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Abstract

Quincy HERSHEY

Exploring Neural Network Structure through Iterative Neural
Networks: Connections to Dynamical Systems

The study of neural networks often places a heavy emphasis on structural hyper-
parameters with the underlying architecture denoted as a series of nested functions
within a rigid architecture. The structure and depth of a given network are typically
specified as hyperparameters including the number and size of layers within a given
model in a task dependent manner. In the process of exploring network architectures
this thesis also examines the roles and relationship of network depth and sparsity in
determining performance. The concept of aspect ratio is introduced, as a central
feature governing the relationship between the depth and width of the combined
network weight space. Consideration is given toward whether network structure in
more traditional architectures serves as a proxy for the roles of depth, aspect ratio
and sparsity. After demonstrating the traditional feed forward multi-layer percep-
tron (MLP) neural network architecture to be a special case of a recurrent neural
network (RNN), the influence of these factors on network performance is examined
from the alternate perspective of an RNN architecture. Recurrent neural networks
contain clear commonalities with dynamical systems theory where iterative struc-
tures are prominently used in place of nested functions. While capable of replicating
the traditional MLP architecture as a specific case, the RNN exists as a more gener-
alized format of neural networks. Throughout this research, the problem sets em-
ployed in benchmarking model performance include typical MNIST based visual
performance tasks as well as derived datasets representative of anomaly detection
sequence and memory tasks. Among these comparisons, the relative performance of
Long Short-Term Memory (LSTM) and MLP class models are benchmarked versus
comparatively less-structured sparse RNN models. Lastly, sparse RNN’s are consid-
ered as a possible mechanism for gauging problem set difficulty.
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Executive Summary

This body of research utilizes the concept of neural networks as iterative mathemati-
cal equations to study the underlying principals and applied assumptions embodied
in traditional neural network architectures. The key idea is that Recurrent Neural
Networks (RNN) architectures are more general than widely understood. In par-
ticular as we show here, every Multi-Layer Perceptron can be rewritten as a RNN.
Therefore, Multi-Layer Perceptrons are a subset of RNN’s. These ideas result is a
more universal approach governing neural network architecture and hyperparame-
ter selection aligned with an alternate set of recommended metrics.

Through the use of mathematical derivations this study first demonstrates equiv-
alence between RNN architectures presented as iterative functions and the typi-
cal nested representations used for standard feed forward networks. These find-
ings are then explored with the goal of more deeply understanding the drivers be-
hind model performance. Using MNIST derived data sets to construct experiments,
model performance is benchmarked both against other popular model architectures
and against various configurations of RNN’s. Early rounds of experiments generate
surprising results running contrary to common wisdom. For instance, randomly ar-
ranged parameters within a sparse matrix demonstrate no distinguishable difference
in model performance over the use of neatly arranged layers. The findings seem to
imply the specification of model structure through the number and dimension of
layers is an artificial construct carrying little direct impact that attempts to indirectly
approximate other implied model characteristics.

Building on these findings, the thesis explores alternate characteristics that may
serve as better hyperparameters in governing model performance particularly when
deployed among sparse RNN’s. The research and experiments then examine model
expressiveness and stability through the interrelated concepts of total trainable pa-
rameters, model depth and sparsity with each playing a role in determining model
performance. Model sparsity emerges as a significant factor in performance while
greatly enhancing stability and expressiveness at significantly reduced parameter
counts. The aspect ratio of the weight space, reflecting the relationship between the
depth and width of the weight space is introduced as a central feature governing
model performance with direct ties to the iterative nature of RNN’s. Beyond serving
as a useful hyperparameter in defining model architectures, this feature combines
with model sparsity to offer additional applications in quantifying and comparing
task difficulty.
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(A) LSTM performance on random anomaly de-
tection series with length 19.

(B) Sparse RNN performance on random
anomaly detection sequence of length 19.

FIGURE 1: Side-by-side comparison of confusion matrices contrast-
ing performance of LSTM and sparse RNN networks on the random
anomaly detection problem with sequence length 19. The LSTM net-
work routinely demonstrated a clear recency bias, showing relative
improvement versus itself on anomalies occurring later in the se-
quence. However, the sparse RNN models demonstrated a significant
performance advantage versus LSTM networks with similar numbers

of total trainable parameters.

Sparsely arranged RNN’s perform well across widely varied experiments when
benchmarked against popular classes of competing model architectures. Through
robust performance across a wide array of tasks, RNN’s demonstrate the benefit of
sparsity and the inherent flexibility in efficient allocation of weights. Using several
problems, RNN’s consistently beat or matched competing peer LSTM and MLP net-
works across a variety of tasks. In one example of an anomaly detection task, Figure
1 demonstrates a sparse RNN significantly outperforming a comparable LSTM net-
work with a similar number of trainable parameters.

While recurrent neural networks are widely understood to be iterative network
architectures, the recognition that MLP’s exist as a subset of RNN’s carries secondary
implications. By extending the generalized iterative approach to the wider body of
neural network architectures there are opportunities for knowledge transfer from
neighboring domains. By example such iterative equations are a central compo-
nent of dynamic systems theory, a well established field of study suited to complex
systems often associated with feedback mechanisms and other nonlinear behav-
ior. These systems commonly feature sequentially dependent states, each evolved
within a closed system such that knowledge of an initial state S0 allows prediction
of states at any subsequent point in time as are often encountered within classi-
cal physics. Famous examples include the Mandelbrot Set which joins dynamical
systems with fractal geometry [17]. Within the field of dynamical systems, those
systems with particularly high sensitivity to S0 find that small changes to the initial
state may result in wildly varying outcomes or similarly chaotic behavior as is the
case with a double pendulum in Figure 2. This area of specialization, referred to
as chaos theory, shares many commonalities with neural neural networks including
feedback loops, interconnectedness, self-regulation and patternistic behavior which
often emerge in the form of exploding gradients [25, 27]. These topics provide a wide
surface area for exploration and motivate much of the research in this area seeking
to bridge the understanding between these two fields.
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FIGURE 2: Chaos systems at work: a double pendulum’s path traced
under long exposure [36]. The behavior of a double pendulum is
prone to wild swings and erratic moves predicated on a fixed behav-

ior from a known initial state.

The combination of these findings redirects the understanding of neural net-
work architecture and hyperparameter selection towards a more universal approach
while recommending alternative metrics for use in characterizing network struc-
ture. These findings run counter to common intuition and open a path for further
research into the implications of generalized architectures and randomly assigned
sparse weight spaces towards model behavior.
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Chapter 1

Introduction

1.1 Overview

Initially developed in 1958, neural networks [20] seek to approximate complex func-
tions primarily in nonlinearly separable solution spaces. These networks combine
nonlinear behavior with a highly parameterized network requiring few underly-
ing assumptions while representing a wide array of functions. To this end, George
Cybenko’s Universal Approximation Theorem states a single layer feedforward net-
work of arbitrary width can represent any function [8]. This broad implied capability
of neural networks coupled with the need for few underlying assumptions has seen
them successfully deployed across a wide array of problems with widespread adop-
tion supported by increasing availability of high powered and optimized hardware
resources. As the availability of high-powered computation resources has increased,
network depth and breadth have risen alongside advancements in overall network
complexity and structure while exploration of neural network architecture contin-
ues to occasionally yield unexpected outcomes. Within this context traditional feed
forward multi layer perceptron (MLP) architectures are typically presented as dis-
tinct from recurrent neural network (RNN) architectures which have a reputation
of being difficult to train [23]. Contrary to this perspective, this research presents
RNN’s as a generalized representation of neural networks within which MLP’s exist
as a special case suggesting alternate factors may play a role.

A central component of training and deploying neural networks against problem
sets involves the selection and specification of hyperparameters governing model ar-
chitecture and other core features. Examples of common hyperparameters include
learning rate, batch size, layers, the overarching structure of layers and model size
[2] often measured by trainable parameters. While multiple approaches for hyper-
paramater selection and tuning exist [6, 13, 22], they are often time consuming for
larger models and involve some process of testing combinations factors which rise
exponentially as more hyperparameters are considered. Furthermore, the sensitivity
of models to these factors can often cause instability within both model training and
testing adding to the challenges encountered in this process [35]. Several charac-
teristics such as model depth and model sparsity are presented which significantly
improve the stability of model performance across a wider array of hyperparameters
and reduce or eliminate performance differentials.

Sparse RNN’s are shown to exhibit increased performance and training stability
across a wider array of conditions and with reduced parameterization. At its core,
this approach allows comparable model performance with total trainable parame-
ters reduced by more than a full order of magnitude in some cases while maintain-
ing the ability to represent complex functions. These findings echo similar findings
from recent research. Sparsity has been presented as a technique to reduce computa-
tional and memory needs for neural networks, while increasing ease of deployment



Chapter 1. Introduction 5

across devices [21]. Commonly utilized methods involve either explicit block prun-
ing methods or lasso regularization [9, 21] applied through training with findings
showing ranges from 80% to more than 90% sparsity resulting in minimal loss of ac-
curacy. Recent research has also shown that contrary to general belief the approach
of training sparse RNN’s from scratch may generate clear performance advantages
over dense networks [14]. As a result, aside from solely improving parameteriza-
tion efficiency, this approach has been demonstrated to be well suited for complex
systems with unknown dynamics such as hurricane topography [19] which carry
strong ties to the study of dynamical systems and chaos theory.

1.2 Summary

In Section 2 several core topics are introduced which form a fundamental basis of un-
derstanding for the following research. This background begins with a cursory intro-
duction of common network architectures including multi-layer perceptrons (MLP)
shown in Section 2.1.1 which are useful across simple categorization and regressing
tasks. From there iterative network architectures are introduced by summarizing
recurrent neural networks (RNN) in Section 2.1.2. The concepts surrounding iter-
ative network architectures are introduced as a generalized framework inherently
capable of replicating both MLP and RNN architectures. Iterative neural networks
are presented as a useful framework in conceptualizing the implied differences and
assumptions of both model architectures and are demonstrated to be mathemati-
cally equivalent to both architectures under various constraints in Sections 2.1.3 and
2.1.4. Following this, long short-term memory (LSTM) networks are summarized
in Section 2.1.6 which serve as a performance benchmark as a commonly deployed
architecture against sequential data sets. The underlying data sets and experiments
are introduced in Section 2.3 before moving into results in Chapter 3 and concluding
in Section 4.
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Chapter 2

Methodology

2.1 Background regarding neural networks

Several fundamental neural network architectures are introduced in the following
sections and later used to explore performance across various problem sets. The it-
erative nature of Recurrent Neural Network (RNN) architectures is presented as a
generalized neural network architecture with roots in dynamical systems theory [1,
32]. Moreover, traditional feed forward multi-layer perception networks may be rep-
resented by the RNN’s as a special case implemented through constraints regarding
the arrangement of trainable weights. An overview is provided of the standard long
short-term memory (LSTM) network [37] as a common architecture deployed over
sequential data sets and therefore a natural choice for performance benchmarking
[5].

2.1.1 Multilayer perceptrons

Neural networks such as the traditional feed forward multilayer perceptron [20] ar-
chitecture can be defined as a set of nested functions as denoted in Equation 2.3. In
this representation, each layer i of the network and accompanying non-linear acti-
vation function [26] is represented as function f i(x), with the linear output a of each
layer feeding through a nonlinear activation function σ. The output of this function
then forms the hidden layer input h of the subsequent function with the exception
of the final layer of weights which provides model output y. The example provided
in Figure 2.3 represents a typical four-layer network. Within this feed forward ar-
chitecture, each function f (x) can be described as in Figure 2.1 as a combination of
the dot product of the input x and j weight vectors w of length d with j dependent
upon the output dimensionality of f (x) prior to adding a bias b and applying the
activation function σ.

f i
j (x) = σ(wi

jx + bi
j) (2.1)

f 3( f 2( f 1( f 0(x)))) (2.2)

f 3 ◦ f 2 ◦ f 1 ◦ f 0(x) (2.3)

In the interest of emphasizing the connection to iterative maps, the formulas can
be further simplified into matrix notation. This is performed by arranging the input
data x into a matrix X where X ∈ Rd×n, n is the number of input examples combined
within a single matrix and d is the dimension of x. Afterwards, attach a single vector
of 1’s with dimension 1 × n to the base of the input matrix X so that the dimension
p of X is the initial input dimension d increased by 1 as demonstrated in Figure 2.4
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where X ∈ Rp×n. By doing so, the weight vector w and bias b may be concatenated
into a single matrix W where the final column contains the bias as demonstrated in
Figure 2.5. This practice of attaching a vector of 1’s to the base of the next layer’s
input matrix and concatenating the weights and biases into a single matrix occurs at
each layer of the network. The end result allows the overall notation to be simplified
into the commonly used matrix notation shown in Equation 2.6.

X =


x00 · · · x0n

...
. . .

...
xd0 · · · xdn
1 · · · 1

 (2.4)

W i =

w00 · · · w0d b0
...

. . .
...

...
wj0 · · · wjd bj

 (2.5)

f i(X) = σ(W iX) (2.6)

The fundamental components of a feed-forward multilayer perceptron (MLP)
[20] form a starting point from which network structure may be specified through
hyperparameter selection as shown in Figure 2.1 illustrating the case of a simple
MLP with output dimension 1. The field has expanded from this initial point to in-
clude many neural network architectures with unique design considerations. Each
evolution in neural network design offers complex structures and model character-
istics allowing widespread adaptability to satisfy complex problems across many
domains.

FIGURE 2.1: Two layer diagram of typical MLP architecture.

While the standard MLP neural network has proven to be a versatile and strong
performer for many estimation and classification tasks, it suffers from the limitation
of statelessness in that it retains no stored memory after each input example of the
instances it has processed before. For sequential data sets which take place either
as part of a greater whole or which hold some relationship with the surrounding
members in a given sequence, memory is clearly a desirable or even necessary trait.
For these cases there exist many architectures for analyzing data in series, among
which are the Recurrent Neural Network (RNN) and the Long Short-Term Memory
Network (LSTM) which are discussed next.
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2.1.2 Recurrent neural networks

The Recurrent Neural Network (RNN) [30, 33] architecture was developed to over-
come the limitations of MLP networks with respect to sequential data sets. The RNN
achieves this by iteratively applying shared parameters over each item in a sequence
and incorporating a stored hidden state H as outlined in equation 2.7. Notation fol-
lows the mechanisms from equations 2.1, 2.4, 2.5. The first hidden state is generally
but not necessarily initialized as a zero matrix for H0. For each item in an input se-
quence X, a weight matrix W i is multiplied by the input matrix Xt at step t while
another weight matrix Wh is multiplied by the hidden state Ht−1 from the previous
step t − 1 with some nonlinearity function (often a ReLU or tanh function) to the
output. The resulting output Ht then serves as the next hidden state alongside the
next item in the sequence Xt+1 using the same weight matrices Wh and W i, respec-
tively. When the last step in the sequence has been reached, the final hidden state
serves as the output.

Ht = ReLU(W iXt + WhHt−1) (2.7)

By concatenated both weight matrices Wh and W i as simply W and concatenat-
ing Xt and Ht−1 as a single input matrix, X̄t the resulting diagram is illustrated in
Figure 2.2. Through the use of shared weights, the RNN appears to unroll across
the sequence steps with no theoretical limitation on sequence length paired with the
ability to process varying length sequences. The simple representation we’ve dis-
cussed portrays the RNN as a single layer network processing data in a single direc-
tion moving forward through the sequence, however in practice they may be built
as a series of recurrent layers feeding one another sequentially or processing data
series bidirectionally. Despite the technical ability for use with extremely long input
data sequences, in practice while backpropagating the errors over many iterations
RNN’s are known to become prone to either exploding or vanishing gradients that
limit the network’s memory over long sequences. In these cases, the process of cal-
culating gradients for repeated operations and nonlinearity functions across many
steps may cause the magnitude of gradient to either vanish or explode causing insta-
bility. These effects are reduced through the use of ReLU as the choice of nonlinear-
ity function, given that for positive values the gradient is unchanged. Nonetheless,
these general limitations inspired the creation of long short-term memory networks
covered in 2.1.6.

FIGURE 2.2: RNN diagram across steps of a sequence.

Despite the emergence of alternatives, RNN networks remain a common choice
for sequential analysis given their ease of use, general effectiveness and intuitive
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structure. Such networks can either be used as stand alone neural networks or as
building blocks within a larger network, commonly with a linear feed forward layer
projecting the output as in Section 2.1.1. As it emerges in 2.1.4, the typical RNN may
be constructed in a manner so as to be directly equivalent to a broader class referred
to as iterative neural networks and defined in the following section.

2.1.3 Iterative networks as generalized MLPs

The roots of iterative representations of neural networks are grounded in the tenets
of dynamical systems theory. Dynamical systems theory encompasses a well-established
field of mathematical study supported by an extensive body of research and theory
[28]. The area has proven well suited to complex systems including characteristics
such as feedback and nonlinear behavior with famous examples including the Man-
delbrot Set [18] and fractal geometry [16]. Core features of dynamic systems include
functional structures which iterate upon themselves [3, 34] to form feedback loops
as denoted in Equation 2.8 below.

f ◦ f ◦ f ◦ f (X) (2.8)

In this section, MLP’s are demonstrated to be another example of dynamical sys-
tems which may be expressed through iterative notation. The visual similarities
between the two functional structures from Equation 2.3 and Equation 2.8 may be
approached notationally by demonstrating equivalence. Additionally these models
can be implemented using popular deep learning software environments in a man-
ner that allows further study of iterative neural networks. Within the context of
this study, Iterative Neural Network (INN) architectures are defined as a broader
class of networks in which the parameters are applied recursively against the input
over multiple repetitions. INN’s are presented as a more generalized concept ver-
sus RNN’s which typically feature dense parameter matrices, whereas the param-
eters of INN’s may be arranged in a wide array of configurations including sparse
configurations and self contained layers. The broader inspiration in demonstrating
equivalence between INN’s and MLP’s would be the potential to leverage and ben-
efit from cross application of dynamic systems principals and theory. More directly,
the restatement of traditional neural network architectures in an iterative format
yields several immediate questions with clear implications to our understanding of
the principals governing neural network structures.

As a first step, the problem may be approached by notationally restating the
traditional neural network into a mathematically equivalent iterative function. Be-
ginning with a basic two-layer MLP feed forward network and using the notational
structure from Equation 2.3, the network can be depicted as the series of nested
functions in Equation 2.8. Using the structure outlined in Section 2.1.1 applied to the
two-layer case, we begin with the overall architecture of the two-layer MLP network
as demonstrated in Figure 2.3, below.
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FIGURE 2.3: Standard representation of a two-layer MLP.

f 1 ◦ f 0(X) = σ(W1σ(W0X)) = Y (2.9)

Together, these component matrices will be used to compile a single iterative
network function represented by the square matrix f (X). To begin, the component
matrices X, H and Y are vertically concatenated together forming a single expanded
input matrix X̄ where H and Y are each initialized as zero matrices. Using the stated
dimensions from Section 2.1.1, X ∈ Rp×n with input dimension p over n examples.
Similarly, matrix H shares the dimension of the hidden layer h over n examples
and matrix Y has output dimension y across n examples. The resulting X̄ matrix
will have dimension (p + h + y) × n. At this point a single square zero matrix of
dimension (p + h + y)× (p + h + y) is initialized representing the iterative weight
matrix f (X), constructed in block-wise fashion using untrainable zero matrices with
several exceptions. The upper leftmost component matrix is initialized as an un-
trainable square identity matrix I with each side matching the input dimension p.
Additionally, trainable weight matrices W0 and W1 are inserted as demonstrated
in Figure 2.4. Finally, the matrix is wrapped in the relevant activation function as
demonstrated in Figure 2.4 to form a combined representation of an iterative f (X).
The outcome is a single square parent matrix encompassing both weights matrices
joined with regions composed of untrainable zero matrices wrapped in a pointwise
nonlinearity function. This specific case represents a single encompassing iterative
functional representation of the two-layer MLP example from Figure 2.3. This square
matrix f (X) is multiplied twice by the concatenated input matrix X̄ reflecting a sin-
gle iteration per layer of weights. The resulting output is mathematically identical
to the initial feed forward MLP that served as a starting point. Under this iterative
representation, the region of X̄ denoted as the Y matrix continues to represent the
output of the neural network just as the region denoted as H continues to represent
the output of a hidden layer.
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FIGURE 2.4: Iterative Neural Network (INN) representation of a two-
layer MLP.

Following two iterative applications (once per layer) of this iterative neural net-
work f (X̄), the resulting output is outlined in Equation 2.10. It should be imme-
diately clear that the resulting output is mathematically identical to the output de-
noted in Equation 2.9 notationally bridging the perceived differnces between Figure
2.3 and Figure 2.4.

f ( f (X̄)) = σ(W1σ(W0X)) = Y (2.10)

The INN representation of the neural network makes explicit the untrainable
zero matrices surrounding the weight matrices which are implied in the traditional
feed forward MLP and other typical feed forward networks. Together, the regions
of the weight matrix horizontally aligned with the trainable weights as depicted in
Figure 2.5 form the weight space. Each parameter within the weight space shares the
common characteristic of being subject to pointwise application of the nonlinearity
function σ, with the potential to be parameterized and function as a trainable weight
across broader applications of the iterative function in alternative configurations.

FIGURE 2.5: INN representation of a two-layer MLP with the struc-
ture of the weight space expanded to include all regions horizontally

adjacent to the weight matrices W0 and W1.
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Having established the ability for the iterative matrix to replicate a traditional
feed forward MLP and achieve mathematical equivalence an additional consider-
ation lies with implementation. The identity matrix I and zero matrices located
above the weight space within the iterative matrix in Figure 2.5 serve the purpose
of returning the input component matrix X to the larger matrix X̄ made possible
by the absence of pointwise nonlinearity σ. An alternate but equivalent approach
to implementation removes portions of the iterative matrix lying above the weight
space as depicted in Figure 2.6. Instead the function of the deleted identity matrix
is performed prior to each iteration by inserting a copy of the initial input compo-
nent matrix X into the matrix X̄. Approaching the network in this manner recasts
the input X as a sequence of identical steps, with each step comprised of duplicate
copies of X. Rather than specifying iterations independently of the input, the net-
work now iterates over each step Xt within the sequence X with one occurrence per
layer while the output remains the same. Sequential notation is adopted across the
model to differentiate output at each time step t resulting in X̄t composed of Xt, Ht

and Yt.

FIGURE 2.6: Alternate implementation of iterative network replicat-
ing a two-layer MLP truncated to include only the weight space with
the input component matrix X inserted into the larger input matrix X̄

prior to each iteration.

Within the weight space, the design choice to define the matrices surrounding
each MLP layer as untrainable zero matrices is an implied decision and forms an un-
necessary constraint. This recognition gives rise to questioning whether other and
perhaps better alternatives exist and what principals may govern optimal definition
of architectures within those regions. As one example, initializing some combination
of the matrices along the diagonal of the iterative matrix with untrainable identity
matrices allows the function f (X) to retain persistent memory of the data contained
in each region of X̄ for each iteration of f (X̄). The immediate impact of this change
would appear to be minor within the scope of the overall network, but creates new
capabilities and allowing the network to perform when iterations exceed the number
of layers. By retaining memory at each step, data from each prior iteration contin-
ues to factor into model training and output. However, this change is simply one
of many possibilities with the matrices capable of being initialized in any number
of combinations and configurations. Importantly, the choice of matrix trainability
within the weight space represents yet another hyperparameter to be optimized and
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studied. This same line of reasoning can be extended to both the zero matrices ly-
ing above the diagonal drawing information backwards through the model and the
zero matrices below the diagonal which can serve as skip connections. These char-
acteristics underscore the inherent flexibility of the INN architecture, presented here
as a more generalized version of the MLP. Taking the idea a step further, the par-
ent matrix f (X) may be arbitrarily subdivided with granularity as fine as individual
parameters allowing detailed specification of network structure. This capability en-
ables the INN architecture to replicate other model types while also exploring the
impact of parameterization on model performance.

2.1.4 Iterative networks as generalized RNNs

As stated in Section 2.1.3 the Iterative Neural Network (INN) representation of an
MLP contains several design choices implied by the feed forward architecture in a
multi layered format. Continuing from the example in Figure 2.6 these constraints
are removed in several stages. By first relaxing the structural constraints associated
with this special case and allowing the weight space to become a fully trainable ma-
trix of parameters, the network assumes a more generalized form as demonstrated
in Figure 2.7. At this point, the generalized model has become a single dense layer
of parameters with the distinction between Ht and Yt becoming a purely notational
construct, with both folded into a single input/output matrix Ht as also demon-
strated in Figure 2.7.

FIGURE 2.7: Structural constraints are relaxed for the INN representa-
tion of an MLP from Figure 2.6 in Section 2.1.3, allowing it to assume
a more generalized form. The weight space is fully parameterized to
form a single dense matrix fully comprised of trainable parameters
while variables Ht and Yt are collapsed into a single input/output

matrix labeled Ht.

Taking the model in Figure 2.7 and modifying the notation, the weight space
may be broken into two notational matrices: W i to be multiplied by Xt and Wh to be
multiplied by Ht−1, respectively. The nonlinear activation function is changed from
a traditional sigmoid function to ReLU and the resulting INN architecture shown in
Figure 2.8 is now structurally equivalent to the RNN described in Section 2.1.2.
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FIGURE 2.8: Notational adjustments are made with the weight space
broken into two component matrices: Wi to be multiplied by Xt and
Wh to be multiplied by Ht−1, respectively. Additionally, the nonlinear

activation function is changed to ReLU.

Ht = ReLU(W iXt + WhHt−1) (2.11)

In the special case from the prior Section 2.1.3 in which an INN was used to repli-
cate an MLP, the final implementation presented the input X as a sequential variable
composed of identical steps Xt as a byproduct of applying multiple iterations. To
accommodate the INN architecture, the input and output components of Xt, Ht and
Yt were concatenated into a combined matrix X̄t which was applied across the en-
tire weight space at each iteration t. The end result was that each identical step Xt

was inserted into the variable X̄t. The model would then iterate over each step in
the sequence, with sequence length corresponding to the desired number of itera-
tions and defaulting to one iteration per layer when replicating an MLP. Within that
special case of the MLP implementation, two constraints exist for input sequence X.
The first constraint defaults sequence length to a fixed length corresponding to the
number of layers in the model. Having removed the notational construct of layers,
this constraint is lifted with the length of input sequence X now permitted to vary
arbitrarily. The second constraint requires that ∀Xi, X j ∈ X, Xi = X j. This constraint
is removed as well, allowing the generalized iterative model to accommodate series
with sequential input of varying lengths t and varying data points Xt. The resulting
sequential model replicates an RNN following equation 2.7 as shown in Section 2.1.2
and reproduced here as equation 2.11.

2.1.5 Iterative vs RNN: differences in implementation

While implementing RNN’s as INN’s small differences may arise during implemen-
tation. These primarily appear with the introduction of a projection layer to create
the final output Y. The common approach here is to sequentially apply a linear pro-
jection layer over the final hidden output H. Building on the example from Figure
2.8, then the output of equation 2.11 now forms the input of the projection function
f proj which uses multiplication with a parameter matrix to alter the dimension of the
final output as shown in equation 2.13.

Yt = f proj(Ht) (2.12)
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Yt = ReLU(W1hReLU(W iXt + WhHt−1)) (2.13)

This result can be replicated using an INN architecture as shown in Figure 2.9
where the parameter matrix W1i is constrained to an untrainable zero matrix, creat-
ing a projection layer over the hidden output. Just as in the replication of the layered
MLP in Figure 2.4, an extra iteration must be performed to reflect one iteration per
layer. This effect occurs because within the iterative network structure Yt is calcu-
lated contemporaneously with Ht, with both Yt and Ht receiving Ht−1 as an input at
time step t. However, as noted in equation 2.12, the sequential application of the pro-
jection must receive Ht as an input, thus requiring an additional iteration, resulting
in iterating once per layer.

FIGURE 2.9: Following on the example from Figure 2.8, a projection
layer is added to the hidden output to reflect equation 2.13. To accu-
rately recreate this output, the parameter matrix W1i is constrained to

an untrainable zero matrix.

As noted, the differences that arise in implementation of a projection can be over-
come in the example in Figure 2.9 by constraining parameter matrix W1i to an un-
trainable zero matrix and adding an additional iteration. However, the implemen-
tations begin to diverge mildly, yet inextricably when the constraints are relaxed, al-
lowing parameter matrix W1i to assume the form of a trainable sparse matrix as with
the other parameter matrices. Under these conditions, the weight space no longer
assumes a layered structure and an additional iteration is no longer necessary. By
returning to a single iteration, information now flows from the input Xt to output
Yt through the projection in the first iteration as shown in equation 2.14. However,
within the INN architecture the output matrix Yt only receives Ht−1 from the prior
time step as Yt is calculated contemporaneously with Ht as mentioned previously.

Yt = f proj(Xt, Ht−1) (2.14)

Yt = ReLU(W1iXt + W1hHt−1) (2.15)

This implementation carries a trade off as the weight space W1i must now com-
pensate for the fact that the output Yt is no longer receiving the embedded hidden
state Ht sequentially at time step t. In practice, the effect remains marginal but worth
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noting when drawing parallels between RNN’s and INN’s in cases where projec-
tions are employed and the weight space is comprised of sparse matrices without
the previously mentioned constraints.

2.1.6 Long short-term memory

The Long Short-Term Memory (LSTM) network [11, 33] addresses a known chal-
lenge of RNN architectures in storing information over long sequences using the
internal state of the network. Within the typical RNN architecture, the repeated ap-
plication of the weight matrix and nonlinearity over many time steps often distorts
the gradient and thus effective memory of the network. This effect is most pro-
nounced as the steps between two input matrices in a sequential data set expand.
The LSTM structure creates the ability for constant error flow within a cell state us-
ing multiplicative units called gates 2.16. This structure essentially creates a cell state
within the neural network with the ability to bypass interim steps and maintain con-
stant gradient. A typical LSTM network often contains four gates, the input gate It,
forget gate Ft, cell gate Gt and output gate Ot. Each of the four gates contains two
trainable weight matrices and receives the prior hidden state Ht−1 and input ma-
trix Xt as inputs. The output of each gate then passes through a sigmoid function σ
except in the case of Gt, which utilizes a tanh function.

At the start of each step, the forget gate Ft determines whether information
should be "forgotten" or cleared from the prior cell state Ct−1 using a Hadamard
product ⊙. The input gate It then serves the purpose of allowing new information
to be passed to the cell state. The cell gate Gt then transforms the data that will be
additively stored to the cell state. The result of cell gate Gt is then filtered through
the results of the input gate It using a Hadamard product. Lastly, the output gate Ot

governs information outflow from the cell state to the next hidden state Ht through
a Hadamard product with the resulting cell state filtered through a tanh function.

A visual diagram outlining the structure of gates in governing addition and re-
moval of data within the cell state is shown in Figure 2.10 using equations 2.16 which
reflect the Pytorch [24] implementation [31] of a standard LSTM. The end result is
that through the use of gates governing the distinct cell state and a hidden state
comparable to that of the RNN, the more sophisticated structure of the LSTM works
to address the long-term memory issue. Robust performance from LSTM networks
have given rise to the widespread popularity of the LSTM network across sequential
applications particularly in the language processing realm. As with the RNN, LSTM
networks may be applied bi-directionally across sequences and in layered config-
urations dependent upon the needs and characteristics of the underlying problem.
However, the standard LSTM network as implemented across many neural network
architectures does come with several drawbacks. The implementation is relatively
structured both with respect to the nonlinearity functions used internally within the
network and with respect to the allocation of trainable parameters across various
tasks within the network. The structured allocation of weights appears to result
in LSTM networks learning less complex representations of the underlying data in
comparison to networks with more inherent freedom in allocating weights towards
the problem set such as the typical RNN or INN when judged by comparable num-
bers of total trainable parameters as shown in 3.2.
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FIGURE 2.10: Gate structure of a long short-term memory (LSTM)
network utilizing input gate (It), forget gate (Ft), cell gate (Gt) and
output gate (Ot). Equations 2.16 demonstrate the Pytorch [24] imple-

mentation inspired by [31].

It = σ(W iiXt + Bii + Whi Ht−1 + Bhi)

Ft = σ(W i f Xt + Bi f + Wh f Ht−1 + Bh f )

Gt = tanh(W igXt + Big + WhgHt−1 + Bhg)

Ot = σ(W ioXt + Bio + Who Ht−1 + Bho)

Ct = Ft ⊙ Ct−1 + It ⊙ Gt

Ht = Ot ⊙ tanh(Ct)

(2.16)

For the purposes of benchmarking and establishing a comparative performance
baseline on sequential data sets, LSTM models were used given their widespread
popularity. Each LSTM model was tuned to approximate the number of trainable
weights used within the iterative model architectures and both classes of models
utilized identical learning rates and optimizers.

2.1.7 Multi-task learning

Multi-task learning (MTL) [7] was utilized during model training seeking to boost
model stability and training speed. Multi-task learning is the practice of having a
single model attempt multiple tasks during the training process using a shared data
set [29]. The use of MTL also carries a regularization effect, often reducing the risk
of overtraining through the use of shared representations across the weight space.
The effect of this regularization often encourages models to train more quickly and
with higher stability. The application of MTL can widely vary, but typically involves
the use of multiple loss functions which inform gradient through the optimization
function. Iterative neural network architectures may often serve as a natural use
case for MTL, particularly when analyzing sequential data sets in which the interim
steps in the sequence and corresponding data labels may vary from the final desired
output. In the case of our anomaly detection time series, this occurs where each in-
dividual time step carries a ground truth binary output label indicating whether or
not each element of the time series is an anomaly. At each final step in the sequence,
the ground truth and resulting task of the model is to then predict the indexed lo-
cation at which the anomaly within the series occurred. Attempting to predict the
indexed location of anomalies at each sequential step would not be well suited for
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interim steps early in each sequence when it is likely the model has not even seen
the anomaly yet. Instead it makes sense to consider multi-task learning in which we
use two distinct loss functions. At each interim iteration of a sequence the model
indicates whether or not each example it sees is the anomaly with a corresponding
loss generated through binary cross entropy. On the final iteration of a sequence, the
model predicts the indexed location of the anomaly and quantifies the loss using a
standard cross entropy function. The resulting losses are then summed and propa-
gated back through the optimization function at the end of each sequence. Following
these principles MTL was utilized across both the RNN and LSTM networks during
performance comparisons between model architectures.

2.2 Relevant metrics

2.2.1 Relevant performance metrics

Models were benchmarked against one another using both loss and accuracy as
methods to compare performance. Aside from documenting model performance,
loss functions served the purpose of providing input to the optimizer used in assign-
ing model gradient as part of backpropagating errors. Since models were trained
using multi-task learning, models also utilized multiple loss functions as discussed
below. Additionally, each loss or accuracy metric was recorded both on a cumulative
basis across each entire sequence and separately by isolating the output from the fi-
nal step in each sequence. The details of each method are provided in the following
section.

Loss

In quantifying model output error two distinct loss functions were utilized through-
out the experiments. In all models at a minimum cross entropy loss was applied to
the final categorical output. The cross entropy loss function LCE is useful in cases
where the ground truth is a multi-class nominal label with C classes where ŷ is the
model prediction and y ∈ R1×C corresponds to the ground truth or target value
probabilities for each class label c as described in equation 2.17.

LCE(ŷ, y) = −
C

∑
c=1

yklog(ŷk) (2.17)

Additionally, in certain cases including some sequential data sets such as those
used for anomaly detection, alternate loss functions were utilized such as binary
cross entropy loss LBCE as reflected in equation 2.18. In these cases interim ground
truth values were used which are a simple binary [0,1] indicator at each step reflect-
ing a two class outcome. Notably, the cross entropy loss shown in equation 2.17
is a generalization of binary cross entropy loss from equation 2.18 across multiple
classes.

LBCE(ŷ, y) = −ylog(ŷk) + (1 − y)log(1 − ŷ) (2.18)

Accuracy

Accuracy metrics were measured and aggregated using two approaches. The pri-
mary accuracy metric calculated and recorded across models focuses on the accu-
racy of the final iteration at the last step in each sequence, referred to as ACCend and
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shown in equation 2.19. This metric aggregates the output yi from only the final
step or iteration within a sequence of length I among N examples. ACCend relies on
the boolean indicator function 1(yni = ŷni ∧ i = I) which is positive only when the
model output ŷ matches the truth value y and (∧) it is the final iteration i within a
given example n. This measure of accuracy is better generalized across a variety of
problems and model types while also providing clearer comparisons in sequences
with unbalanced class distributions such as anomaly detection problems.

ACCend =
1
N

N

∑
n=1

I

∑
i=1

1(yni = ŷni ∧ i = I) (2.19)

An alternate approach used as a secondary metric across iterations and in se-
quential data sets aggregates full sequence accuracy as ACCseq. This metric aggre-
gates the output yi from each interim step or iteration of a sequence of length I
among N examples measured against the ground truth value ŷi as shown in equa-
tion 2.20. ACCseq uses the boolean indicator function 1(yni = ŷni) which is positive
when the model output ŷ and truth value y match for a given iteration i within a
given example n.

ACCseq =
1

NI

N

∑
n=1

I

∑
i=1

1(yni = ŷni) (2.20)

2.3 Data sets

Several experiments were conducted seeking to examine model performance across
a range of scenarios and conditions. Models faced problems that varied both in dif-
ficulty and format, with some receiving a single input example while others utilized
series data. All data sets utilized in these experiments were derived from the under-
lying MNIST database and adapted as needed.

2.3.1 MNIST classification

The MNIST [12] (Modified National Institute of Standards and Technology) database
is a common choice for machine learning exercises and features 70,000 labeled im-
ages often used for image recognition and classification problems. Among the com-
bined total number of images 60,000 are categorized for use as training images while
10,000 are separately packaged for testing. Each image is a black and white square
image with dimensions of 28 × 28 pixels that equate to 784 dimensions when pre-
sented as a flattened vector. The content of each image is a hand written single digit
integer ranging from [0-9] and a ground truth label reflecting the integer that was
depicted. Unmodified MNIST images can be seen in Figure 2.11. Throughout all ex-
periments unless stated otherwise, the MNIST data set was divided into a training
subset of 2000 images, a validation subset of 200 images and a testing subset of 200
images which were then adapted to meet the outlines of the problem accordingly
and trained for a duration of 100 epochs.

FIGURE 2.11: Examples of unmodified handwritten 28 × 28 pixel
handwritten images from the MNIST database.
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Classification transformations

Within early experiments MNIST was used towards traditional image classification
tasks seeking to correctly identify the default labels associated with each image.
However, several image transformations were applied with the objective of increas-
ing the difficultly and creating more disparate comparisons among model structures.
Since model implementations were performed through PyTorch using the PyTorch
Lightning [10] wrapper, Torchvision [15] was a natural choice for transforms. As a
first step, images were resized (torchvision.transforms.Resize) from 28 × 28 to 50 ×
50, increasing the total number of input features in X to 2,500 from 784. Additionally,
the features of each image are normalized (torchvision.transforms.Normalize) using
the distribution defined as N (0.1307, 0.3081) in adherence with guidelines from the
torchvision documentation for the MNIST data set as shown in Figure 2.12a.

(A) MNIST sample images resized to 50 × 50 and normalized N (0.1307, 0.3081).

(B) MNIST sample images resized to 50 × 50 with the random erase transforma-
tion applied prior to normalization with N (0.1307, 0.3081).

(C) MNIST sample images resized to 50 × 50 with the random perspective trans-
formation applied prior to normalization with N (0.1307, 0.3081).

(D) MNIST sample images resized to 50 × 50 with both the random erase
and random perspective transformations applied prior to normalization with

N (0.1307, 0.3081).

FIGURE 2.12: The examples above demonstrate the cumulative ef-
fects of transformations applied to samples from the MNIST data set.

Once the image has been resized each image is further transformed by randomly
erasing (torchvision.transforms.RandomErasing) portions of the images prior to be-
ing normalized. The resulting image adds further difficulty to the problem as shown
in Figure 2.12b. For this transform, probability is set to 1 while the range indicating
the proportion of the image to be erased is specified using as a range of (0.02, 0.05).

As a second additional step prior to normalization, the random perspective trans-
formation (torchvision.transforms.RandomPerspective) is applied to the image with
probability of 1, using the default settings for distortion scale and fill values of 0.5
and 0, respectively. In combination both transforms increase the difficulty with ex-
amples shown in Figure 2.12c. The combined augmentations 2.12d of the MNIST
data set create a more challenging problem for basic image recognition benchmark-
ing among the models in this study.
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2.3.2 Sequential data sets

Two sequential data sets were generated for further analysis and tested, referred to
as uniform anomaly detection and randomized anomaly detection. In each case, the
task of each sequence is to select which image is unlike the others and provide its
indexed location.

Sequential transformations

In the case of anomaly detection sequences in which transforms may be used to
generate anomalies, the effects applied to the image are varied among several pre-
defined combinations of transformations. In these cases, it is somewhat counter
intuitive in that anomalies with less severe transformations are typically harder to
identify than anomalies with greater applied distortions. This inverse relationship
between severity of transformations and problem difficulty runs contrary to typi-
cal classification problems in which applying stronger transforms often raises the
problem difficulty. With this in mind, the transformations used in anomaly detec-
tion sequences were generally softened with the objective of creating a problem set
that would pose a sufficient challenge to differentiate performance across several
architectures. The combinations of transformations which were utilized in these se-
quential anomaly detection problems are outlined below.
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(A) Baseline: MNIST sample images resized to 50 × 50 and normalized
N (0.1307, 0.3081).

(B) Perspective Small: Random perspective applied as an interim step within the
baseline transformation and setting distortion scale to default of 0.5.

(C) Perspective: Random perspective applied as an interim step within the base-
line transformation, distortion scale increased to 0.9.

(D) Erase: Random erase applied prior to normalization within the baseline trans-
formation using a range with proportion of erased area specified between 0.1 and

0.2.

(E) Noise: Gaussian noise transformation applied as an interim step with standard
deviation of 0.01 to the baseline transformation.

(F) Erasing & Perspective: Both erasing and random perspective transformations
applied sequentially as interim steps within the baseline transformation.

(G) Blur: Custom Gaussian blur transformation applied with kernel size 15 to the
baseline transformation as an inner step in the transformation sequence.

(H) Sharpness: Randomly adjusted sharpness with a factor of 4 applied within
the baseline transformation.

FIGURE 2.13: The samples above from the MNIST data set are used
to demonstrate the various combinations of transformations used in
sequential data sets for anomaly detection. One of the above trans-
formations is randomly selected and applied to a series of data while
another randomly selected transformation is applied to a randomly

assigned outlier in the sequence.

Baseline

• Resized X ∈ R50×50

• Normalized distribution X ∼ N (0.1307, 0.3081)

Perspective Small
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• Resized X ∈ R50×50

• Random perspective with default distortion scale of 0.5

• Normalized distribution X ∼ N (0.1307, 0.3081)

Perspective

• Resized X ∈ R50×50

• Random perspective with default distortion scale increased to 0.9

• Normalized distribution X ∼ N (0.1307, 0.3081)

Erase

• Resized X ∈ R50×50

• Random erasing with proportion of erased area to range between (0.1, 0.2)

• Normalized distribution X ∼ N (0.1307, 0.3081)

Noise

• Resized X ∈ R50×50

• Gaussian noise applied with a standard deviation of 0.01

• Normalized distribution X ∼ N (0.1307, 0.3081)

Erasing & Perspective

• Resized X ∈ R50×50

• Random erasing with proportion of erased area to range between (0.1, 0.2)

• Random perspective with default distortion scale increased to 0.9

• Normalized distribution X ∼ N (0.1307, 0.3081)

Blur

• Resized X ∈ R50×50

• Gaussian blur applied with kernel size 15

• Normalized distribution X ∼ N (0.1307, 0.3081)

Sharpness

• Resized X ∈ R50×50

• Randomly adjusted sharpness with a factor of 4

• Normalized distribution X ∼ N (0.1307, 0.3081)
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Uniform anomaly detection

The uniform anomaly detection data set presents the simpler of the two anomaly
detection tasks. In this case an MNIST image is selected and two instances are gen-
erated using unique combinations of transformations from the list illustrated in Fig-
ure 2.13. A sequence is then created using identical copies of one of the transformed
images while the other then replaces one random instance in the sequence to create
the "anomaly". In this case, all of the images in the sequence except one are identical
copies with the one exception being the same image but with a different combination
of randomly applied transformations. A final blank image appended and labeled
with the ground truth value of the index location of the anomaly, triggering the al-
gorithm to generate an estimate. To a degree this task embodies a memory problem
as the variable for sequence length is increased. A series of examples of the uniform
anomaly detection data set is demonstrated below with sequence length 9.

FIGURE 2.14: Examples of multiple series from the uniform anomaly
detection data set with sequence length set to nine. Each series is pre-
sented horizontally with the anomaly outlined by a light grey square.
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Random anomaly detection

The random anomaly detection data set represents a much more challenging prob-
lem in which a series of N different images from MNIST reflecting the same ground
truth label are selected. All of the images will have the same randomly selected
combination of random transformations applied while the other will have a differ-
ent randomly selected combination of random transformations applied. In this case
for example, N-1 different examples of a handwritten number X are selected from
the MNIST data set and given the same randomly selected combination of random
transformations while another different example of handwritten number X is given
a different randomly selected combination of random transformations. Aside each
copy of the images being different at the onset, each of the transformations may be
applied differently. For instance, each randomly cropped, oriented or shifted image
would have the transformation applied differently in a randomized way, yet would
not be considered anomalous while the other randomly selected example with its
own set of transforms would be the anomaly. A series of examples of the random
anomaly detection data set with sequence length 9 is provided below. As before, the
last blank image is paired with the ground truth index location of the anomaly and
indicates the algorithm should provide its estimate. Further increasing the length
of this data set appears to increase the challenge in terms of memory, problem com-
plexity and by reducing certainty by way of more competing options.
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FIGURE 2.15: Examples of multiple series from the random anomaly
detection data set with sequence length set to nine. Each series is pre-
sented horizontally with the anomaly outlined by a light grey square.
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Chapter 3

Results

3.1 Overview

Experiments were conducted across several areas of focus. Initial efforts using the
iterative network architecture were focused on determining the guiding principles
associated with the location and arrangement of trainable parameters within the
weight space as detailed in Section 3.2. Additionally, general comparisons were con-
ducted in which INN performance was benchmarked against LSTM models with
comparable numbers of trainable weights using the sequential anomaly detection
problems in Section 3.3. Incorporating both sets of findings, further rounds of ex-
periments were conducted exploring the use and benefits of sparsely arranged pa-
rameters within the weight space. The concept of sparsely parameterized neural
networks is explored from several angles in Section 3.4. Initially, sparsity is exam-
ined in instances with number of trainable parameters left to vary while weight ma-
trix dimensions remain fixed 3.4.1. Then, the effects of sparsity are explored with
the number of trainable parameters fixed and matrix dimensions left to vary 3.4.2.
All experiments were conducted by implementing neural networks in PyTorch [24]
Lightning [10]. Training was conducted across both Colab Pro and Turing High Per-
formance Computing at WPI while results were tracked through Weights and Biases
[4].

3.2 Relative importance of model structure

Conventional wisdom has presented the layered arrangement and dimensions of pa-
rameter matrices as important hyperparameters relevant to model performance. A
central feature of the INN architecture is the implied weight space initialized as un-
trainable zero matrices which surround the layers within a feed forward network.
A natural line of reasoning would be to question whether these neatly organized
dense matrices serendipitously represent the optimal network structure among the
available weight space, a scenario that would appear unlikely. In the interest of test-
ing the influence of weight placement on model performance, initial experiments
were conducted exploring the impact of randomly varying network structures on
training and test set performance. These experiments were designed by subdividing
weight matrices into small clusters of weights which could then be randomly reas-
signed within the weight space. In a given test run, placement of trainable weights
would be randomly varied in a manner in which the aggregate number of train-
able weights within the model would remain largely unchanged, yet the overall ar-
chitecture of the model would be modified for "all-else-equal" comparisons among
randomly varied model structures. The resulting findings ran contrary to general
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expectations with little demonstrated differentiation between structured layers and
random weight assignments as follows.

For each run, a base network was constructed with characteristics identical to
those of a four-layer feed forward MLP with layers starting from an input dimen-
sion of 2,500 and with layer output dimensions of 500, 200, 100 and 10 sequentially
as demonstrated by example Model 0 in Figure 3.1a. Each model used ReLu acti-
vation functions with a learning rate of 1e-3. In constructing the INN, the iterative
parent matrix was decomposed into smaller component matrices of 100 × 100 to es-
tablish a greater degree of granular control over network structure. In the special
case of rows or columns with dimensions beneath that size threshold, those compo-
nent matrices would retain that smaller initial dimension. In this case, that would
mean component matrices were sized 10 × 100 along the bottom row and 100 × 10
along the last column while the matrix in the bottom right corner remained a square
matrix of dimension 10 × 10.

(A) Model 0: Example of initial experimental net-
work structure.

(B) Model 1: Example of randomized network
structure.

FIGURE 3.1: Side-by-side comparison of an MLP representation using
an Iterative Neural Network (INN) versus a randomized trainable
weight architecture. Green weights reflect a 2500 × 2500 untrainable

identity matrix.

For this initial series of experiments a traditional MNIST classification experi-
ment was conducted with both the random perspective and random erase transfor-
mations applied as in Figure 2.12d from Section 2.3.1. Once the network had been
created, 10 training runs were performed on the data set using the traditional four
layer MLP representation to establish a base comparison. Afterwards, 10 training
runs were performed with each INN first instantiated following the basic four layer
MLP structure, at which point each component matrix randomly exchanged initial-
ization and trainability parameters with another component matrix with individual
probability P=0.2 prior to training. This process was then repeated again for an addi-
tional 10 training runs using exchange probability P=0.5 illustrated by the example
of Model 1 in Figure 3.1b, for a total of 30 combined training runs. A single constraint
was placed on the exchange of parameter settings with the objective in retaining a
general comparability among models. Attribute exchanges were restricted to occur
solely between component matrices not located in a row horizontally aligned with
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the input component X in Figure 2.4 given no activation function is applied to those
rows.

Following the process outlined above, experiments were run with results some-
what counter intuitive to prevailing theory regarding the principles and importance
of network architecture. As an illustration of these results, the two very different
networks shown in Figure 3.1a and Figure 3.1b were trained under the conditions
described above, with the resulting training profile illustrated in Figure 3.2. De-
spite stark variation in architectures, both networks followed the same training pro-
file with final testing accuracy between both models virtually indistinguishable at
92.7%. On the surface these results indicate other factors aside from recognized
principles of structure govern overall model performance while demonstrating an
unexpected robustness to alterations in model structure.

FIGURE 3.2: A comparison of training loss over 100 epochs between
the layered architecture of Model 0 (3.1a) and the randomized archi-
tecture of Model 1 (3.1b) from Figure 3.1. The performance curves are

indistinguishable despite the the dissimilar architectures.

Broadening the example to include results across all 30 runs arrives at an equally
compelling illustration. By first plotting the 10 non-randomized training runs repli-
cating a four layer MLP, we establish a benchmark performance set in Figure 3.3
with all models predictably showing similar training profiles.
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FIGURE 3.3: Performance curves demonstrating training loss over
100 epochs for 10 non-randomized models. These models reflect the
layered architecture of Model 0 from Figure 3.1a, with repeated train-

ing runs establishing a baseline for broader comparison.

From the training runs with non-randomized structures in Figure 3.3, we now
take the step of first plotting those training loss curves in blue before overlaying
the training loss curves of models with randomized weight allocations in orange as
shown in in Figure 3.4 and the results are compelling. Here 20 randomized runs are
overlaid, essentially overwriting the other series of runs despite randomly assigned
architectures. With little similarity in structure, the models train with indistinguish-
able performance. These results create compelling evidence that the concepts of
layers and neatly defined weight matrices exist as arbitrary constructs. The princi-
ple of sequential model structure may well exist as a notational construct stemming
from the use of nested functions as opposed to a governing characteristic of model
performance.



Chapter 3. Results 31

FIGURE 3.4: Training runs for models with randomized architectures
reflective of Model 1 in Figure 3.1b are plotted over the course of 100
epochs in gold overlay. The results are plotted as an overlay against
the training curves from Figure 3.3 which featured layered architec-
tures. The output demonstrates the lack of differentiation between

non-randomized and randomized model architectures.

The results held across transformations and generalized to testing with few ex-
ceptions. In each of these exceptions, the effects of randomization were severe enough
to reduce data flow and create outliers as demonstrated in Figure 3.5 below. In the
highlighted example, the absence of trainable weights within the portion of the bot-
tom layer receiving input from the hidden state disrupted model performance. The
lack of weights linking gradient through the hidden state caused the loss of the sub-
stantial majority of the model’s embedded information resulting in outlying poor
performance against similar models. Effectively, while the model retains the nom-
inal trainable parameter count, few parameters have retained a gradient pathway
connected to the loss function so the effective number of trainable parameters has
been substantially reduced and weakened the comparison. These outliers demon-
strate that while some aspects of structure appear to be potentially less significant
than anticipated, the fundamental rules of neural network design still hold impor-
tance.



Chapter 3. Results 32

FIGURE 3.5: The rightmost plot demonstrates performance measured
as end sequence test accuracy on the y-axis against input transfor-
mations of varying difficulty on the x-axis. Color coding reflects the
amount of randomization applied to parameter architectures. With
randomization applied, some outlier variation is introduced for small
models. In these cases, randomization resulted in loss of gradient
through the model and failure to train. Essentially, parameters were
no longer located in positions to provide output from the weight
space as shown on the left. This example makes explicit the intuitive

point that in the extremes structure continues to matter.

The resulting implication and path forward for future research is best highlighted
by combining these findings into several key points. The initial premise questioned
the likelihood that current MLPs might serendipitously represent the optimal net-
work structure among the broader potential weight space made explicit through the
use of INN’s. But this appeared unlikely. However, the initial results demonstrated
little variation despite major structural changes, also raising the valid question of
whether structure was ultimately irrelevant. Taken in the form of an absolute and
explored using outlier cases, this seems demonstrably false and logically unlikely as
well. The general path forward for further exploration questions whether between
these two extremes, there are guiding rules to placement, initialization, and charac-
terization of weights in iterative structures that are supportive of stronger perfor-
mance. Specifically, if the arrangement of neatly demarcated layers is not a central
feature of performance when constrained to comparable totals of trainable param-
eters, then the question becomes what factor or factors may be contributing to the
performance variance as layers are altered. This question is explored further in Sec-
tion 3.4 after benchmarking INN performance against an LSTM on sequential data
sets in Section 3.3.

3.3 Model comparisons

Having examined the relationship between MLP and INN architectures on a stan-
dard image MNIST recognition task, a logical next step is to benchmark performance
on sequential data sets against a common model architecture. To achieve this, INN’s
were deployed against both the uniform anomaly detection and random anomaly
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detection problems outlined in Sections 2.3.2 and 2.3.2. For these tasks, the iterative
networks were instantiated with each individual trainable parameter in the weight
space randomly assigned either an untrainable value of 0 or a random trainable float
with hyperparameter probability R. The decision to retain the randomly assigned
architecture within the INN’s followed the prior findings from Section 3.2 which in-
dicated no benefit from a more structured approach. Under these conditions, the
INN by way of its generalized design assumes similar behavior to that of an RNN
with trainable parameters randomly assigned throughout the weight space as dis-
cussed in Section 2.1.4. INN performance was comparatively benchmarked against
an LSTM network as introduced in Section 2.1.6 with characteristics of each sum-
marized in Table 3.1. For this series of experiments, the INN was specified in a
manner that created a weight space proportioned like the weight space which could
contain a four layer neural network with input dimension of 2500 and outputs for
each sequential layer of 500, 200, 100 and 10. Within that weight space, parameters
were individually specified as trainable and initialized with non-zero values based
on random probability. The randomized parameterization of the iterative models
resulted in small variations among total trainable parameter counts with the av-
erage being 1,343,631. In comparison, the LSTM network was structured with an
input dimension of 2500, a hidden dimension of 130 and an output dimension of 10
resulting in a total trainable parameter count of 1,307,540. Both models employed
multi-task learning with each using binary cross entropy for interim time steps in-
dicating whether each time step represented an anomaly and cross entropy for the
final model output indicating the index position of the anomaly within the sequence.
Three runs were performed for each model with learning rates established at 1e-3.

Model Weight Space Avg Weights Dim In×Out Multi-Task Learn Rate
INN Sparse 1, 343, 631 2500 × 10 Yes 1e − 3
LSTM Dense 1, 307, 540 2500 × 10 Yes 1e − 3

TABLE 3.1: Summary of model characteristics used to conduct ini-
tial performance comparisons between INN and LSTM models on

anomaly detection tasks.

Against the uniform anomaly detection data set with sequence length of nine as
described in Section 2.3.2 which poses the easier of the two sequential problems, the
INN compared favorably against the LSTM. Performance was better for the INN as
it significantly outperformed across all metrics, while validation end sequence accu-
racy significantly exceeding that of the LSTM through nearly all stages of training in
Figure 3.6. Validation end sequence accuracy was introduced in equation 2.19 and
aggregated over the validation data set following each epoch in the model training
process. It would appear based on the strong INN performance against the LSTM
that the inherent flexibility of the iterative model’s architecture allows for a more
effective allocation of weights.
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FIGURE 3.6: Performance comparison of Iterative Neural Network
(INN) model in blue and LSTM in red with a comparable number of
trainable weights. Average validation set accuracy tracked across 100
epochs for multiple runs. Performance reflects the uniform anomaly
detection data set with sequence length 9. The INN is reflective of a

randomized sparse RNN.

In extending sequence length to mid-length sequences, the comparison was re-
peated using the same underlying uniform anomaly detection data set. In this sce-
nario the sequences were constructed with length of 19 with one such example given
below in Figure 3.7. By extending the sequence length model performance was com-
pared across settings requiring better retention of information. The use of longer se-
quences challenges the retained hidden state memory over a longer sequence while
raising task complexity by increasing the number of comparisons and reducing the
base accuracy associated with random guessing.

FIGURE 3.7: Uniform anomaly detection series of sequence length 19
with ground truth index value of 6.

A key advantage of the more generalized nature of the INN architecture lies in
the model’s inherent flexibility in determining the allocation of weights among var-
ious purposes during the training process. In comparison, the more structured ar-
rangement of the LSTM may cause parameters to be distributed among competing
objectives with both models constrained to similar approximate numbers of train-
able parameters. As both difficulty and length of the anomaly detection challenges
were varied, the flexibility of the INN appeared to serve as an advantage. The INN
structure appears to contain more freedom to balance the need for embedded im-
age detail against the need to recall that information later in the sequence. On the
problems with sequence length 19 the performance remained bifurcated between the
two model classes in favor of the iterative model. Additionally, it became clear when
viewing a confusion matrix that the performance of the INN model was evenly dis-
tributed across anomalies occurring at all steps throughout the sequences. On the
other hand, the LSTM models exhibited a clear recency bias, performing best on
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anomalies it had seen late in the sequence and thus more recently as highlighted in
Figure 3.8.

(A) LSTM performance on uniform anomaly de-
tection series with length 19.

(B) INN performance on uniform anomaly detec-
tion sequence of length 19.

FIGURE 3.8: Side-by-side comparison of confusion matrices contrast-
ing performance of LSTM and Iterative Neural Network (INN) archi-
tectures on the uniform anomaly detection problem with sequence
length 19. The LSTM network routinely demonstrated a clear re-
cency bias, showing improved performance on anomalies that oc-

curred later in the sequence.

Extending the analysis towards the more challenging task of random anomaly
detection described in Section 2.3.2, the problem becomes more reminiscent of true
anomaly detection. Against this challenge, the characteristic performance for each
model architecture persisted with the randomized INN retaining a clear compara-
tive advantage over the LSTM. In both cases the overall performance of both models
decreased when measured by validation end sequence accuracy from equation 2.19,
with the iterative model architectures seeing a larger decline. However, the iterative
models continued to significantly outperform the LSTM based models at all stages of
training and across all metrics. Figure 3.9 demonstrates the performance differential
with respect to validation end sequence accuracy across epochs.



Chapter 3. Results 36

FIGURE 3.9: Performance comparison of Iterative Neural Network
(INN) model in blue and LSTM in red with a comparable number of
trainable weights. Average validation set accuracy tracked across 100
epochs for multiple runs. Performance reflects the random anomaly
detection data set with sequence length 9. The Iterative Neural Net-

work (INN) is reflective of a randomized sparse RNN.

As with the uniform anomaly detection data set, model performance tests were
extended to cover medium length sequences with sequence length increased to 19
across the random anomaly detection data set with an example highlighted in Figure
3.10.

As a notable reminder, each image utilized in a random anomaly sequence is a
different hand drawn version of the same number. In other words, a sequence of
length 19 for the number six contains 19 different original handwritten sixes. Addi-
tionally, all but one of the images would have one common class of transformation
applied as discussed in Section 2.3.2 with a separate class of transformation applied
to the remaining image. However, even in cases where two numbers share the same
type of applied transformation, each application of the transformation may differ
and in a sense be unique unto itself as each contains its own randomization. For
instance, if the eighteen non-anomalous sixes each had random crop applied, each
of those unique sixes would in turn contain a unique application of the random crop
transformation. This becomes particularly difficult in the case of random perspec-
tive since by nature of being hand written samples, each image is already randomly
oriented with its own perspective prior to application of any transformation.

FIGURE 3.10: Random anomaly detection series of sequence length
19 with ground truth index value of seven.

Under the mid-length anomaly sequence the iterative model took more epochs
to develop a strong advantage. However, the ultimate performance was very ro-
bust with validation end sequence accuracy eventually achieving levels on par with
performance on the shorter length sequences and continuing to outperform LSTM’s.
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As with the earlier data set, the LSTM models exhibited a recency bias shown in Fig-
ure 3.11a with stronger performance on outlier examples that occurred later in the
sequence. On instances where anomalies occurred early in the sequence the LSTM
failed to improve beyond random guessing while the INN performed well in all
cases as shown in Figure 3.11.

(A) LSTM performance on random anomaly de-
tection series with length 19.

(B) INN performance on random anomaly detec-
tion sequence of length 19.

FIGURE 3.11: Side-by-side comparison of confusion matrices con-
trasting performance of LSTM and Iterative Neural Network (INN)
architectures on the random anomaly detection problem with se-
quence length 19. The LSTM network routinely demonstrated a clear
recency bias, performing better versus itself on anomalies that oc-

curred later in the sequence.

3.4 Sparsity of the weight space

A natural area of interest following from the exploration of randomly arranged pa-
rameters within INN architectures lies with the influence of sparsity in determining
model performance. Sparsity is interrelated with the aspect ratio between the depth
and width of the available weight space and the corresponding number of trainable
weights contained within that space. Here its worth mentioning that owing to the
iterative nature of the INN architecture, the iterative matrix representing f (X) in 2.4
is constrained to be square to ensure the ability for repeated iterations. This in turn
causes the aspect ratio between the dimensions of the weight space to be governed
by this constraint. As also show in Figure 2.5, the trainable weight space in these
experiments is constrained to the area below the input matrix. This constraint exists
because the rows of the matrix recursively feeding the input matrix are wrapped in
an identity function as opposed to a nonlinearity. The result here is that each increase
in the vertical depth of the weight space is accompanied by an equivalent increase
in the associated horizontal width of the weight space, although the proportional
impact is larger for the depth component as the weight space has a greater width
than depth. This occurs due to the aforementioned absence of weights within the
region horizontally associated with the input matrix. Often, the depth of the weight
space is associated with a network’s potential ability to model functional complex-
ity. In Section 3.2 the findings demonstrated no discernible relationship between
the ordered arrangement of network parameters in conventionally defined layers
within a weight space versus randomized model architectures. In the act of creating
these randomized arrangements of parameters, the weight space began to resemble
a sparse matrix.

This section explores the relationship between the proportion of trainable weights
within a given weight space and model performance under two scenarios. In the
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first case in Section 3.4.1, the dimensions of weight space are treated as a fixed con-
straint with the effect that varying model sparsity also varies the combined number
of trainable parameters within the model. In the second case in Section 3.4.2, we
explore the related concept of model sparsity in which the total number of trainable
parameters is treated as a fixed constraint with the dimensions of the weight space
left to vary. Using this arrangement, increasingly sparse weight arrangements also
increase model depth. Both principles are explored in the following subsections. In
the course of implementation, whether a specific parameter would be initialized as
trainable was determined by the variable R. Within this context, a random num-
ber r generated from a uniform distribution for a given parameter within the range
[0,1) would result in that parameter being trainable when r < R. Using a specific
example, model sparsity of 0.1 would correspond to R < 0.1.

3.4.1 Sparsity of the weight space with fixed dimensions

We first explore the concept of sparse weight matrices in which the dimensions of
the weight space are fixed and we vary the proportional presence of weights within
that fixed space. Within this context, a sparsity of 0.02 would correspond to a 2%
independent probability for each of the weights within the available weight space to
be initialized as a non-zero trainable parameter and a sparsity of 1.0 would indicate a
100% probability of this occurring. Given the fixed dimensions of the weight space,
this variable either directly reduces or increases the number of trainable weights
distributed within the space. The results here are interesting with performance ex-
hibiting low sensitivity to sizable variations in parameter sparsity.

This concept was initially tested using the the uniform anomaly detection data
set with sequence length nine. For these experiments an INN was employed using a
weight space in which setting the sparsity equal to 1.0 resulted in approximately 1.9
million trainable parameters with learning rates across all models set to 1e-4. Perfor-
mance was benchmarked against a traditional LSTM network with approximately
1.3M trainable weights which would be roughly equivalent to a sparsity of 0.69 in
the competing iterative network. Performance on the iterative networks began to de-
teriorate marginally as sparsity fell to 0.2, monotonically declining as sparsity was
reduced to 0.1, 0.05 and ultimately 0.02. With sparsity set to 0.2, experiments demon-
strated marginally delayed performance across the training curve in Figure 3.12 as
measured using validation accuracy over epochs. As sparsity was further reduced to
levels of 0.1 performance began to exhibit steeper declines along the training curve
and ultimately never quite reached the levels achieved using higher sparsities. As
sparsity was reduced further to 0.05 and 0.02, the erosion of performance became
more pronounced across all points in the training curve.

However, benchmarking against the LSTM provided some interesting perspec-
tive to the iterative network performance. For all levels of sparsity, the iterative net-
work was able to far exceed the final performance of the LSTM network across all
metrics including validation end sequence accuracy. This includes the iterative net-
work with sparsity of 0.02 which reliably reached average validation end sequence
accuracy 2.19 levels of approximately 70% after roughly 70 epochs of training ver-
sus the LSTM which peaked below 50% on the same metric near the 90th epoch.
This performance difference is compelling in light of the differential in trainable
weights, with the 0.02 sparsity INN containing approximately 38,000 weights versus
the roughly 1,307,000 weights contained in the LSTM. Additionally, for all sparsities
above 0.05 the iterative network trained more rapidly than the LSTM across nearly
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all points of the training curve. Within this context it becomes clear the added ar-
chitectural flexibility of the generalized network architecture may serve as a clear
benefit within certain scenarios versus the LSTM when constrained by total num-
ber of trainable parameters. A compelling argument can be made that the iterative
network may have been overparameterized for the simpler challenge of the uniform
anomaly detection data set given the robustness against reduced parameterization.
However the question also arises as to whether the decline in model performance at
lower sparsity values is attributable to the effects of reduced parameterization cou-
pled with the reduced interconnectedness between the weights themselves inherent
in the less dense arrangement.

FIGURE 3.12: Various sparsity levels applied to the Iterative Neu-
ral Network (INN) weight space with fixed dimensions and total pa-
rameters left to vary. Performance is benchmarked against an LSTM
model in solid red. The proportion of randomly distributed trainable
weights in the weight space is depicted through the threshold vari-
able R. Performance is measured with validation end sequence ac-
curacy on the uniform anomaly detection data set of sequence length
9 over the course of 100 training epochs. The lower key indicates
the number of weights corresponding to each level of iterative model

sparsity.

The effects of sparsity on model performance were explored further using the
randomized anomaly detection sequence, with sequence length again set to nine.
The results remained consistent with this structure despite all models experienc-
ing reduced accuracy throughout all stages of training given the more difficult task.
In this case, end sequence validation accuracy peaked at a lower level of approxi-
mately 60% for fully trained iterative networks of varying sparsities. Contrary to
initial expectations, by increasing the problem difficulty the effect of sparsity was
less pronounced. Under these conditions, INN’s of all sparsities aside from the 0.02
sparsity network (with validation accuracy peaking at 48%) ultimately reached sim-
ilar levels of training performance over the 100-epoch training window. However,
networks with sparsities less than or equal to 0.2 demonstrated progressively flatter
training curves as shown in Figure 3.13. A performance gap of similar magnitude
exists versus the LSTM network on this data set, with the LSTM peaking just above
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30% validation end sequence accuracy near the 95th epoch but with results averag-
ing closer to 25% over the majority of the training profile. Here the iterative network
also demonstrates a clear performance advantage with nearly 20% stronger valida-
tion end sequence accuracy performance from the 0.02 sparsity INN featuring ap-
proximately 38,000 trainable weights versus the LSTM network with approximately
1,307,000 weights.

FIGURE 3.13: Various sparsity levels applied to the Iterative Neu-
ral Network (INN) weight space with fixed dimensions and total pa-
rameters left to vary. Performance benchmarked against an LSTM
model in solid red. The proportion of randomly distributed trainable
weights in the weight space is depicted through the threshold vari-
able R. Performance is measured with validation end sequence ac-
curacy on the random anomaly detection data set of sequence length
9 over the course of 100 training epochs. The lower key indicates
the number of weights corresponding to each level of iterative model

sparsity.

Against both data sets, the flexibility of the INN architecture outperformed the
more rigid architecture of the LSTM by a substantial margin even in scenarios with
far fewer parameters. Somewhat surprisingly, models in both cases demonstrated
low sensitivity to large variations in parameter sparsity that altered trainable pa-
rameter counts beyond an order of magnitude. The advantage of iterative model
architectures versus competing models suggests other proximal factors may play a
significant role in model performance with one possibility being the depth or dimen-
sionality of the weight space, explored in Section 3.4.2.

3.4.2 Sparsity of the weight space with fixed total parameters

Following the results from Section 3.4.1 which explore the role of parameter sparsity
where the dimensions of the weight space remain fixed, experiments in this section
were conducted adopting a slightly different approach. In this section, the influ-
ence of sparsity is examined where the number of total parameters is constrained
as a fixed constant and the dimension of the weight space is permitted to vary. As
explained in Section 3.4, the aspect ratio between the weight space dimensions is
governed by the constraint that the iterative matrix be square. As the sparsity value
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decreases, the probability of any individual weight being trainable within the weight
space decreases proportionally. As the total number of trainable parameters is a
fixed constraint, this causes the dimensions of the weight space to expand. In other
words, a network of sparsity 0.02 has approximately the same number of total train-
able weights as a network of sparsity 1.0 albeit distributed differently among the
changing dimensions of the weight space.

In the initial set of experiments outlined below, the total number of trainable
weights was fixed to approximately 1.0 million for all models. Experiments were
conducted using the random anomaly detection data set with sequence length of
nine. The goal of experiments conducted in this regard is to explore whether the
marginal performance decline previously witnessed with lower sparsity networks
in Figure 3.13 is more closely aligned with the corresponding decline in trainable
weight counts or the sparsity of the networks themselves. In these initial runs, train-
ing performance judged by validation end sequence accuracy across epochs carries
low sensitivity to extreme variances in sparsity ranging from 0.02 to 1.0 as shown
in Figure 3.14. As before, INN performance for all sparsity values comfortably out-
paces LSTM networks with similar quantities of trainable weights. To a degree, the
argument may again be made that the results reflect the potential overparameteriza-
tion of the network versus the problem at hand, supporting additional training runs
with fewer total trainable parameters below.

FIGURE 3.14: Trainable weights fixed to approximately 1 million
for all models while various sparsity levels are applied to the Iter-
ative Neural Network (INN) weight space. The LSTM network is
shown for comparison in solid green. The proportion of randomly
distributed trainable weights in the weight space is depicted through
the threshold variable R. Performance is measured with validation
end sequence accuracy on the random anomaly detection data set of
sequence length 9 over the course of 100 training epochs. No clear
impact is shown from altering sparsity levels alone within the INN

architecture.

As a next step, the fixed weight count was reduced to approximately 0.1 mil-
lion trainable weights for all models with results shown in Figure 3.15. Training
runs were performed as before across sparsity values ranging from 0.01 to 1.0 with
performance variations beginning to surface among the training curves. With the
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model now parameterized using an order of magnitude fewer trainable weights,
performance began to deteriorate across both the most and least sparse networks.
Under these tests, the more densely configured networks of sparsity 1.0 exhibited
validation end sequence accuracy collapsing to a maximum of 20% at nearly 100
epochs versus other iterative networks reaching levels of 50-60% over much shorter
time frames. Additionally, networks with sparsity values at either end of the po-
tential range experienced marginal performance deterioration biased against higher
sparsity values. In this regard, networks with sparsity values of 0.01 and 0.6 demon-
strated marginally deteriorated performance early in training curves yet were ulti-
mately able to perform on par with the other networks over the full 100 epochs of
training. Results are strongest with little noticeable change in performance for net-
works with sparsity values in the range [0.05, 0.2]. Reducing the parameter account
begins to highlight performance variance as it appears two effects are occurring at
either extreme of sparsity values in the range (0, 1]. For sparsity values closer to the
upper limit of 1, the dimensions of the weight space become increasingly compact
with the lack in vertical depth specifically contributing to a loss of complexity in
the representation of the solution space. In the specific case where sparsity is 1.0,
performance has begun to deteriorate on par with the LSTM containing a similar
number of weights. For sparsity values closer to 0, the network risks becoming un-
derparameterized as the high degree of sparsity in the network begins to essentially
disconnect some number of trainable weights from the pathway of gradient. The
insight gleaned from these tests appears to reinforce the suggestion that while the
number of total trainable parameters within a model is a relevant factor, beyond a
sufficient baseline for the problem at hand, adding parameters has limited direct
impact while risking overfitting models to the underlying data set. It appears that
beyond the minimum required quantity of parameters, changes to the layered archi-
tecture of traditional feed forward networks may instead be inefficiently attempting
to influence model performance through second order impacts on dimensionality
of the weight space. Performance gains may be more efficiently realized by way of
directly tuning model sparsity with improved training stability resulting in fewer
trade offs.
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FIGURE 3.15: Trainable weights are fixed to approximately 100,000
for all models while various sparsity levels ranging from 0.01 to 1.0
are applied to the Iterative Neural Network (INN) weight space. The
LSTM network is shown for comparison in solid green. Performance
is measured with validation end sequence accuracy over the course
of 100 training epochs on the random anomaly detection data set of
sequence length 9. With fewer trainable parameters, results begin to
differentiate and are strongest for sparsity values ranging from 0.05

to 0.2.

To further explore this effect, the number of trainable weights serving as a fixed
constraint was lowered to 50,000 weights for all models in Figure 3.16. Experimental
runs were again performed for sparsity values ranging from 0.005 to 1.0 across the
same data set. At this stage, performance began to more clearly separate with net-
works of sparsity 1.0 failing to learn entirely, which was reflected in validation end
sequence accuracy of 10% approximating that of randomly guessing after 100 epoch.
In networks parameterized with sparsity values closer to 1.0 and thus less weight
space depth, the lack of vertical depth in the weight space appears to be forming a
serious constraint on model performance. To a lesser degree networks with spar-
sity values of 0.6 experienced the same effect with validation end sequence accuracy
lagging that of most networks with sparsity closer to 0.0 throughout training. Af-
ter completing the full 100 epochs of training, validation end sequence accuracy for
networks with 0.6 sparsity reached less than 40% in comparison to many networks
averaging closer to 50%. At the other end of the spectrum extremely low sparsity
values began to limit the flow of gradient, as networks with sparsity of 0.005 also
showed very weak performance with validation end sequence accuracy tracking just
above 20% after 100 epochs. Diminished performance in this regard was driven by
the issue of weights becoming disconnected from the gradient path and resulting
in an underparameterized network, accentuated by the low initial parameter count.
The reduced number of parameters did see overall performance levels marginally
decline to the area of 50% versus the approximately 60% levels demonstrated by the
networks with trainable parameter counts of 0.1 million and 1.0 million over simi-
lar timelines. At 50,000 weights, the LSTM could no longer be defined for this task.
However, in comparison performance was largely very strong for the INN models
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which continued to outpace the earlier LSTM containing 1.3M parameters from Fig-
ure 3.13. Best performance occurred for networks with sparsity values between 0.05
and 0.2 across the training curve.

FIGURE 3.16: Trainable weights are fixed at approximately 50,000
for all models while various sparsity levels ranging from 0.005 to 1.0
are applied to the Iterative Neural Network (INN) weight space. Per-
formance is measured with validation end sequence accuracy on the
random anomaly detection data set of sequence length 9 over the
course of 100 training epochs. Under reduced levels of parameter-
ization, the results become very differentiated with sparsity values

between 0.05 and 0.2 performing best.

Taken a final step further toward the extremes, parameter counts were reduced
to 10,000 for all models with sparsity values ranging from 0.005 to 0.2 as shown in
Figure 3.17. At this level of parameterization, the networks were generally very un-
derparameterized for the problem and the weight space had narrowed to a point at
which it could no longer be defined for networks with sparsity values above 0.2 in
addition to the LSTM network. Under these conditions, results for the remaining
networks weakened and began to break down with the best achieving validation
accuracy levels of 23% over 100 epochs. Worth noting, under these strained condi-
tions the sparsity value of 0.1 appeared to perform reliably better than the others
potentially indicating an approximate optimized level for network architectures in
agreement with the results above.
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FIGURE 3.17: Trainable weights are fixed to approximately 10,000
while various sparsity levels ranging from 0.005 to 0.2 are applied
to the Iterative Neural Network (INN) weight space. Performance
is measured with validation end sequence accuracy on the random
anomaly detection data set of sequence length 9 over the course of
100 training epochs. Results are challenged by the effects of underpa-
rameterization with sparsity values between 0.05 and 0.2 performing

best led by networks with a sparsity value of 0.1.

The clustering of results for most mid-range sparsity values in the experiments
performed above point towards an optimal band for sparsity across models. Fur-
ther, the results indicate the performance decline experienced for low sparsity val-
ues in Figure 3.13 were driven primarily by the associated decline in total trainable
parameters. This perspective is reinforced by robust performance for adequately
parameterized models at similarly low sparsity values and the overall deterioration
in model performance even at higher sparsity values when total model parameter-
ization was reduced to 50,000 and ultimately 10,000. As sparsity varied with di-
mensions of the weight space fixed, the resulting performance variations appear to
be driven primarily by shifts in the total number of trainable parameters. As a re-
sult, model performance appears closely tied to ensuring depth of the weight space
through sparsity once sufficient number of trainable parameters has been achieved.
However, as with the experiments performed through the lens of sparsity with fixed
dimensions of the weight space, results also remained generally robust to an array of
hyperparameters. Specifically, as long as either sparsity remained within the central
portion of the 0 to 1 range or the model remained heavily parameterized as with Fig-
ure 3.14, performance remained strong. In the latter case, large variations of sparsity
showed little immediate impact.

Taking into consideration the results from testing the impact of sparsity under
varied conditions, a few things become clear. Network performance appears in this
context to be primarily sensitive to achieving adequate vertical network depth from
a sufficient base number of trainable weights as opposed to arbitrarily varying de-
fined structures within the weight space. This can be seen as network performance
was maintained across wide variations in number of trainable weights so long as
adequate weight space depth is maintained through the use of sparsity. Moreover,
even after significantly reducing the number of trainable weights and suboptimally
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reducing sparsity values, the vast majority of INN’s appear to exhibit superior per-
formance to popular structured architectures such as LSTM models on sequential
problems. It appears the use of more optimal sparsity levels may create network
structures less sensitive to specific hyperparameter tuning as performance remained
generally robust across a wide array of defined weight spaces. To some degree the
challenge often faced in model development of striking a proper balance between
underparamaterized and overparamaterized networks appears to be accentuated
by the widespread use of network structures with default sparsity values of 1.0.
By using default sparsity values of 1.0 in models, practitioners may be creating a
heightened sensitivity to parameterization through lack of sufficient depth in the
weight space on the lower bound (likely taken for underparameterization), which
must then be balanced against the risk of overparameterization on the upper bound.
In the following section the research explores model training stability for networks
incorporating sparsity.

3.4.3 Sparsity and model stability

An additional observation surfaced regarding the effects of sparsity on model be-
havior during experimentation. As mentioned above, the use of sparsity signifi-
cantly broadens the performance band for models by enabling more robust model
performance across a wider array of hyperparameters. This performance stability
can be observed as resilience against increases in the learning rate beyond levels
that would often cause models to fail to converge. In the cases below, we begin with
the performance graph shown earlier for a variety of sparsity values with the num-
ber of trainable weights fixed to 1.0 million and the learning rate set to 1e-4 on the
random anomaly detection task. As before in Figure 3.14, the LSTM still markedly
trails iterative model performance yet demonstrates some capacity to learn, while
all INN’s are demonstrating comparable performance curves plotted as validation
end sequence accuracy over epochs.
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(A) Learning rate set at 1e-4, INN performance is tightly clustered across sparsity values
with the LSTM in solid green reflecting the stability of a low learning rate.

(B) Learning rate increased by an order of magnitude to 1e-3 causing training stability to
worsen. Performance begins to decouple with sparsity values closer to 1.0 failing to train.

(C) Learning rate increased further to 4e-3, performance breaks down across most networks
with only sparsity values closer to 0.0 continuing to train.

FIGURE 3.18: With total number of trainable weights fixed to approx-
imately 1 million, various sparsity levels are applied to the Iterative
Neural Network (INN) weight space as the learning rate is markedly
increased. Performance is measured by end sequence validation ac-
curacy over the course of 100 epochs of training. Results are bench-
marked using the random anomaly detection with sequence length 9.
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However with all else constant, as the learning rate for each model is increased
by an order of magnitude to 1e-3, performance becomes much more variable with
many of the iterative models completely failing to train while LSTM performance
erodes further. Notably, all sparsity values greater than 0.4 fail to show improve-
ment over the training period with the sparsity value of 0.4 serving as the dividing
line. Performance of models with 0.4 sparsity values became extremely variable with
some models failing to learn and others eventually reaching performance near that
of more sparse models at a more gradual pace and after an initial delay.

Pushing the learning rate higher yet to 4e-2 sees the effect become further pro-
nounced as shown in Figure 3.18, with all models aside from INN’s with sparsity
values of 0.02 and 0.05 failing to train and producing end sequence validation accu-
racy of approximately 10%. In the case of the INN with sparsity set at 0.02, per-
formance eroded but maintained consistent validation end sequence accuracy of
approximately 35% through much of the training curve. Performance for the INN
with a 0.05 sparsity value was volatile, with some runs failing to train while others
achieved performance on par with the 0.02 sparsity value network.

These findings progressively illustrate the potential for improved performance
stability realized by introducing sparsity into model architecture as stability improv-
ing with lower sparsity values. In the more extreme cases there appears to be no clear
lower bound performance penalty as loss of gradient to parameters only serves to
improve stability. However, under more typical conditions there clearly exists a
tradeoff between reducing sparsity values to the point where the total effective pa-
rameter account is negatively impacted and the benefits to stability and model depth
which must be considered. The optimization of these concerns potentially through
the use of percolation theory presents an opportunity for future research.

3.4.4 Sparsity, aspect ratio and measuring task difficulty

The INN architecture is well suited for the alternate purpose of measuring task diffi-
culty through a comparable quantitative metric across multiple domains and prob-
lem types. The INN architecture’s ability to be applied across both sequential and
non-sequential data sets provides versatility towards this task. Additionally, the
randomized paramaterization is independent of specified constructs such as layers
creating a problem agnostic architecture capable of scaling with problem difficulty.
The quantified scaling of the INN to meet specific problem thresholds may in turn
serve as a measure of problem difficulty.

Previously, Section 3.4.1 explored the concept of sparsity in which parameter ma-
trix dimensions were fixed while the number of trainable weights varied with matrix
sparsity. In the following Section 3.4.2, the number of trainable weights were fixed
while matrix dimensions were left to vary with model sparsity. In this section explor-
ing measurement of problem difficulty, sparsity itself becomes the fixed parameter
while both number of trainable weights and dimension of the weight space are left
to vary. Importantly, just as before the iterative matrix f (X) faces a constraint of
squareness which in turn governs the aspect ratio of the weight space as discussed
in Section 3.4. The formulas governing the dimension of the weight space are solved
using the quadratic formula and provided in equations 3.1.
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R =
Wtrain

Wdepth × Wwidth

Wwidth =
(In +

√
I2 + 4Wtrain/R

2
Wdepth = Wwidth − In

(3.1)

Where:
R = sparsity,
In = number of input features,
Wtrain = total trainable weights,
Wwidth = width of weight space,
Wdepth = depth of weight space

To achieve this objective, a performance level and metric must first be specified
for the given problem. Sparsity is then constrained to a fixed quantity. In this exam-
ple sparsity is fixed at 0.2 while the other variables including number of trainable
parameters and dimension of the weight space are left to vary. The model is initial-
ized at a given number of trainable parameters and increased over multiple training
instances until the performance threshold is met with the final number of parameters
representing the difficulty of the problem as specified.

Problem difficulty may be considered in several ways. Firstly, the difference in
weights required to achieve varying levels of performance on the same task can be
used to gauge the relative difficulty of each performance level on that same task. Sec-
ondly, a given performance level on one task may be directly compared to a given
performance level on another task using the same approach. In Figure 3.19, these
methods are illustrated using random anomaly detection and uniform anomaly de-
tection data sets with sequence length 9 as well as the basic MNIST classification
task using the "both" transformation from Section 3.2. Using the least parameterized
INN that can reliably converge for a given performance level, tasks are compared
by number of weights required. The MNIST classification and uniform anomaly de-
tection tasks are able to attain 80% end sequence accuracy over 100 epochs at com-
parable minimum parameterizations of 50,000 weights reflecting equivalent levels
of difficulty between the two tasks. The random anomaly detection task converges
towards a 57% validation end sequence accuracy at 60,000 weights. In compari-
son, this performance can be achieved on the uniform anomaly detection at 15,000
weights which quantitatively underscores the significantly more challenging nature
of the random anomaly detection task.
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FIGURE 3.19: Relative task difficulty is estimated with sparsity R
fixed to 0.2 between the random anomaly with length 9, uniform
anomaly with length 9, and MNIST classification with "both" trans-
formation. Using the least parameterized INN that can reliably con-
verge for a given performance level, tasks are compared by number of
weights required. The MNIST classification and uniform anomaly de-
tection tasks are able to reach 80% end sequence accuracy at compara-
ble minimal parameterizations of 50,000 weights reflecting equivalent
levels of difficulty between the two tasks. The random anomaly de-
tection task converges towards a 57% end sequence accuracy at 60,000
weights. In comparison, similar performance can be achieved on the
uniform anomaly detection at 15,000 weights underscoring the sig-
nificantly more challenging nature of the random anomaly detection

task.

As a third possibility, a measure of absolute task difficulty may be established
by citing the lowest number of parameters at which performance reliably converges
to the ceiling for an INN on that problem. The performance ceiling represents the
point at which increasing number of parameters no longer creates a performance
increase on non-training data. As shown in Figure 3.20 the absolute task difficulty
for the random anomaly data set of sequence length 9 is estimated at 50,000 trainable
weights using the methodology described above.
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FIGURE 3.20: Absolute task difficulty is estimated with sparsity R
fixed to 0.2, on the random anomaly data set with sequence length
9. In this case, validation accuracy converges across various numbers
of trainable parameters at an end sequence accuracy level of approx-
imately 55%. The least parameterized INN that can reliably converge
with more parameterized networks in these circumstances is plotted
in brown representing approximately 50,000 weights which serves as

the estimate of task difficulty.

The number of iterations utilized in gauging problem difficulty are left to vary
based upon the needs of the data set, being primarily driven by practical consider-
ations. In the case of non-sequential data sets such as those employed with MLP’s
in basic classification tasks, a minimum of two iterations over the repeated input X
must be employed to ensure gradient passes through the full weight space including
regions associated with the hidden state H and output Y as shown in Figure 2.5. In
a basic example using MNIST classification with the "both" transformation, models
are trained at various numbers of iterations as shown in Figure 3.21 using validation
end sequence accuracy. As explained, performance lags at one iteration but is com-
parable for all higher iterations on this specific task. In the case of sequential data
sets, sequence length becomes a natural consideration and the number of iterations
is left to vary with sequence length and problem characteristics.
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FIGURE 3.21: Training with INN architectures grouped by number
of iterations, which was left to vary. At one iteration, performance
lagged as gradient does not reach parameters associated with the
hidden state. At greater iterations, performance becomes similar be-
tween architectures. Training runs were performed on INN models
with 100,000 parameters over 50 epochs using MNIST classification

with the "both" transformation applied.

An interesting observation arises from the examination of the role of iterations in
model behavior. When multi-task learning is employed with the loss function receiv-
ing input from each iteration, the models converge towards a fixed point in which
the output of a trained model will stabilize even when the number of iterations are
increased or decreased from the number employed in training. Importantly, this
fixed point behavior was maintained beyond iterations which had been exposed to
the loss function. This behavior varies somewhat between traditional layered feed
forward model architectures and INN’s in that on a typical classification task the
INN will converge towards the fixed point at much lower numbers of iterations as
gradient passes through more quickly. In the case of the layered feed forward model,
the sequential flow of gradient requires the minimum threshold of one iteration per
layer must be reached before performance immediately stabilizes at a fixed point.
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FIGURE 3.22: After training at 5 iterations on the MNIST classifica-
tion task with the "both" transformation applied using loss captured
across each iteration, model performance was gauged on test data at
varying iterations. Both MLP and INN architectures appeared to con-
verge to a fixed point in which performance was maintained across
varying iterations. When there are fewer iterations than number of
layers the sequential flow of gradient in the MLP structure limits
this fixed point behavior, as signal from the input has not yet passed

through the model and the output is effectively random.

The sparsity and randomized structure of the INN architecture features an in-
herent flexibility which allows it to scale smoothly with problem difficulty. These
characteristics are useful not only in traditional applications which seek to generate
solutions, but also provide utility in forming estimates of problem difficulty.
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Chapter 4

Conclusions and Discussion

4.1 Summary

Iterative Neural Network (INN) architectures offer a generalized approach to ex-
plore neural networks and the role of sparsity in RNN’s. Within this framework the
research tests various architectural considerations both implied and explicit, explor-
ing the role of architectural restrictions of the weight space on model performance.
The results suggest these constraints have little direct impact on performance and
may be influencing model behavior through second order impacts on model depth,
aspect ratio and sparsity. INN’s are demonstrated to carry several performance ben-
efits across a variety of scenarios including improved parameter efficiency and train-
ing stability. The primary themes of this body of research are outlined below and
summarized in further detail.

1. INN’s are a generalized representation of neural networks from which many
common variations of neural networks may be derived as special cases.

2. The generalized framework forms a robust approach which performs well
across diverse problem sets.

3. Within the INN framework, results demonstrate little direct sensitivity to com-
mon architectural considerations such as number and dimension of trainable
layers versus randomly assigned weight placements.

4. The interconnected characteristics of model depth, aspect ratio and sparsity
appear to demonstrate a more direct link to model performance and stability.

5. The INN architecture may also serve as a mechanism for quantifying problem
difficulty owing to its inherent flexibility.

Taken together these findings draw particular focus towards the role of sparse
trainable parameter spaces in improving model performance across an array of ap-
plications.

4.2 Sparse parameters

Through the use of sparsely arranged trainable model parameters, the results show
model performance benefits with lightly parameterized models seeing performance
gains as the depth of the parameter space is increased. The effect of greater parame-
ter efficiency may serve to improve performance while limiting the risk of overfitting
and benefit applications seeking stronger performance across lighter models. Addi-
tionally, model stability improves during training for models as the parameters are



Chapter 4. Conclusions and Discussion 55

arranged with greater sparsity. The effect is essentially a wide performance plateau
in which INN’s are able to generate comparably high performance across a wider
range of hyperparameters including robustness against higher learning rates. Im-
proved stability provides a benefit across a wide range of applications, particularly
those which are commonly challenged by instability in training.

Ultimately the conducted research indicates that while typical neural networks
feature parameters arranged in dense matrices layers, these arrangements and the
hyperparameters associated with them lack a clear advantage in performance. Rather,
layers and specified dimensions appear to approximate the combined effects of pa-
rameterization and network depth. To this end, the results indicate the use of sparsely
arranged weights allow for deeper networks with fewer weights and ultimately
more robust training performance with improved stability across a wider array of
scenarios. Through the use of sparse blocks of weights to ensure adequate network
depth, results demonstrate comparable performance can reliably be achieved across
similar networks with a fraction of the total number of trainable weights. The im-
plication here being that in many cases actions as fundamental as increasing total
weight counts may simply have been attempts to increase network depth rather
than the direct effect of the weights themselves. This act of inefficiently increasing
the aggregate number of weights with the indirect goal of increasing network depth
may be a primary driver in the often delicate balance between improving model
complexity and overfitting the training data. It would appear that the specification
of number of layers and their dimensions attempts to strike a balance between the
expansion of model depth and the associated increase in trainable parameters.

4.3 Further research

INN’s provide a rich framework for the study of traditional neural network archi-
tectures with many vectors for future research. One direction of further research
may be examining the overriding principles behind optimal weight space sparsity
and parameterization, potentially aligning with the concepts of percolation theory.
Another area of special interest may be the application of INN’s in benchmarking
quantifiable problem difficulty as a metric across varying tasks as demonstrated in
Section 3.4.4. Additionally, the adaptability of INN’s in their general form across
multiple problem types appears well suited to meta-learning applications.

4.4 Final conclusions

Overall, this thesis develops the initial INN framework and associated implications
for traditional model architectures while creating space for further research. The
framework of understanding RNNs as a broader class of neural networks within
which feed forward networks exist as a special case does not appear to be widely
appreciated. Additionally, the diminished impact of typical architecture design in
network specification in favor of randomized weight distribution is both surprising
and runs counter to conventional wisdom across the deep learning field. Lastly, the
narrowed focus on the interrelated metrics of network depth, aspect ratio and spar-
sity provide an alternative for machine learning practitioners as they contemplate
network design.
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