the indexing.  Since single static assignment 
only uses one variable name for one purpose this could alter the matching of constraints with 
variables when including their indexes. Through removing the index, the function that was 
compiled at an earlier offset and therefore has small temporary variable indexes can still be 
matched with a function that had larger indexes due to being farther down in the source code. 

 Some architectures order their opcodes differently which needs to be considered when 
matching constraints since they won’t be in the same order for two different architectures, even if 
they are functionally doing the same comparison.  Another thing to keep in mind when matching 
cross architecture, and cross compiler, is that the leaves can be stored in the opposite order.  
Rather than having x is less than 1, another architecture might have 1 is greater than x.  To avoid 
overlooking this match, the matcher needs to check for scenarios like this.  
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Figure 18.  On the left is x86 and on the right is the same source 
code compiled for arm.  As shown, arm and x86 order their 

variable and constants differently.  This is the final possible path’s 
constraints. 

 To check for these scenarios, when the matcher doesn’t find a match in the original order, 
one of the constraints will be swapped.  Swapping the constraint takes the second leaf and the 
first leaf and switches them, then reverses the signed operation between them.  For example, if 
the operation was originally less than the opposite would be greater than.  The constraints can 
then attempt to be matched again.   

3.5 Symbolic Constraint Fuzzy Value Matcher  

This version of the constraint value matcher is used to allow for small deviations within 
the similarity of a match between constraints.  Where the Symbolic Constraint Value Matcher 
only allows constraints to be matched either perfectly with 100 or not at all with 0, this matcher 
was written to test situations that could be considered close enough to be a match.  For this 
matcher, the only difference is in constraint comparison.  The Symbolic Constraint Value 
Matcher tests for the left leaf, right leaf, and operation between the two all to be the same and 
then can assign that match a 100% similarity.  In this matcher, the Symbolic Constraint Fuzzy 
Value Matcher, it allows a 66% match to be created when both leaves are the same and the 
operation is different and allows for a 33% match to be created when only one leaf is the same.  
The idea behind allowing these matches to be made was the idea that since these matchers are 
matching based on the dependencies of the function, it is reasonable to match an example 
situation where leaf 1 is a file line and leaf two is the concrete string that is expected, even if the 
operation is not the same.  These constraints are testing whether the function is reading from the 
same memory space and making a jump based on what that memory is.  This concept of the 
functions relying on a certain memory address or register doesn’t necessarily require the 
operation to be the same.  If the memory address is the same, then those two functions are calling 
out to the same place which makes them somewhat similar.   

 

 

reg_48_10_64[31:0] <=s 0x63 
reg_48_10_64[31:0] <=s 0x31 
reg_48_10_64[31:0] >s  0x18 

0x63 >=s reg_8_13_32 
0x31 >=s reg_8_13_32 
0x18 <s  reg_8_13_32 

X86 ARM 
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 X<5 X>=5 Y!=0 A=True 

X>=5 66 100 0 0 

X<5 100 66 0 0 

A=True 0 0 0 100 

Y!=0 0 0 100 0 

Figure 19. An example of the same constraint matrix as in Figure 
18, however this one uses fuzzy matching. 

 Here constraints can still be granted 100% similarity, however if the operation is different 
between them and the leaves are the same, they are granted 66% similarity in the match. In 
allowing for partial matches to be made this allows for more variation in the functions even if 
they are still considered a match.  However, functions will still not be considered a match if after 
matrix scoring of the constraint and path matrices do not produce a final similarity of higher than 
70%. 

3.6 Symbolic Constraint String Matcher 

 Since comparing constraints using value matching can be computationally expensive, a 
simple string comparison using constraints was implemented.  This string comparison uses the 
same preprocessing techniques to avoid comparing paths from different functions that are clearly 
not a match.  For example, one path has one constraint and the other has fifty and these are 
clearly not the same function and if either of the constraints have errors they will obviously not 
be matched. 

 The only difference between value and string comparison with constraints is in the actual 
constraint comparison.  While value comparison can look at both leaves and determine if they 
need to be swapped and can also allow for removal of register indexes during comparison, string 
matching does not do this.  String matching simply takes the list of constraints from the path, 
hashes them using a sha256, and compares them to the string of constraints from another path 
using the Longest Common Subsequence algorithm to determine how similar they are.  The LCS 
minimum confidence is set at 75.  The similarity is then injected into the paths matrix and the 
rest of constraint string matching is done the same way as constraint value matching. 
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4. Methodology 

4.1 Datasets 

 We collected a wide variety of binaries to test symbolic execution’s functionality and the 
accuracy of the written matchers.  angr claims to support a variety of architectures and a large 
variety of operation types so initially tests were run to ensure angr was a reliable symbolic 
execution engine.  We manually compiled binaries from a variety of simple C programs (see 
Appendices E-I) to test a large variety of situations.  These programs consisted of loops, 
conditionals, function dependency, recursion, use of signed and unsigned integers, memory reads 
and writes and other simple programs to understand the impact of common control and data 
structures on symbolic constraints and, consequent, the performance of our proposed matchers.  
These were easily cross compiled for both x86 and ARM.  After they were used to test angr, they 
were also used to test the matchers.  
 

Size (KB) Filename Source Compiled For… 
8.4-8.8 Small self-written test binaries Self-compiled X86, ARM 
26.7 Mysqladmin LEDE X86, ARM, MIPS 
37 Whoami LEDE X86, ARM, MIPS 
129.2 True 8.26, True 8.27 CoreUtils  X86 
129.2 False 8.26, False 8.27 CoreUtils X86 
138.9 Echo 8.26, Echo 8.27 CoreUtils X86 
143.6 Yes 8.26, Yes 8.27 CoreUtils X86 
179.3 Tcpbridge LEDE X86, ARM, MIPS 
219.9 Sha256Sum 8.26, Sha256Sum 8.27 CoreUtils X86 
238 Printf 8.26, Printf 8.27 CoreUtils X86 
431.5 Wget LEDE X86, ARM, MIPS 
745 Bash LEDE X86, ARM, MIPS 
839.9 Git LEDE X86, ARM, MIPS 

Figure 20. Summary of selected test data. A variety of 
architectures and code needed to be tested so self-written binaries 
were used to test cases like looping, recursion and more and the 

large binaries were used to test the usability for production. 

 In addition to the simple benchmarks described above, we also tested our matchers 
against a variety of real-world binaries.  The idea behind selection of these binaries had a few 
criteria.  There needed to be a wide range of sizes to test the speed and accuracy of the symbolic 
execution matchers in relation to size and number of basic blocks per function.  These binaries 
also had to be found in the same version compiled for different architectures to check for real 
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world instances of cross architecture comparison.  These binaries were found using the LEDE 
project [21] which is an open source project developed for router security. 

 For version proliferating, we chose some binaries from CoreUtils [22] in both versions 
8.26 and 8.27.  We wanted to easily test our function matchers with two binaries from the same 
architecture so we could conclude that file size does not impact the matcher’s accuracy. 

 These test binaries were used to both test and evaluate the extractor and class of 
matchers. The provided confusion matrices use the test binaries to effectively demonstrate where 
our matchers succeeded and failed.  This information can be found in the results and discussion 
chapter. 

4.2 Ground Truth and Minimum Similarity 

 In binary matching, there are many opinions on what a true match can be defined as 
between two binaries’ functions.  Reverse engineers using function matching for different 
purposes will have different concepts of what is a true match.  Many people will consider a 
100% string comparison match using the opcodes of the function to be a perfect match.  We 
define our true match to be two functions we manually analyze and determine are a match.  We 
used BinDiff to assist our manual analysis. 

 Similarity is defined as how similar two functions are.  As the developers of the symbolic 
execution constraint value matcher we define similarity based on how many of the constraints 
were matched.  For a developer using LCS they may say that a LCS match is constituted by 
having 80% of the function matched consequently.  Similarity is configurable for all matchers in 
this project and we can define the similarity that we want to use for any matcher. 

Ground Truth 

 For our proposed matchers, a ground truth had to be determined to compare the accuracy 
of symbolic execution function matching to a set truth.  We used manual analysis to match 
functions from different binaries.  This involved using BinDiff to match functions that we know 
BinDiff can match, such as same architecture comparisons or thunk functions.  In these cases, 
BinDiff giving 90% similarity on two functions was our choice of ground truth because it is 
industry standard and simple to run on binaries.  Since BinDiff couldn’t reliably be used to 
match cross-architecture, we manually determine if functions were supposed to match in the 
situations like this. 

Minimum Similarity 

 Alongside this ground truth, a minimum similarity in the constraint matchers also must be 
determined.  For symbolic execution through various manual tests, it is determined that a 
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minimal match of 70% similarity must be reached to consider the two functions a match.  This is 
accounting for small variations between the two functions and still allowing them to be 
considered a match.  Our confidence in the match is always dependent on how similar the 
functions are.  For any function with over 70% similarity we are 100% confident that this is a 
good enough symbolic similarity to be considered a match. 

4.3 Environment 

 We tested our project inside a virtual machine running Ubuntu 16.04.  This machine had 
32 GB of RAM and has a few other processes running at the same time as the symbolic 
execution processes.  These outside processes include services like a running database.  During 
extraction, the symbolic execution script will store the data into the database and during 
matching, the matcher will query the database for this information.  These processes are 
constantly running in the background and use around 10GB of RAM while the symbolic 
execution function matcher and extractors are running. This affects the speed of the extractors 
and matchers. 
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5. Results and Discussion 

5.1 Results 

 After running the test data with the extractor and matchers, we have realized that the 
thumbprint matcher can only do well for certain functions.  To describe these ideal functions, we 
must first classify all function types. Figure 21 shows a few of our larger test binaries and the 
breakdown of each function type. 

 

Figure 21. This figure shows the composition of a binary and the 
categorization of the functions by percentage of the binary. 

User defined functions. These functions consist of the functions that the programmer directly 
wrote.  These are the functions that most reverse engineers are most interested in matching 
between binaries.   

Trampoline functions.  These functions are solely used to call other functions in the program 
[23].   

Setup or teardown functions.  These functions consist of all the functions that set up a program, 
such as setting the entry point in _start.   

Imported functions.  The final type of function is called by trampoline functions during 
execution and is linked to an outside package or source. 

 These four types of functions only categorize what the function is doing, however, it is 
also important to consider if the specific function, regardless of category, will provide any 
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symbolic analysis results.  Since the function matcher relies on path constraints, this matcher can 
only be used on functions that contain conditionals, read from files, or anything else that can 
cause something to be symbolic.  Within the four types of functions, the user defined functions 
most often have constraints and dependencies which makes them the perfect candidate for 
function matching with symbolic execution.  The other three function types can have constraints 
however matching these functions can usually just as easily be done with an LCS opcode 
matcher.  This symbolic execution function matcher will provide the most interesting results on 
functions that are written by a user where there is a change in code flow due to run time data.  
The frequency for each function type having symbolic constraints is shown in Figure 22.  This 
was generated using our test data which is described in the methodology chapter. 

 

Figure 22. The percentage of functions of each type with 
constraints. Generated using our test data. 

In general, these functions with constraints are either user defined functions or imported 
functions.  That makes these functions usable for symbolic matching.  Trying to match a function 
that does not have constraints like a trampoline function will not provide any results. 

Something to consider is that angr creates its own version of some imported functions.  
The reasoning behind this is so when symbolic execution is running on a function that calls 
something, for example strncmp: the angr implementation will be a rewritten version of the 
function using the concrete parameters specified by the caller function.  This avoids the potential 
path explosion problem of using the original imported function.  Usually, the angr 
implementations of these functions will match assuming they were used in the same exact way in 
both binaries, such as having the same parameters upon call time from the same caller function.  
However, these functions are not expected to match because they are so specific to the exact 
parameters of the caller function. On average, angr will create their own version of functions for 
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approximately one third of the functions in the binary.  These functions are generally repeats of 
imported functions which is one of the reasons that Figure 22 shows such a high percentage of 
constraints for imported functions. 

 

Figure 23. This shows the number of times angr threw errors on 
constraints during extraction for some of our test binaries. 

 Figure 23 is demonstrating how often angr could not properly concretize constraints 
during extraction.  These errors are most common for the lesser used architectures like MIPS, 
which leads to issues during cross architecture comparison. 

5.2 Evaluation 

 Finally, with all the considerations in place and understanding that the symbolic 
constraint matcher will work best for user defined functions with constraints and it also works 
for any function with constraints; the confusion matrix is shown in Figure 24.  These numbers 
represent the comparisons between the pairwise functions.  In Appendix D, there is a table 
describing in detail the binaries that were pairwise matched. 
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 Predicted Match Predicted No Match 

Match 85 0 

No Match 27 1384 

Figure 24. The confusion matrix for the pairwise function 
comparisons for functions with constraints only. 

 These comparisons involve cross architecture, same architecture and different versions of 
the same program comparisons.  For this confusion matrix, only the ideal functions, functions 
with a change in code flow due to run time data, were considered.  Any functions that could not 
be matched with our matcher, functions without path constraitns, were not considered.  The 
ground truth used here was manual analysis. 

 

Figure 25. A subset of some of the test data to show how the 
distribution of functions that were matched with our class of 

matchers in comparison to how many functions there were in total. 

 Almost all of the causes of false negatives, missed matches, are due to angr’s errors 
during the concretization of constraints in our extraction phase.  When errors are thrown on the 
concretization of a constraint then that renders the constraint unusable for matching.  This error 
is unavoidable however there is no great way to determine what to do with this error.  In this 
project, anytime a constraint with an error is found it is automatically assumed to be a 0% match 
with the other constraint and the matcher moves on.  One case where this could happen is during 
a file read.  If angr cannot neatly concretize the file line, then this will affect the constraint 
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matrix for this path even if there was a perfect match in the other function, had angr properly 
concretized the constraints.  For a select subset of our test data these errors occur almost 50% of 
the time, and Figure 25 shows more in-depth analysis of how often it happened.  This can cause 
some of the false negatives with these matchers. 

 A lot of times angr will implement their own version of a function such as strncmp to 
simplify symbolic execution.  These extra functions are tacked on top of the existing functions 
and are another one of the causes of false negatives.  Sometimes, a binary will have multiple 
angr implementations of strncmp based on how many times it is used in the other functions of a 
binary.  Although matching these could seems like it could be a match or could be important, the 
angr implemented function does not matter regarding binary analysis because it is not a function 
that exists in the actual binary.  These angr implemented functions can also account for false 
negative situations as well if they do not match the angr implemented version from the other 
binary.  The cost of these false negatives is the wasted time attempting to match them and 
retrieving no data.  Some ways to tell if one of these functions is an angr defined function is to 
see if it has a repeated name as one of the imported functions.  For example, if angr replicates 
strncmp then there will be two strncmp functions in the binary after it is ingested into angr.  We 
could manually look at those functions and ignore them during extraction and matching.  These 
angr functions do not actually have any significance other than their use during the symbolic 
execution analysis. 

 It is also important to consider how these symbolic constraint matchers work on the 
larger scale.  Although in an ideal world the human can see and know to use this matcher on the 
ideal function type, it is important to consider how comparable they are to other matchers in the 
reverse engineering fields.  The industry standard is BinDiff and this tool was used as an aide in 
determining ground truth when considering how the written symbolic matchers compare to other 
tools.  If we were to only use BinDiff to compare these binaries, BinDiff would be incapable of 
matching most cross architecture functions.  BinDiff can match imported functions from two 
different architecture binaries, but cannot match the user defined functions.  We used manual 
analysis to match these functions that BinDiff cannot handle. 

 

 Predicted Match Predicted No Match 

Match 85 0 

No Match 9284 21 

Figure 26. The confusion matrix for all possible function 
comparisons. 



 

35 
 

 All function types, regardless of whether they have constraints or not are considered in 
the second confusion matrix, in Figure 26.  This confusion matrix shows how the symbolic 
matcher would perform only in relation to BinDiff’s capabilities and our manual analysis.   

 The false negatives here are the functions that cannot be matched with our matcher but 
are actually a match.  Figure 27 shows the large percentage of functions that cannot be matched 
with our matcher.   

 In all, our matcher could perform comparisons that BinDiff could not.  These cases of 
cross architecture matching of user defined functions are important.  Figure 28 has a more 
detailed breakdown of how well our matcher did in comparison to BinDiff for these cases. 

 

Figure 27. BinDiff in comparison to our class of matchers for 
cross architecture comparisons on functions with a change in code 

flow due to run time data: the ideal functions. 

 As we can see in Figure 27, BinDiff didn’t match any of the ideal functions when it came 
to cross architecture comparisons.  BinDiff could match some of the imported functions during 
these comparisons but completely missed every user defined function that should have been 
matched during comparison.  Our matcher performed well on these functions, only missing a 
small subset of them.   
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5.3 Comparing Symbolic Matchers 
 

Comparison Value Matches Fuzzy Matches Missed Matches 

True 8.26 vs 
True 8.27 

fwrite, main, version_etc, 
verstion_etc_va 

fwrite, main, version_etc, 
verstion_etc_va, 
set_program_name 

version_etc_arn 

Echo 8.26 vs 
Echo 8.27 

set_program_name, usage, 
version_etc, version_etc_va 

fwrite, set_program_name, 
usage, version_etc, 
version_etc_va 

version_etc_arn, 
main, strcmp, 
usage 

Figure 28. Summary of some of the places where the fuzzy matcher 
performed better than the value matcher. 

Between the fuzzy and value matcher the fuzzy matcher matched slightly more functions.  
Figure 28 demonstrates a few of the binaries where the fuzzy matcher matched more functions 
than the value matcher.  When analyzing the functions that were matched with the fuzzy matcher 
but not matched with the value matcher; it is clear the fuzzy matcher is generating more accurate 
results.  The fuzzy matcher was designed to give similarity values to constraint pairs that were 
not perfect matches, and this technique provides more room for flexibility.  The fuzzy matcher 
matched 9% more functions than the value matcher.  All the functions that were matched with 
the fuzzy matcher but not the value matcher were within the large test binaries.  This allows us to 
make the conclusion that allowing a similarity to be granted even if there is no perfect match 
allows for better results. 

The symbolic string matcher did not produce any significant results however it was an 
easy to implement algorithm that allowed us to test the capabilities of improving performance.  
Through string matching rather than value matching, the process would have been much faster 
however it was too inaccurate to provide meaningful results. 

5.4 angr’s Symbolic Execution Engine 

 angr’s symbolic execution engine overall does a mediocre job at supporting a wide 
variety of situations without a reverse engineer manually writing a specialized script for each 
situation.  This could involve manual analysis to see what a binary is doing and writing a script 
that complements the specific traits of that binary.  Although the engine is well built for specific 
use cases, such as capture the flags and other manual projects, writing a generic script to run 
symbolic execution on an abundance of binaries does not perform incredibly well.  For small and 
simple test programs such as nested if statements or switch statements contained in a single 
function, angr performs as expected.  However, once small programs use more complex C 
programming concepts, angr does not handle them well. 
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 Errors in angr, during concretization of constraints, occur frequently. There are two types 
of errors that are handled in these extractors and matchers, the constraint being completely 
contained in one leaf and the inability to neatly simplify the constraint value.  Both errors cause 
the symbolic matcher to perform poorly because they render the constraint unusable for 
matching.  The completely one leaf error occurs 23.8% of the time and the inability to neatly 
simplify constraints error occurs 26.4% of the time.  Combined, these cause 50.2% of constraints 
to be unusable during matching which accounts for a significant amount of inaccuracy.   

 As angr improves the extractor can easily be updated to include these improvements.  
The symbolic constraint concretization methods being improved would allow for 50% more of 
the constraints found during analysis to be usable. We estimate that this would allow our matcher 
to be at least 20% more accurate.  Almost all the false negatives are due to constraint errors. 

More places where angr’s improvement would greatly affect our matchers are in the 
support for operations such as square root, modular arithmetic and more, especially across the 
different architectures.  These errors are most often seen when running MIPS binaries through 
angr. Other places that would allow for improvement include loop handling and programs that 
modify directories.  The angr error that is thrown when these unsupported operations are found 
looks like Figure 29. 

 

Figure 29. Unsupported operation error in angr. 

 Some of the situations that are not fully supported for automated symbolic execution 
could be supported using scripts created perfectly for each program, however, that was not 
possible for this project. The idea was to create a script that can work on any situation, but the 
limitations of angr did not allow for this to be done perfectly.  Other situations that are unusable 
with this project include: modifications to the working directory or operating system level 
methods. 

Another situation that cannot be solved in general with symbolic execution is looping.  
Currently this issue is a research topic that has not been solved yet.  Improving angr’s static 
analysis is out of the scope of this project.  Therefore, this project implements methods, 
described in system design extraction section, to get around the looping problems of symbolic 
execution in a fashion that doesn’t render all the information unusable.  Since angr is under 
active development, these issues could be fixed soon. 

  

Unsupported operation: Iop_ZeroHI64ofV128 
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6. Conclusions 

6.1 Matchers 

 Our main contribution was our attempt to solve the problem of comparing the similarity 
of functions using architecture agnostic symbolic execution data.  We had good results in beating 
BinDiff when it came to user defined functions being compared cross architecture, which is 
shown in Figure 27.  In these cases, BinDiff could only give a slight similarity score, generally 
under 20%, whereas we could match with over 70% similarity. 

 Both the fuzzy and the value symbolic constraint function matchers performed well for 
the given test sets, shown in Figure 28.  For functions with constraints, they matched upwards of 
87% of functions that were expected to be matched.  If all functions are considered, including 
those without constraints, the results do not appear great, but these additional functions are 
outside the target function type for this technique.   

6.2 Recommendations for Future Study and Improvement Measurement 

 Several areas of possible improvement have been discovered during this research. One 
such improvement that can be made is allowing for linked Abstract Syntax Trees to be used for 
matching.  In conjunction with the Clone Detection research done with Abstract Syntax Trees 
[19], this will allow for graph matching and other techniques to be applied to the matchers.  
Graph matching with linked ASTs would help provide a more accurate match because we could 
then see the ordering of constraints that are added to the path rather than just having a list of 
constraints.  This would also allow for detection of situations where a sub-tree of one tree is 
equal to the entirety of another tree, for example if one function was split up to be three functions 
in a different binary.  This was out of the scope of this project because of the path explosion 
issues that would be encountered when linking the ASTs. 

 Another major improvement that can be made is within the preprocessing techniques, 
described in detail in Appendix C.  Currently, our matcher only uses a length matching technique 
and an error checking technique.  However, if there were a way to know what functions should 
be extracted and matched using symbolic matchers before running the script, upwards of twenty 
minutes of time could be saved for each of the large binaries.  Knowing that the function matcher 
works especially well for user defined functions, using a preprocessing technique to identify this 
subset would be rewarding, though this could be difficult.  With the addition of machine learning 
in areas like this, the symbolic matcher’s speed could be improved significantly. 

For other improvements, as angr improves there is room for improvement in the extractor 
and matcher.  Improvements in Z3, the constraint solving engine, will allow for the errors in 
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constraints to be diminished and render them usable for matching which will significantly impact 
the matchers usability.   

 Future work could be done to implement some other symbolic function matchers.  Some 
proposed ideas include data dependency matching, environment and state matching, and aided 
fuzzing or tainting, found in Appendices A and B.  These matchers have potential; however, they 
may require architecture specific information and thus may lead to architecture specific 
matchers. 

6.3 Lessons Learned 

 This project taught us many lessons.  We started with nothing and now have a prototype 
symbolic function matcher.  At the beginning of the project knowing nothing about symbolic 
execution or binary analysis, this project was daunting.  However, through asking for help from 
experts in the field, we could find the right resources to learn more on our own.  Had we never 
asked for help, we would have spent a significant amount of our time looking for the proper 
resources to learn reverse engineering.   

 Something else we learned is that there is a lot to learn from research papers.  In the past 
reading research papers was a difficult task because often it is hard to fully grasp the concept that 
the author(s) are trying to get across.  This comes from not having enough background 
knowledge on the subject before diving in.  However, after the large amounts of time that we put 
into research on computer architectures, compilers, symbolic execution, reverse engineering, 
function matching techniques and more, research papers in these areas became easily 
understandable.  Understanding other researchers worked helped us move ours forward with 
ideas gained from other’s past experiences.   

 Overall, this project taught us many computer science topics, but more importantly, how 
to better set and meet expectations from advisors and mentors while working on a project.  
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Appendix A 

 Control Flow Graphs in angr store an abundance of information alongside the regular 
CFG.  They can store and show more information about the basic blocks such as the intermediate 
representation, the opcodes and information on the basic block such as size, successors and 
more. A picture of this is in Figure 30. 

 

 

Figure 30. Here the Control Flow Graph shows all debugging 
information.  From top to bottom it provides the basic block’s 
address and name of the container function and offset, then it 

moves to the opcodes for the architecture, then the intermediate 
representation statement block, then the information on the return 

target and more.   
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Appendix B 

angr also allows for many value set analysis techniques.  One of which is analysis of a 
data flow graph.  This form of analysis relies on expression trees [15] which is a tree of 
expressions that track operations on variables.  Claripy, angr’s backend, tracks operations on 
expressions.  Z3, a symbolic constraint solver, can then go in and solve for symbolic values or 
simplify concrete expressions [15].  These trees can be used to get different information about 
the program.   

 A data dependency graph is the attributes of the nodes in the parse tree that is depicted by 
a directed graph [7].  This graph is a record of the variables from the program and how they 
depend on each other.  For angr this is stored as a DDG.  The DDG tracks the variable and every 
location that caused the variable to change.  For this analysis angr does not use the intermediate 
representation.  Therefore, data dependency graphs are only available for the fully supported 
architectures.  Looking at this information can tell you about the variables that are being used in 
the program and how often they are referenced and modified. 

 
  



 

45 
 

Appendix C 

 These algorithms and techniques are used in the matchers and extractors.  Background on 
these techniques is critical to understanding what the function matchers are doing.  LCS and 
Hungarian were found in pre-existing packages however the preprocessing technique and brute 
force matrix scoring methods was written specifically for this project. 

Longest Common Subsequence 

 Longest Common Subsequence is used in constraint string matching.  This method takes 
a string and finds the longest common subsequence using that string in comparison to another 
string.  This technique provides a strong confidence between two strings because if the strings 
have a very long LCS then that denotes that they are practically the same string.  

Hungarian Algorithm 

 A B C 

D 0 100 0 

E 100 0 0 

F 33 0 66 

Figure 31. This is a sample matrix that would be used for matrix 
scoring using the Hungarian algorithm. 

 The Hungarian algorithm [24] provides a way of matrix scoring.  The algorithm attempts 
to find a one to one match for each row and column, meaning each row and column are paired up 
based on the value shared between them.  The algorithm is typically used to find the smallest 
sum of numbers.  In this use case, it was modified to find the largest sum of numbers, because 
the best match for each constraint wants to be chosen.  The Hungarian algorithm will take in a 
cost matrix and then will generate a graph with the match similarity as the weighted edges.  Then 
the algorithm will determine the smallest possible sum of numbers.  This final step is the most 
computationally expensive.  Attempting to find the most ideal matches to provide the sum of 
numbers is a difficult and time-consuming process.  An example matrix is shown in Figure 31.  
For this example, the Hungarian algorithm is used to find DB, EA, and FC as the matches with 
the values of 100, 100, and 66.  The matrix scoring will use these values during the matching 
process.  In these cases, where Hungarian would take too long, a brute force solution is applied 
in replacement. 
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Brute Force Algorithm 

 Using a brute force method of matrix scoring will simply take the highest value for each 
row and render that column unusable for any other row.  This doesn’t account for potential better 
matches in the future.  This method is much faster however less accurate than Hungarian.  It is 
only utilized when there are too many constraints or paths for Hungarian to be reasonably used 
without taking a significant amount of time and computation.   

Preprocessing 

 Preprocessing is a technique used to avoid wasting computation time and power.  This 
technique involves comparing lengths of lists before comparing them such as the list of 
constraints from a path or the list of paths from a function.  This helps in avoiding the matchers 
trying to compare lists that are clearly not a match.  Another way this technique saves time and 
memory is through noticing errors in angr’s constraint solving methodology.  Sometimes it 
cannot properly solve for a constraint into a simple comparison and will return unsatisfactory 
results.  These are discussed more in depth in Symbolic Constraint Value Matcher’s extraction 
section.  
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Appendix D 

Test Data 

Binary Architecture Size 
(Kilo
Bytes) 

Extraction 
Time 
(Seconds) 
** 

Number of 
Functions * 

Number of 
Ideal 
Functions * 

Matched to… 

Conditional
_if_3deep 

x86,ARM 8.6 <10 15 1 Itself cross 
architecture, every 
other binary we 
wrote 

Conditional
_switch_2d
eep, 
Appendix E 

x86,ARM 8.6 <10 15 1 Itself cross 
architecture, every 
other binary we 
wrote 

Conditional
_if_3deep_
3long, 
Appendix F 

x86,ARM 8.6 <10 15 1 Itself cross 
architecture, every 
other binary we 
wrote 

Conditional
_if_withloo
p, 
Appendix 
G 

x86,ARM 8.6 <10 15 1 Itself cross 
architecture, every 
other binary we 
wrote 

Input_chec
k_string, 
Appendix 
H 

x86,ARM 8.6 <10 15 1 Itself cross 
architecture, every 
other binary we 
wrote 

Unsigned_i
ntegers, 
Appendix I 

x86,ARM 8.6 <10 15 1 Itself cross 
architecture, every 
other binary we 
wrote 

Dependenci
es, 
Appendix J 

x86,ARM 8.6 <10 15 1 Itself cross 
architecture, every 
other binary we 
wrote 

True 8.26 x86 129.2 62 42 10 True 8.27 
True 8.27 x86 129.2 65 42 9 True 8.26 
False 8.26 x86 129.2 54 42 9 False 8.27 
False 8.27 x86 129.2 51 42 9 False 8.26 
Yes 8.26 x86 143.6 126 60 22 Yes 8.27 
Yes 8.27 X86 143.6 124 60 21 Yes 8.26 
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Echo 8.26 X86 138.9 95 48 14 Echo 8.27 
Echo 8.27 X86 138.9 120 48 13 Echo 8.26 
Sha256Su
m 8.26 

X86 219.9 1146 133 52 Sha256Sum 8.27 

Sha256Su
m 8.27 

X86 219.8 1341 134 54 Sha256Sum 8.26 

Printf 8.26 X86 238 2207 139 60 Printf 8.27 
Printf 8.27 X86 238 2115 140 59 Printf 8.26 
Autossh MIPS 19.9 ERROR    
Autossh ARM 21.6 1178 157 46 Autossh x86 
Autossh x86 21.6 1609 159 46 Autossh ARM 
Mysql_Ad
min 

MIPS 26.7 28 43 7  

Mysql_Ad
min 

ARM 27.7 863 63 11 Mysql_Admin x86 

Mysql_Ad
min 

x86 27.7 256 40 8 Mysql_Admin ARM 

TcpBridge x86, ARM, 
MIPS 

179.3 ERROR    

Bash x86, ARM, 
MIPS 

745.0 ERROR    

Git x86, ARM, 
MIPS 

1500 Ran out of 
memory on 
test machine 

   

*The number of ideal functions and regular functions includes angr repeated functions. 
** If there was a halting error during extraction due to angr’s incapabilities it is noted here. 
 
Some of the binaries we wrote ourselves are not included in this table. 
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Appendix E 

# This was used to test switch cases. 

#include <stdio.h> 
#include <string.h> 
#include <stdlib.h> 
 
void func(int i){ 
 switch(i){ 
  case 0: 
   switch(i+5){ 
    case 5: 
     printf("I was 0"); 
    default: 
     printf("I was not 0"); 
   } 
  default: 
   printf("I was not 0"); 
 } 
 
} 
 
int main(void) { 
 int i = 1;  
 func(i); 
  
 return 1; 
}  
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Appendix F 

# This was used to test simple conditionals. 

#include <stdio.h> 
#include <string.h> 
#include <stdlib.h> 
 
 
int func(int i){ 
 if (i<100){ 
  if (i<50){ 
   if (i<25){ 
    printf("less than 25"); 
   } else { 
    printf("between 25 and 50"); 
   } 
  } else { 
   printf("between 50 and 100"); 
  } 
 } else { 
  printf("greater than 100"); 
 } 
} 
  
 
int main(void) { 
 int i = 1;  
 func(i); 
  
 return 1; 
} 
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Appendix G 
 

# This was used to test looping within the function we are 
symbolically executing. 

#include <stdio.h> 
#include <string.h> 
#include <stdlib.h> 
 
void func(int i){ 
 int in = 0; 
 for(in = 0; in < 5; in++){ 
  i = i + in; 
 } 
  
 if(i==0){ 
  printf("0"); 
 } else if (i>5){ 
  printf(">5"); 
 } 
  
} 
 
int main(void) { 
 int i = 1;  
 func(i); 
  
 return 1; 
  
}  
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Appendix H 
 
# This was used to test input from a command line. 

#include <stdio.h> 
#include <string.h> 
#include <stdlib.h> 
 
 
static char password[] = "passw0rd"; 
 
int main(void) { 
 register int j = 1000; 
 register int i=0; 
 char buf[20]; 
 printf("Enter the password: "); 
 scanf("%s", buf); 
 
 int match = strcmp(buf, password); 
 if (match) { 
  printf("Access denied.\n"); 
  return 0; 
 } 
 else { 
  printf("Access granted!\n"); 
  return 1; 
 } 
 return 0; 
} 
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Appendix I 
 
# This was used to test unsigned integers. 

#include <stdio.h> 
#include <string.h> 
#include <stdlib.h> 
 
int main(void) { 
 signed int a  = -5; 
 unsigned int ua = a; 
 unsigned int b = 2147483648; 
 func(a, ua, b); 
  
 return 1; 
  
} 
 
int func(a, ua, b){ 
 
 printf("a=%d  ua=%u  b=%u\n", a, ua, b); 
 
 if(a > b){ 
  printf("True\n"); 
 } else{ 
  printf("False\n");   
 } 
} 
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Appendix J 
 
# This was used to test using outside functions like strcmp. 

#include <stdio.h> 
#include <string.h> 
#include <stdlib.h> 
 
int check_cond_string(char* str){ 
 int match = strcmp(str, "hello"); 
 if (match) { 
  printf("hello!"); 
  return 1; 
 } else { 
  printf("goodbye!"); 
  return 0; 
 } 
} 
 
 
int check_cond(int i){ 
 if (i==0){ 
  if(check_cond_string("hello")){ 
   return 1; 
  } 
 } 
 return 0; 
} 
int main(void) { 
 int i = 0; 
 
 check_cond(i); 
 return 1; 
} 


