Analysis and Evaluation of Register Transfer Logic Software Defined Radio Performance

Dylan Mahalingam and Stephen Michelini

MQP Final Presentation

October 12, 2016

This work is sponsored by the Department of the Air Force under Air Force Contract #FA8702-15-D-0001. Opinions, interpretations, conclusions, and recommendations are those of the authors and not necessarily endorsed by the United States Government.

- Modern radio with some hardware controlled by software
 - Software implementations of filters, modulators, amplifiers, etc.
- Easily reprogrammable to adjust parameters
 - Center frequency, input gain, modulation, etc.
- Can be used for various purposes
 - Communication systems
 - Signal transmission
 - Message reception

Image Sources: http://www.rtl-sdr.com/ https://www.ettus.com/ http://www.nooelec.com/ http://www.sqdeal.com/

SDR Aircraft Application

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

RTL-SDR - 3 DM SM 10/12/16

	Military-Grade	Commercial	Hobbyist
Performance	High	Moderate	?
Availability	Export- Controlled	COTS	COTS
Price	High	Medium	Low

	Military-Grade	Commercial	Hobbyist
Performance	High	Moderate	?
Availability	Export- Controlled	COTS	COTS
Price	High	Medium	Low

Focus of this brief

Outline

- Introduction
- Background
 - The USRP and the RTL-SDR
 - USRP and RTL-SDR Comparison
 - Multi-Channel RTL-SDR System
- Standalone SDR Performance Testing
- Multi-Channel RTL-SDR System
- Conclusion

USRP

- Commercial grade SDR
- Supported by Ettus Research and National Instruments
- Relatively expensive compared to RTL-SDR

RTL-SDR

- DVB-T television tuner and other hardware on USB dongle
- SDR receiver supported by open-source community
- Inexpensive alternative for hobbyist radio users

Ettus USRP

RTL-SDR

	· * ** ** ***	
	Commercial	Hobbyist
	USRP X310 w/ UBX-160	RTL-SDR R820T2
Frequency Range	10 – 6000 MHz	
Rx Bandwidth	160 MHz	
ADC Resolution	14 bits	
Transmitter?	Yes	
Price	~\$6000	

	· 77	
	Commercial	Hobbyist
	USRP X310 w/ UBX-160	RTL-SDR R820T2
Frequency Range	10 – 6000 MHz	24 – 1766 MHz
Rx Bandwidth	160 MHz	3.2 MHz
ADC Resolution	14 bits	8 bits
Transmitter?	Yes	No
Price	~\$6000	~\$20

47

	· 79	
	Commercial	Hobbyist
	USRP X310 w/ UBX-160	RTL-SDR R820T2
Frequency Range	10 – 6000 MHz	24 – 1766 MHz
Rx Bandwidth	160 MHz	3.2 MHz
ADC Resolution	14 bits	8 bits
Transmitter?	Yes	No
Price	~\$6000	~\$20

The hobbyist RTL-SDR was compared against the commercial USRP.

1

- Implement clock-synchronized RTL-SDRs in multi-tuner system
 - System clock oscillators physically connected
 - Increases possible reception bandwidth
 - Allows for simultaneous signal analysis through multiple channels

Image Source: https://ptrkrysik.github.io/

Outline

- Introduction
- Background
- Standalone SDR Performance Testing
 - Received Sample Ratio
 - Noise Floor
 - Frequency Coverage
 - Frequency Response
 - Multi-channel RTL-SDR System
 - Conclusion

Performance Testing

- Compare RTL-SDR performance
 with commercial SDR
 - Hobbyist: NooElec, SQdeal, and RTL-SDR Blog RTL-SDRs
 - Commercial: Ettus USRP X310 with UBX-160 daughterboard
- Test performance characteristics
 - Received sample ratio
 - Noise floor
 - Frequency coverage
 - Frequency response

RTL-SDRs

Universal Software Radio Peripheral (USRP)

Received Sample Ratio Test

- Run RTL and USRP test scripts on RTL-SDRs and USRP
 - Test at various sample rates from 2.0 MHz to 3.2 MHz
 - Record number of dropped samples per number of total samples
- Perform calculations and plotting in MATLAB
 - Calculate received sample ratio
 - Plot received sample ratio of SDRs across sample rate range

Received Sample Ratio Results

- All RTL-SDRs have nearly identical performance
- RTL-SDRs maintain perfect performance through 2.85 MHz
- USRP maintains perfect received sample ratio

RTL-SDR matches USRP received sample ratio performance through sample rate of 2.85 MHz.

Noise Floor Test

- Collect magnitude data from SDRs through GNU Radio
 - Collect CW input from signal generator
 - Test at constant sample rate of 2.0 MHz and frequency of 895 MHz
 - Store calibration data to file at amplitudes from -105-10 dBm
- Perform calculations and plotting in MATLAB
 - Calculate mean recorded magnitude from each data file in dBm
 - Plot mean recorded magnitude from SDRs versus input magnitude

Noise Floor Results

- RTL-SDRs noise floors about -60 dBm
- USRP noise floor lower at about -85 dBm
- Theoretical noise floor N = kTB = -111 dBm
 - Recorded noise floors much higher due to lack of LNA

RTL-SDR has noise floor about 25 dB higher than noise floor of USRP.

Frequency Coverage Test

- Collect magnitude data from SDRs through GNU Radio
 - Collect CW input from signal generator
 - Test at constant sample rate of 2.0 MHz and amplitude of -20 dBm
 - Store data to file at frequencies from 24 MHz to 1766 MHz
- Perform calculations and plotting in MATLAB
 - Calculate mean recorded magnitude from each data file in dBm
 - Plot mean recorded magnitude of SDRs across frequency range

- RTL-SDR signal always above noise floor from 50-1600 MHz
- USRP signal well above noise floor across frequency range
- RTL-SDR SNR about 30-40 dB, USRP SNR about 55-65 dB

RTL-SDR can reliably match USRP frequency coverage performance between 50-1600 MHz.

Frequency Response Test

- Collect IQ data from SDRs through GNU Radio
 - Collect 50-kHz-bandwidth input from signal generator
 - Test at constant sample rate of 2.0 MHz and amplitude of -20 dBm
 - Store data to file at frequencies from 24 MHz to 1766 MHz
- Perform calculations and plotting in MATLAB
 - Plot Welch periodogram power spectrum estimate of signal
 - Determine 3-dB bandwidth

• ADS-B: carrier frequency of 1090 MHz, bandwidth of 50 kHz

Frequency Spectrum of Received Signal

- RTL-SDR 3-dB bandwidth of 49.359 kHz
- USRP 3-dB bandwidth of 49.293 kHz

RTL-SDR frequency response performance comparable to USRP.

Outline

- Introduction
- Background
- Standalone SDR Performance Testing
- Multi-Channel RTL-SDR System
 - Multi-Channel Hardware Implementation
 - Rise Time Testing
 - Two-Channel Phase Testing
- Conclusion

Multi-Channel Hardware Implementation

- Successfully built two-channel and three-channel RTL-SDR
- System clock oscillators connected physically
- Verified to work and collect samples

Two-Channel RTL-SDR

Three-Channel RTL-SDR

- Two-channel RTL-SDR system used
 - Each RTL-SDR identically configured
 - RTL-SDRs turned on to capture data
 - Signal generator turned on and then off after 1-2 seconds

- Record timestamp when first sample was received over USB
- Shift lagging dataset by the time difference (images below)
- Improved results but still inconsistent (.175 ms -> 4.26 ns) (avg: 40 ns)
 - Most likely caused by USB

In order for a multi-channel system to work, a method of synchronization must be used to correlate the two signals.

Two-Channel Phase Testing

- Identical configuration of two-channels
 - Center Frequency: 895 MHz
 - Sample Rate: 2 MHz
 - Turned on at same time
 - Each collect 5 seconds worth of samples
- Signal Generator
 - Output a 895.05 MHz sine wave (50 kHz sine wave at baseband)
 - Amplitude of -10 dBm
- Find beginning of 50 kHz sine wave in each
 - Band-pass filter w/ Interpolation
 - Find the peaks and see the difference between locations in two signals

- Two-Channel RTL-SDR was within 350 ns for 50 ms
- Standard deviation consistently near 300 ns
- Our peak algorithm was inconsistent at aligning peaks
- Sub-sample standard deviation (interpolated x10)
 - Green bars correspond to one sample

Outline

- Introduction
- Background
- Standalone SDR Performance Testing
- Multi-Channel RTL-SDR System
- Conclusion
 - ADS-B Reception Example
 - Summary
 - Future Work

- Idealized Radar Range Equation for SDR Receiver
 - $-SNR = 10^* \log_{10}((P_T^* c^2) / ((4\pi)^2 f_0^2 R^2 k^* T_0^* B^* F_n)) dB$
 - $-C = 3 * 10^8 \text{ m/s}, k = 1.38*10^{-23} \text{ J/K}, T_0 = 290 \text{ K}$
 - f_0 is ADS-B signal carrier frequency (1090 MHz)
 - B is bandwidth of receiver (2 MHz)
 - F_n is receiver noise figure (8 dB for USRP, 13.6-17 dB for RTL-SDR)
 - R is radar range, SNR is signal-to-noise ratio at receiver

Tested standalone performance of RTL-SDR Vs. USRP

	USRP	RTL-SDR	
Perfect Received Sample Ratio	2.0-3.2 MHz, at Least	2.0-2.85 MHz	
Noise Floor	~85 dBm	~60 dBm	
Frequency Coverage	24-1766 MHz	50-1600 MHz	
Frequency Response	Accurate Bandwidth	Accurate Bandwidth	

- Developed and tested multi-channel RTL-SDR systems
 - Built two-channel and three-channel clock-synchronized systems
 - Developed rise time delay correction procedure
 - Determined phase delay deviation between channels

- More advanced signal processing for phase testing
- Wideband reception through multi-channel RTL-SDR system
- Over-the-air reception through multi-channel RTL-SDR system
- Geolocation with three-channel RTL-SDR system
- Implementation of larger multi-channel RTL-SDR system

- Group 108
 - Lisa Basile
 - Matt Beals
 - James Burke
 - Sarah Curry
 - Andrew Daigle
 - Josh Erling
 - Bob Giovannucci
 - Chris Massa
 - Dave McQueen
 - Vito Mecca
 - John Palmer
 - Michael Stillwell
 - Jeremy VanSchalkwyk
- Lincoln Lab MQP Program
 - Emily Anesta, Sarah Curry, Seth Hunter and Katie Haas
 - Professor Clancy

Thank You

Questions?

- Tested NooElec RTL-SDR and SQdeal Mini USB RTL-SDR
 - Found time interval error
 - Analyzed frequency of oscillator
- NooElec showed better performance due to temperature controlled oscillator
 - For time interval test the time variance was around half of SQdeal
 - Frequency yielded NooElec's range was around half of SQdeal

Oscillator	Std Dev	Max Lag	Max Lead
NooElec NESDR Mini 2+	56.00ps	193.33ps	180.00ps
SQdeal Mini USB RTL-SDR	98.71ps	315.00ps	382.50ps

Time Interval Error Results

NooElec oscillator chosen as source for three-channel RTL-SDR system.

Two-Channel RTL-SDR System

Group Picture

