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Abstract 

The formation of biofilms on surfaces exposed to water has had significant impacts on 

wastewater treatment technology.  Biofilms are used advantageously in wastewater treatment as 

rotating biological contractors to degrade harmful organic and inorganic materials.  However, 

biofilm formation on equipment designed to inspect water quality, such as a passive sampler, can 

alter calculated pollution concentrations.  This project investigates the effect of salt and heavy 

metals on a slowly rotating biological contactor and the effect of a strong magnetic field on a 

quickly rotating biological contactor.  The extent of biofouling on a passive sampler is also 

examined. Opacity measurements are taken to measure biofilm accumulation.  Biofilm efficiency 

is monitored through Ultraviolet-Visible and Fluorescence Spectroscopy, the Ammonium Test, 

and Ion Chromatography and heavy metal concentrations are measured with Inductively Coupled 

Plasma Atomic Emission Spectroscopy. 
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1 Summary 

 

Effective and efficient water treatment are integral to a well-functioning society, 

especially now, as natural water resources dwindle and contamination is becoming an 

increasingly prominent issue. Before being returned to the natural environment or reused, 

wastewater must go through a series of stages of treatment to purify the water and remove 

materials that are potentially harmful to human health. In the final stages of this treatment, a 

variety of methods are used to remove dangerous organic material and to denitrify ammonia 

compounds present in the wastewater. Principal among these methods employs the use of 

biofilm.  

 Biofilms are complex layers of microorganisms that coat surfaces exposed to water. 

Biofilms consist of many different types of microorganisms, such as bacteria, fungi, algae, and 

protozoa. The microorganisms colonize and excrete a matrix of extracellular polymeric 

substance which encloses the biofilm and protects the microbial colonies from degradation, 

predators, antimicrobials, and toxins.  Biofilms remove organic and inorganic materials from the 

surrounding water. This feature is used advantageously in wastewater treatment systems to 

remove these harmful substances from the wastewater before it is reintroduced to the 

environment.  

While biofilms are often used beneficially to treat wastewater, they can also be a 

nuisance and hazard. The development of biofilms generates many medical issues, including 

dental plaque and the contamination of medical devices, and industrial problems, such as the 

corrosion and clogging of water pipes.  In addition, biofilms interfere with pollution monitoring 

in wastewater treatment systems. Passive sampling is a technique used to monitor the 
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concentration of pollutants and toxins in a flowing water system.  The pollutants are absorbed by 

a plastic film and later excreted and analyzed to determine the level of pollution within the water 

source. The growth of biofilm over the passive sampler, known as “biofouling”, prevents the 

diffusion of the toxins into the passive sampler, resulting in inaccurately calculated toxin 

concentrations. 

 This project examines the effectiveness and the resilience of biofilms on rotating disc 

reactors under a variety of conditions. It also studies the extent of biofouling on two different 

configurations of plastic films in a passive sampler with only dissolved oxygen as a source of 

aeration.  Three reactors were examined over a two month period using various analytical 

techniques to measure the biofilm growth, the amount of protein in the reactor, the soluble 

Chemical Oxygen Demand (COD), and the extent of nitrification occurring in the reactor. Each 

reactor used equivalent volumes of wastewater and had equivalent water retention times.  

The first reactor, Experiment 1, was a slowly rotating biological contactor in which 

biofilm was grown upon five vertically oriented rotating discs. The discs were partially 

submerged in a wastewater tank that was continually fed by a drip pump, feeding wastewater that 

had been combined with salt and, later in the experiment, nickel ions. The purpose of the 

experiment was to examine the effects of salt and heavy metals upon biofilm growth. 

Wastewater samples were analyzed with Fluorescence Spectroscopy, UV-Visible Spectroscopy, 

Ion Chromatography, and the Ammonium Test. The discs were scanned daily and analyzed using 

a grayscale program to monitor biofilm accumulation. Finally, sludge and sloughed biofilm were 

gathered weekly and tested using Inductively Coupled Plasma Atomic Emission Spectroscopy 

(ICP-AES) to determine its heavy metal content. The experiment showed that the addition of salt 

to the wastewater retarded the development of the biofilm and resulted in a thin and delicate 
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biofilm structure. The addition of nickel inhibited organic degradation, while also increasing 

biomass.   

The second experiment, Experiment 2, was a rotating biological contactor designed to 

study the effects of a magnetic field in conjunction with a high rate of rotation upon biofilm 

growth and longevity. In this experiment, two discs were placed inside of a high magnetic field 

and two were placed outside of the magnetic field. The reactor was fed continually by a drip 

pump feeding pure wastewater. As in Experiment 1, water samples were analyzed with 

Fluorescence Spectroscopy, UV-Visible Spectroscopy, Ion Chromatography, and the 

Ammonium Test. Daily scanning was also utilized in this test to determine the level of biomass 

accumulation.  The experiment demonstrated that the magnetic field and rotation speed affected 

biomass accumulation and the rate of detachment.  In addition, the results showed that the 

magnetic field may have influenced the biodegradation of organic compounds and the initiation 

of the nitrification process.  

The final biological contactor, Experiment 3, was designed to examine the potential 

effect of biofouling on long-term passive samplers to determine if different configurations of the 

sampler would alter the extent of the biofouling. Sixteen rectangular films made from a plastic 

garbage bag were placed into a reactor in two configurations: eight hanging vertically in the 

water, and eight attached to a plate, which was horizontally positioned at the bottom of the 

reactor. Both sets of films were evenly spaced in the tank, which was aspirated and fed with 

wastewater.  All of the films in the reactor were scanned for opacity in addition to being tested 

with UV-Visible Spectroscopy, Fluorescence Spectroscopy, Ion Chromatography, and the 

Ammonium Test.  The conclusion reached was that the vertical orientation is the configuration in 

a passive sampler that would be the least affected by biofouling.  
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2 Background 

 

2.1 Wastewater Treatment 

 

Modern wastewater treatment began in the early 1800s with the advent of the first 

underground sewer system in London, followed shortly afterwards by similar ones in Paris, 

Hamburg, and Chicago. However, while these removed wastewater, they did nothing to treat it 

and reduce its toxicity, although the time spent in the sewer likely did induce a certain amount of 

settling and other processes that unintentionally cleaned the water. Despite these new methods of 

removing wastewater, an outbreak of cholera in London was eventually shown to be the result of 

a pump contaminated by wastewater. This led to the discovery of a variety of water-borne 

diseases and the understanding of the need for actual treatment of wastewater. Additional 

discoveries and advancements in wastewater treatment over the past 150 years have made it 

possible to reintroduce treated wastewater as potable water [1]. 

2.1.1 Components of Wastewater 

 

The precise components of wastewater vary radically by location, and even by day within a 

given location. Although wastewater comes primarily from three sources, industrial waste, 

household waste, and runoff, the constituents of each of these sources are fundamentally 

different. Their individual volumes may differ by location, time of day, and current weather (in 

the case of runoff).  

2.1.1.1 Microorganisms 
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The components that are found in wastewater can be divided into nine main groups. 

Microorganisms may include pathogenic bacteria such as cryptosporidium, viruses, or worm 

eggs. These are of particular concern to those dealing with water treatment as they have the most 

immediate potential for causing illness. Although the vast majority of microorganisms are 

harmless and found naturally in the human body, there are some mixed in that may cause disease 

and so must be deactivated. This deactivation is the reason for the chlorination process that all 

potable water goes through [2]. 

2.1.1.2 Biodegradable Organic Materials 

 

Biodegradable organic materials make up another considerable part of wastewater. These 

include such benign substances as pieces of bark, wood, and plant matter, in addition to feces 

and animal matter that may have entered the wastewater through runoff or household waste 

(dinner scrapings, etc). While they in and of themselves do not necessarily present a risk to the 

environment, organic material tends to be the method by which microorganisms are conveyed. 

While many microorganisms are water-born, they often are transmitted to the water through 

organic material, so the removal of this organic material eliminates many of the microorganisms 

[2]. 

2.1.1.3 Organic Materials 

 

In addition to biodegradable organic material, wastewater contains a variety of other, 

more basic, organic substances, including detergents, pesticides, fat, oil, grease, coloring, 

solvents, phenol, and cyanide [2]. All of these must be removed, as they may be dangerous for 

animal or human consumption. In recent years, the problem of dissolved pharmaceuticals in the 

water has also come under scrutiny. Many of these are not removed effectively during the 
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treatment process, and those that are removed in sludge may not be broken down at all. This 

means when the sludge is sold to farmers as a soil amendment the drugs infect the farmed 

vegetation [3]. 

2.1.1.4 Basic Nutrients 

 

Basic nutrients such as nitrogen, phosphorous, and ammonia are also found in 

wastewater. These are of particular concern for the environment in which the wastewater is 

released. Heavy nutrient loading in a natural water body results in the increased growth of 

phytoplankton and opportunistic macroalgae well beyond the levels naturally found. Increased 

levels of these organisms often leads to the reduction or disappearance of natural algal forms, 

fewer plants within the water body, and changes in the composition of the water (including 

reduced levels of dissolved O2).  These changes all affect the animal ecosystems in and 

surrounding the water body [4]. 

2.1.1.4.1 Nitrogen Fixation 

 

Plants depend upon a variety of nutrients for growth, with nitrogen making up 1-10% of 

their dry mass. In order to utilize the nitrogenous compounds found naturally, plants must go 

through a process of nitrogen fixation [38]. Nitrogen fixation is performed by a variety of 

bacteria found within the plant to convert nitrogen (often in the form of N2) into ammonia (NH3). 

The plant may then use the ammonia as a source of energy and nitrogen necessary for cell-

growth. As previously explained, an abundance of nitrogen in the water promotes this process in 

algal species that are harmful to the overall ecosystem in large numbers. In nature, excess 

nitrogen may be removed given the proper conditions.  For example, in wetlands, nitrogen 

present in the water is converted into nitrogenous oxides before percolating into the soil. Since 
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wetland soil is continually flooded and therefore unable to be aerated and have significant levels 

of O2, it is an anaerobic environment and promotes the denitrification process. Denitrification is 

the method in which nitrogenous oxides are biologically reduced into N2O and N2 gas. Ideal 

conditions for denitrification are found in wetland soil, in which there is an abundance of carbon 

and a lack of oxygen [39]. In wastewater treatment, this same process is simulated in advanced 

treatment and is discussed in section 2.1.2.4. 

2.1.1.5 Metals & Inorganic Materials 

The next two categories of materials found in wastewater, metals and other inorganic 

materials (primarily acids and bases), are largely the result of industrial wastewater. While some 

heavy metals are needed for both human and animal health (e.g. iron, copper, and zinc), these 

levels are very small, generally far under the levels found in many industrial wastewater flows. 

In addition, these flows often include metals such as lead and mercury whose ingestion will, over 

time, cause significant adverse health effects. The inclusion of acids and bases in wastewater is 

also of concern because of their effects upon the pH of the water. The pH is generally kept 

within a certain range so as to avoid causing unnecessary problems in the environment in which 

the treated water is released [2] 

2.1.1.6 Other Factors 

Other factors which affect wastewater include thermal effects, odor, and radioactivity. 

First, thermal effects are important because oftentimes the wastewater entering a treatment plant 

is substantially warmer than the water it will be released into. Aquatic ecosystems are often 

extremely temperature-sensitive, making it necessary to bring the temperature of the treated 

wastewater to within a defined percentage of the temperature of the water body it is being 
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released into. In addition, much of the foul odor emitted by wastewater is caused by sulfur in the 

form of H2S, and so this must be removed as a part of odor control, which is particularly 

important for treatment plants located in urban or suburban areas [5]. Finally, radioactivity can 

be an issue if radioactive elements have been introduced to the wastewater. If an industrial 

process is known to produce wastewater that is radioactive, then specific treatment processes 

may be introduced either on-site or at the treatment facility that the wastewater goes to in order 

to deal with the radioactivity [2]. 

2.1.2 Wastewater Treatment  

In order to treat for all of these components, wastewater goes through four main stages of 

treatment within a wastewater treatment facility: preliminary treatment, primary treatment, 

secondary treatment, and advanced treatment. All of these provide some form of residuals, which 

are in turn either incinerated or dried and added to soils as a supplement to be sold to farmers. 

2.1.2.1 Preliminary Treatment 

 

The primary purpose of preliminary treatment is to smooth out the stream so that the 

later, more sensitive processes are not damaged. This may require the removal of larger objects 

present in the wastewater flow or the hydraulics of the flow itself may need to be evened out, 

with any surges removed. The first step of preliminary treatment is screening, in which the 

wastewater flows through a screen or series of screens whose openings may range from 5 to 150 

millimeters in order to filter out larger debris in the water. These screens may be manually 

cleaned or cleaned mechanically, in which chain- or cable-driven “teeth” rake the screen 

regularly to remove debris. Once the larger debris has been captured and removed it is sent 

through a grinder to be turned into a more manageable size. Grinders use two sets of 
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intermeshing cutters to reduce solids to sizes between six and nine millimeters. Once ground 

down, the screenings will generally be treated as municipal trash and will be sent to a municipal 

landfill or incinerated at a municipal incinerator. If the township dealing with the waste requires 

it, the screenings may sometimes need to be washed and dried before being incinerated [7].  

 Once the larger objects have been removed, the wastewater goes through a process of grit 

removal, which is accomplished through different settlers. Grit may consist of sand, gravel, other 

mineral matter, and certain organics including coffee grounds, egg shells, and seeds. It can be 

removed simply through short-term settling, or in a settling tank, in which minor turbulence is 

introduced to the system so that lighter organic particles remain suspended while the heavier grit 

is removed. The importance of removing grit during preliminary treatment is to avoid the wear it 

causes upon mechanical systems of the wastewater treatment plant, in addition to buildup and 

accumulation of grit inside of anaerobic digesters and biological reactors [7].  

The final purpose of preliminary treatment is that of equalization. Equalization may refer 

to flow or waste-strength. Both of these must be made steady to ensure a constant level and 

quality of effluent without risk to the more sensitive apparatuses at later stages of treatment. This 

is achieved through the use of “equalization tanks”, large tanks that store water and release it 

over time at a steady rate, so that spikes in flow or strength of contaminants are minimized 

through release over an extended period of time [7].  

2.1.2.2 Primary Treatment 

Primary treatment is the oldest form of wastewater treatment, and removes the vast 

majority of organics and contaminants from the wastewater. In primary treatment the water goes 

through a process of coagulation and flocculation followed by settling in order to, in conjunction 

with scraping, remove much of the organic material from the wastewater. The idea behind 
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coagulation and flocculation is that many of the particles that must be removed from the water 

are small enough that they are suspended, and will never settle to the bottom of the tank or rise to 

the surface, or at least not in a timely manner. Therefore, they are chemically induced to become 

attractive to one another and form clumps, which have sufficient mass to sink during the settling 

process [7]. 

The first step of primary treatment is preaerating the wastewater. Increasing the dissolved 

O2 levels of the water helps promote flocculation in addition to improving the floating tendencies 

of scum in the water, so that it can more easily be scraped off in the settling tanks. Next, the 

water goes through the process of coagulation. While material will settle out of the water and be 

removed without it, coagulation has been shown to increase the amount of material that settles, 

depending upon the source of wastewater, by upwards of 50%. Coagulants commonly used 

include aluminum salts, iron salts, and lime, although aluminum sulfate, or “alum” is likely the 

most common coagulant being used today [6].  All of these reverse the polarity of some of the 

particles, causing them to become attracted to one another, and to clump together. However, if 

excessive amounts of coagulant are added, it will fully reverse the polarity of the colloid 

complex in the wastewater and result in a total lack of clumping [7]. 

Once the coagulant has been added, the water must go through a short “rapid mix” 

process in order to ensure that the colloid is completely dispersed throughout the water. After 

this has been completed, the water moves on to a “slow-mix tank” in which it continues to be 

mixed, but at a rate designed to induce flocculation of the suspended solids. Often there are 

several stages of slow mixing, with the mixing becoming slower and gentler at each stage so as 

to avoid breaking up the flocs [7]. 



18 
 

The second half of primary treatment is settling. In the settling tank the water travels 

extremely slowly, with minimal turbulence being created so that particles in the water may settle 

to the bottom of the tank and be removed as sludge. This is achieved through the use of a moving 

scraper that shovels the sludge into a hopper. In addition, scum is continuously scraped off of the 

top of the settling tank in much the same manner as sludge is scraped from the bottom. Once 

removed, the sludge and scum may either be disposed of or dried and used as soil additives. 

Another option that is becoming more popular is to capture the methane gas that is released from 

the sludge during the drying process and use it to generate a small amount of electricity. The 

plant then utilizes the electricity generated to offset its own energy costs [7]. 

2.1.2.3 Secondary Treatment 

 

Secondary treatment may be classified as two distinct systems: suspended growth or 

fixed-film systems. Regardless of the precise method by which they go through the process, both 

systems serve the same purpose: to remove any residual biological content in the wastewater 

after it has gone through primary treatment. Suspended growth and fixed-film systems may each 

be further broken down into several specific types of reactors. Reactors that operate via a 

suspended growth system include activated sludge systems, aerated lagoons, and aerobic 

digestion systems. Fixed-film systems, however, include trickling filters, rotating biological 

contactors (similar to those being studied in this report), and packed-bed reactors [8]. 

Activated sludge is the oldest and most commonly used form of secondary treatment. It 

was developed in America in the early 1900’s and involves the mixing of microorganisms (or 

“activated sludge”) that can stabilize organics found in wastewater while mechanically bubbling 

air through the system in order to create an aerobic environment. These microorganisms are 
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continually mixed with the water and air for a set amount of time, growing in number through 

the consumption of organics, and forming floc particles of 50 to 200 micrometers, large enough 

to precipitate out of the water. In the next step the floc is settled out in a secondary clarifier, and 

a portion is recycled as activated sludge. This may be carried out as a batch process or as 

continual flow. Using this method, the biological reactor typically removes over 99% of the 

suspended solids present in the wastewater after primary treatment [8]. 

The most common fixed-film system is the “trickling filter”. This is also a type of aerobic 

reactor, but it uses a continually grown biofilm rather than recycled activated sludge as its 

biological agent. Trickling filters are towers of packed, specialized plastic m material, in which 

approximately 90% to 95% of the volume of the tower remains as void space. The wastewater is 

then sprayed over the top of the tower, from which point it trickles down through the packing 

material. As a result of the constant flow of wastewater and supply of oxygen, which is provided 

by either natural drafts or blowers, a biofilm grows upon the packing material. The biofilm 

consumes the organics present in the wastewater. Occasional sloughing of the biofilm does 

occur, which is then collected in the bottom of the reactor and removed as waste sludge. As with 

the activated sludge system, the wastewater leaving the reactor goes through a secondary clarifier 

to settle out any remaining pieces of biomass [8]. 

Rotating biological contactors (RBCs) use the same principles as trickling filters in that 

they are also fixed-film reactors. However, in RBCs the biological film is grown upon discs that 

rotate, entering and leaving the wastewater. This action allows the water to flow down the 

biofilm and be treated as the disc as it rotates out of the water. In addition, continually leaving 

the water provides air for the biofilm, so that it may act as an aerobic reactor. As in the trickling 

filter, the biofilm on RBCs does occasionally slough off, and so must be collected and removed 
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as sludge. However, unlike trickling filters, the biofilm sloughs off due to sheer forces in 

addition to its own weight, which does not allow for thick biofilm growth. One advantage of 

RBCs is that they are entirely visible and may be easily monitored and repaired if necessary [8] 

Also, the frequency of sloughing, and hence thickness of the biofilm, may be controlled by 

modifying the speed of rotation of the reactor. In fixed film systems, modifying the flow velocity 

of water moving through the reactor is the only way to alter this variable [40]. 

2.1.2.4 Advanced Treatment 

 

The final stage of wastewater treatment is “advanced treatment”. While there is no single 

process that defines advanced treatment, it may be described as “any process designed to 

produce an effluent of higher quality than normally achieved by secondary treatment processes 

or containing unit operations not normally found in Secondary Treatment” [9]. This is of course, 

a rather broad definition. However, as advanced treatment is meant to remove anything that the 

other forms of treatment miss, there are several distinct components of the wastewater that are 

generally being removed in advanced treatment. While it may remove any remaining vestiges of 

organic material, advanced treatment is often designed for nutrient removal (nitrogen, 

phosphorous, and ammonia) and the removal of non-organic toxic substances, often of the sort 

introduced to the wastewater by industrial sources. While levels of Biochemical Oxygen 

Demand (BOD) are almost always reduced to acceptable levels through primary and secondary 

treatment, the use of advanced treatment allows wastewater to be recycled. The treated water 

may be used for the domestic water supply, for use in industrial situations, or simply to dilute the 

inbound flow of untreated wastewater if there are dangerously high levels of pollutants [9]. 
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Although the removal of toxins often requires specific treatment techniques for each type of 

toxin being removed, one form of advanced treatment that is often used is biological 

denitrification. The purpose of this treatment is to convert ammonia present in the water to 

nitrate, thus satisfying the Nitrogenous Oxygen Demand (NOD). Without this conversion, 

bacteria may use ammonia as their own energy source, converting it to nitrate and nitrite, and 

using this energy to reproduce. Biological denitrification is carried out by keeping the 

wastewater in an anaerobic environment and mixing a carbon source (generally methanol) with 

it. The carbon allows for sufficient cell-growth of controlled nitrogen-consuming bacteria in the 

anaerobic environment. Once these cells have consumed the available ammonia, the water goes 

through a process of clarification and filtration to remove the cell colonies. Providing a proper 

amount of methanol (or other carbon source) is key, as any excess will remain in the effluent. 

Also important for this process is to maintain the pH between 6.0 and 8.0 and to keep track of the 

temperature, as denitrification rates vary greatly with temperature. For example, denitrification 

occurs five times faster in 20ºC water than in 10ºC water, and so retention time must be varied 

accordingly [9]. 

2.2 Biofilms 

Throughout history microorganisms have commonly been classified in the planktonic form, 

freely floating and suspended in an aqueous medium. It was not until Van Leeuwenhoek 

observed that microbial cells aggregate on tooth surfaces that microbial biofilms were 

discovered.  Later, other scientists determined that microbial attachment to a surface enhances 

growth and that bacteria tend to congregate on surfaces instead of freely moving in the 

surrounding environment.  Finally, the development of scanning and transmission electron 
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microscopy enabled scientists to ascertain the composition of the biofilm and the surrounding 

matrix material [10].  

A biofilm is an aggregation of microorganisms irreversibly attached to a solid surface and 

enclosed by a matrix of extracellular polymeric substance [10]. Biofilms can consist of many 

different types of microorganisms, such as bacteria, diatoms, fungi, algae, and protozoa, and 

noncellular materials, such as salt or silt.  Biofilms are located on solid materials in an aqueous 

medium and acquire organic and inorganic material floating in surrounding water. Organic 

compounds, such as nitrogen and phosphorous and reduced inorganic compounds provide energy 

for the metabolism of the biofilm [11]. 

Research pertaining to biofilms has increasingly become important to medicine, industry, and 

the environment. Medically, biofilms can contaminate implanted biomedical devices and infect 

living tissues. The extracellular surface of the biofilm conveys increased resistance to antibiotics 

and other treatments. Dental plaque, a leading cause of cavities, is also a biofilm. In industry, 

biofilms clog and corrode pipes resulting in damaged equipment and contamination. Biofilms are 

used advantageously as biofilters, which control air pollution by passing odorous air through a 

filter containing microorganisms that treat the air and remove the odor. Finally, in municipal and 

industrial wastewater treatment systems, biofilms are used to remove the harmful organic and 

inorganic material [12]. 

2.2.1 Biofilm Structure 

The structure of biofilms varies but certain structural characteristics are common among all 

biofilms.  All biofilms are composed of microcolonies of bacterial cells embedded in a matrix of 

extracellular polymeric substance.  Hydrodynamic channels separate the microcolonies from one 
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another and provide means of communication between the bacterial cells and permit the 

diffusion of nutrients, oxygen, and detritus. Differences in biofilm structure arise from alterations 

to the biofilm due to the microorganisms that encompass the biofilm, the presence of external 

forces, hydrodynamic conditions, nutrient availability, and particle interactions with noncellular 

elements from the surrounding environment [10]. For example, biofilms grown in fresh water 

exhibit thicker and denser channels than biofilms grown in salt water [16]. 

2.2.1.1 The Biofilm Matrix 

The biofilm matrix encloses the bacteria and determines the architecture and shape of the 

biofilm. Extracellular polymeric substance (EPS) is the major component of the biofilms’s 

matrix and comprises 50% to 90% of the total organic carbon of the biofilm.  Although the 

physical and chemical properties of the EPS of different biofilms may vary, the principal 

component of all EPS is polysaccharides. The polysaccharides of the EPS acquire great 

quantities of water through hydrogen bonding resulting in a highly hydrated matrix composed of 

97% water [13]. The synthesis of EPS relies of the availability of nutrients.  EPS synthesis is 

promoted by an excess of carbon and an inadequacy of other nutrients, such as nitrogen and 

phosphate.  EPS production is also stimulated by inhibited bacterial growth [16]. 

The composition of the exopolysaccharides in different bacterial strains may vary. The 

polysaccharides of the EPS matrix of gram negative bacteria are neutral or polyanionic because 

of the presence of uronic acids.  These polysaccharides are drawn to divalent cations, which 

subsequently crosslink the polymer strands and strengthen the biofilm.  In contrast, the 

polysaccharides comprising the matrix of gram positive bacteria produce polycationic EPS [10].  

The structure of the biofilm matrix is also dependent upon the attachment of polysaccharides to 
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hydrophobic groups.  Hydrophobic groups, such as methyl, contribute to cell surface 

hydrophobicity.  In addition, the presence of 1-3 or 1-4 beta linked hexose residues establishes 

greater rigidness and lowers the solubility of the biofilm [16]. 

The polysaccharides that comprise the matrix give a three dimensional shape to the 

mature biofilm and provide structural support. The matrix enables the bacterial cells to remain 

close to the surface and to easily attach to one another [10]. In addition to the structural function 

of the biofilm matrix, another main function of the matrix is to provide protection.  The hydrated 

layer of EPS prevents the biofilm from dehydration and enables the embedded cells to avoid 

recognition by immune systems, resulting in biofilm resistance to antimicrobials. The matrix also 

serves as barrier against the diffusion of toxins into the biofilm and protects the biofilm from 

predators [13]. 

2.2.1.2 Microcolonies 

The basic building block of the biofilm is the microcolony.  The microcolonized structure 

of biofilms and the water channels separating the colonies enable the cells to be in close 

proximity to each other.  The close proximity is required for the exchange of genes through 

conjugation and stable cell to cell signaling [16]. 

2.2.1.2.1 Horizontal Gene Transfer 

 

Horizontal gene transfer through bacterial conjugation is the method in which bacteria are 

able to transfer DNA to bacterial organisms other than their descendants.  Extrachromosomal 

DNA is exchanged through conjugation at a greater rate in biofilms than in freely drifting 

bacterial cells.  Conjugation is the favorable method of gene transfer in biofilms because of 

closer cell to cell contact, minimal shear forces, greater nutrient availability, and the stabilization 
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of the cells on the substratum.  The F conjugative pilus of the bacterial donor cell produced by 

the tra operon, or the transfer gene cluster operon, of the F plasmid directs the attachment of the 

bacterial donor cell to a recipient cell. DNA is passed from the donor to the recipient organism 

through the pilus resulting in biofilm formation and expansion [10].  

2.2.1.2.2 Quorum Sensing 

Quorum sensing, or cell to cell signaling, is essential to biofilm development. Experiments 

with the bacteria P. aeruginosa showed that a minimum of one cell signaling system is necessary 

for normal biofilm development. There are two cell to cell signaling systems involved in P. 

aeruginosa biofilm formation, lasR-lasD, which regulates virulence and directs the second 

system, rH 1R-rH 1I, which controls the production of secondary metabolites [17]. Mutants 

lacking both cell signaling systems are unable to produce a biofilm. Mutants lacking one cell 

signaling system are able to produce a biofilm, but the structural assembly is thinner and more 

densely packed than the wild type.  In addition, the mutant lacks the typical water channels that 

separate the microcolonies in the wildtype biofilm and the biofilm is easily removed by 

surfactant [10]. 

2.2.2 Biofilm Formation 

Biofilm formation involves a series of distinct stages consisting of reversible attachment, 

irreversible attachment, maturation, and detachment. Biofilm attachment begins at the solid-

liquid interface of the surface and aqueous surroundings.  First, the bacteria weakly associate 

with the surface through Van der Walls forces. In order to make this attachment, the bacteria 

must overcome various repulsive forces at the solid-liquid interface, such as electrostatic 

repulsion and hydrophobic interactions [15]. Substratum effects, the conditioning film, 
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hydrodynamic strength, and other characteristics of the aqueous medium and cell surface enable 

the bacteria to overcome these repulsive forces and establish the initial reversible attachment. 

Several substratum effects of the solid surface appear to influence the effectiveness of the 

attachment and the ability of the bacteria to overcome the repulsive forces.  First, attachment is 

enhanced by increased surface roughness which minimizes shear forces and increases surface 

area. Microorganisms also attach more competently and quickly to hydrophobic, nonpolar 

surfaces than hydrophilic, polar surfaces [10].  In addition, the exposure of the solid surface to 

the aqueous surroundings results in the adsorption of proteins, glycoproteins, proteoglycons, and 

polysaccharides leading to the formation of the conditioning film.  The adsorption of these 

molecules enables the initial attachment through chemical modifications of the interface, such as 

the changes in electric charge and hydrophobicity [11]. 

Hydrodynamic strength also greatly affects microbial adhesion to the solid-liquid interface 

by acting as a repulsive or attractive force and thereby influencing the rate of the attachment.  A 

hydrodynamic boundary exists in the area of the interface where there is an insignificant flow 

velocity.  The thickness of the boundary layer is dependent upon the linear velocity rates and the 

shear forces of the surrounding aqueous medium [10]. Greater linear velocities and high shear 

force results in thinner boundary layers, denser biofilms, and more rapid union with the surface. 

Low linear velocities and smaller shear forces produce thicker boundary layers and result in 

slower attachment. A greater linear velocity of the liquid enables the cells to more efficiently 

cross the boundary and attach to the surface [11].  

Attachment to a surface is also affected by characteristics of the surrounding aqueous 

medium. Temporal variations such as seasonal effects, unrelated aquatic environments, nutrient 
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composition and concentration, temperature, pH, and the strength of ionic interactions may affect 

the rate of microbial adhesion [10]. 

Properties of the cell that affect attachment include hydrophobicity, appendages that enable 

motility, lipopolysaccharide (LPS), and extracellular polymeric substance (EPS). Hydrophobic 

constituents exist on the fimbrae of many bacteria and enable the bacteria to overcome 

electrostatic repulsions at the interface and attach to hydrophobic surfaces [10].  Flagella assist 

bacterial cells in their movement across the hydrodynamic boundary at the solid liquid interface 

and facilitate attachment to a surface.  The motile function of flagella appears to serve as a 

propeller to translocate the cells as well as an adhesive appendage to attach the cell to the 

substrate [11].  LPS is important to attachment because organisms that lack the O polysaccharide 

of LPS are unable to effectively attach to a substrate. The O antigen supplies hydrophilic 

properties to gram-negative bacteria enabling reversible attachment to hydrophilic surfaces [15].   

EPS is integral to reversible attachment because the polyhydroxyl groups of the polysaccharides 

associated with EPS in the biofilm matrix anchor the bacteria to the surface through hydrogen 

bonding. 

If the conditions for reversible attachment are favorable, the bacteria are able to engage in a 

more secure attachment through reorientation to the surface resulting in irreversible attachment.  

If the conditions were unfavorable and the bacteria were unable to reversibly attach to the 

surface, the bacteria reenter the planktonic state. During irreversible attachment, the orientation 

of the bacteria changes and the bacteria is longitudinally bound to the surface. Current research 

has demonstrated that the cytoplasmic protein SadB may be responsible for regulating 

irreversible attachment.  In addition, a large adhesion, Lap A associates with the bacterial cell 
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envelope and an ABC transporter.  Bacteria lacking Lap A are unable to advance past reversible 

attachment [15].  

The next step of biofilm formation is maturation, or the three dimensional growth of the 

biofilm. Following irreversible attachment, the bacteria begin to grow and aggregate into 

microcolonies.  More planktonic bacteria are recruited and additional microorganisms colonize.  

As the bacteria cultivate, extracellular polymers are produced and the bacteria become embedded 

in a highly hydrated matrix [16]. The microcolonies in the EPS matrix are separated by water 

channels and pores that are necessary for the diffusion of nutrients, oxygen, and debris within the 

biofilm.   The hydrodynamic voids also enable the cells to communicate with one another 

through the exchange genes and quorum sensing [14]. 

The final step of biofilm growth, detachment, results from the shedding of cells, changes in 

the environment, and physical forces.  The shedding of cells can be attributed to cellular lysis, 

the release of progeny, and the discharge of single cells in planktonic form that could not attach 

to the biofilm.  Hydrodynamic forces and the velocity of the liquid result in the natural erosion of 

the biofilm, or shearing, in which small segments of the biofilm are constantly eliminated.  

Abrasion can also cause detachment through collision of liquid particles with the biofilm. 

Sloughing, in which large portions of the biofilm rapidly separate, is caused by depletions in 

nutrients or oxygen availability.  The thickness of the biofilm is dependent upon the net buildup 

of the cells through attachment and maturation and the net loss of cells through detachment.  

Research has shown that the rate of detachment escalates as the thickness of the biofilm 

increases [14]. 
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Figure 1: Steps of Biofilm Development: Reversible Attachment, Irreversible Attachment, Maturation, Detachment 

2.2.3 Microbial Diversity 

Biofilms are comprised of a dynamic array of microorganisms including bacteria, algae, 

protozoa, and metazoa. The microbial composition of the biofilm is dependent upon external 

factors, such as nutrient supply, predator grazing, and competition. Non-biological elements, 

such as salt, silt, and minerals, may also be present on the biofilm. 

2.2.3.1 Bacteria  

The most common biofilm bacteria are Pseudomonas aeruginosa. P. aeruginosa are 

aerobic, gram negative, rod-shaped bacteria belonging to the class Gamma Proteobacteria and 

the family Psedomonadacae.  P. aeruginosa are free living bacteria commonly found in water 

and soil and on surfaces contacting soil and water.  Although p. aeruginosa can exist in the 

planktonic form, it is generally located on biofilms. A single polar flagellum responsible for its 

active motility enables swift attachment to the substratum in biofilm formation [19]. 



30 
 

Several characteristics of p. aeruginosa contribute to its ability to thrive on biofilms. 

First, p. aeruginosa can grow in the absence of oxygen if nitrate is available to act as an electron 

acceptor.  In addition, the nutritional needs of p. aeruginosa are minimal and the bacteria can 

utilize more than seventy-five organic compounds for growth. P. aeruginosa is able to grow on 

mediums containing acetate as a source of carbon and ammonium sulfate as a source of nitrogen.  

P. aeruginosa can withstand extreme physical conditions and flourishes at temperatures ranging 

from 37 to 42 degrees Celsius.  Finally, P. aeruginosa is resistant to many antimicrobials and can 

endure high concentrations of salt [19]. 

A study of biofilm formation of thirteen bacterial strains found in wastewater treatment 

systems showed that all thirteen bacterial strains were able to form biofilms on at least one of the 

four different media used.  Three of the strains, Pseudomonas aeruginosa, Acinetobacter 

calcoaceticus, and Comamonas denitrificans, were able to form biofilms on any of the tested 

media.  Several adherence characteristics, including cell surface hydrophobicity, hydrodynamic 

strength, initial attachment, and the production of EPS, contributed to the bacteria’s affinity to 

form biofilms [20]. 

2.2.3.2 Algae 

Diatoms, the unicellular algae of the class Bacillariophyceae, are the earliest and most 

extensive colonizers of biofilms.  They live in fresh and salt water and constitute a large portion 

of marine plankton. Frustules, or firm bivalve shells composed of silica, and chloroplasts, enable 

diatoms to perform photosynthesis. Diatoms attach to the surfaces of biofilms through a variety 

of adhesive mechanisms, including filaments, glue-like substances, pads, and stalks.  Once a few 
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cells have attached to the biofilm, cell division quickly results in colonization and the merging of 

the microcolonies [18]. 

Unicellular and filamentous green algae and blue-green algae contribute to biofilms in 

freshwater environments. Blue green algae, or cyanobacteria, are photosynthetic bacterium of the 

class Coccogoneae. Cyanobacteria may exist as individual cells, filaments, or colonies and are 

capable of nitrogen fixation.  The ability of cyanobacteria to withstand extreme temperatures and 

to utilize nitrogen fixation in the case of oxygen or nutrient deprivation contributes to their 

flourishing existence on biofilms.  

Algal biofilms are also present in marine environments. Enteromorpha, green algae that 

grow as tubular single layer of cells, and Ectocarpus, small brown algae that form branched 

filaments, produce flagellate zoospores and adhesive rhizoids that assist in the initial attachment 

of the algae to the substratum [18]. 

2.2.3.3 Protozoa and Metazoa 

The grazing of protozoa and metazoa alters the composition and nutrient supply of the 

biofilm.  Protozoa remove 30% to 100% of the bacteria produced each day within the biofilm.  

The protozoa are grazed on by invertebrates, such as rotifers and nematodes.  This food chain 

results in the cycling of carbon, nitrogen, and phosphorous and the excretion of ammonia and 

orthophosphate [16]. In addition, studies have shown that the channels present between the 

microcolonies may be attributed to the movement and grazing of protozoa and metazoa [21]. 

Protozoa are single-celled eukaryotic organisms, belonging to the kingdom Protista, that 

associate with biofilms and graze on bacteria and algae.  They are nonphotosynthetic organisms 

that exist singularly or aggregate into colonies.   Protozoa are classified as amoebae, flagellates, 
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or ciliates according to their motility and means to capture prey. The level of attachment and 

grazing varies among the different classes of protozoa.  Primarily planktonic, or “transient 

protozoa” do not directly attach to the biofilm.  “Sessile protozoa” attach the surface but also 

consume prey in the surrounding environment. Finally, the remaining protozoa principally use 

the biofilm as a source of nourishment [16]. 

Metazoan invertebrates utilize bacteria and protozoa as an important food source and thereby 

become common components of biofilms.  Rotifers, multicellular organisms of the phylum 

Rotifera, are the most common invertebrate in biofilms.  Rotifers feed on bacteria by filtering 

water passing the biofilm surface.  They also graze on sessile ciliates by migrating into the 

biofilm. Nematodes, unsegmented worms of the phylum Nematoda, are able to live inside the 

biofilm matrix and graze on bacteria, amoebae, and sessile ciliates.  Through the consumption of 

dead cells, rotifers and nematodes enable growth and the proliferation of new cells in the biofilm 

[21].   

2.3 Biofilm Applications 

2.3.1 The Effect of Salt and Heavy Metals on Biofilm Development 

 

2.3.1.1 Chemical Properties of Seawater 

Salinity, temperature, pH, and the dissolved gas and nutrient composition of seawater 

affect biofilm development in marine environments. Seawater is made up of water and various 

dissolved chemical elements and salts. The salinity of seawater in the majority of marine 

environments is 35 parts per thousand. Chloride, sodium, sulfur, magnesium, calcium and 

potassium comprise 99% of the salts found in seawater.  Although the salinity of seawater may 

fluctuate, these salts are always found in the same proportions.  Evaporation, precipitation, water 
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runoff from streams and rivers, and the freezing and thawing of ice all affect salinity and biofilm 

formation [42]. 

The temperature of seawater also varies with respect to the amount of sunlight it receives 

and the angle of the sun’s rays.  Tropical environments may present seawater temperatures as 

high as 30 degrees Celsius, while polar environments may exhibit temperatures as low as -2 

degrees Celsius [42].  Studies have shown that water temperatures from 2 to 7 degrees Celsius 

and from 20 to 25 degrees Celsius resulted in a slow rate of biofilm maturation and production. 

Maximal biofilm formation occurred at a seawater temperature of 15 degrees Celsius. In 

addition, salinity and temperature affect the density of the seawater, which may affect the vitality 

of marine microbes [43]. 

Finally, the concentration of dissolved gases and nutrient composition of seawater may 

fluctuate in different marine environments. The amount of dissolved oxygen and carbon dioxide 

in the seawater is dependent upon the temperature and types of organisms found in the aquatic 

surroundings. Decreased temperature elevates the concentration of dissolved gases and the 

photosynthetic activity of plants increases oxygen levels. The availability of nutrients is also 

dependent upon the inhabitation and decomposition of organisms in the seawater. The nutrient 

composition of seawater is important to biofilm formation because organic compounds, such as 

nitrogen and phosphate, and reduced inorganic compounds provide energy for the metabolism of 

the biofilm and promote or impede the synthesis of EPS [42]. 

2.3.1.2 Biofilm Resistance to Heavy Metals 

Heavy metals, such as nickel, copper, and lead, are unrelenting pollutants of drinking 

water, wastewater, freshwater, and marine environments.  Heavy metals have extremely adverse 
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effects on human health, including DNA damage from free radicals and the breakdown of the 

protein folding mechanisms. Biofilm bacteria, such as P. aeruginosa, possess intrinsic methods 

to resist heavy metal toxicity.  Biofilms are capable of eliminating heavy metals from the 

surrounding liquid by binding the heavy metal ions to the EPS matrix.  The use of biofilms in 

wastewater treatment facilities has been investigated as a method of removing heavy metal from 

wastewater [44]. 

2.3.1.3 Research Application  

Recently, the Brazilian city of Recife has seen a substantial population growth, and it has 

been found that the systems currently in place for pollution control and proper wastewater 

treatment are far from adequate. Only approximately 35 percent of the city’s sewage is treated 

before it is discharged. While the pure volume of rainwater that falls annually is an issue 

(400mm/year), the constituents of the wastewater are also problematic. Of particular interest is 

the presence of salt and heavy metals in the water. Recife is a coastal town with the Beberibe and 

Capibaribe Rivers running through it and several canals, including the Derby-Tacaruna, 

connecting them. All of these waterways are heavily influenced by the tides of the Atlantic 

Ocean, and so contain significant portions of seawater (rich in salt and dissolved solids) that in 

turn becomes very prominent in the wastewater [33]. 

In the experiment conducted by M. C. L. da Silva, M. N. Pons and others, performed in 

2003-2004 and published in Water Science and Technology in 2009, bioaugmentation was tested 

as a possible method for the treatment of this brine-heavy runoff water. A series of water 

samples were taken at each of five locations along the Derby-Tacaruna Canal, at high, medium 

and low tide during a time in which there had been minimal rainfall for the previous two weeks. 
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These samples were then tested for a variety of parameters, after which one representative 

sample was sent through a reactor using activated sludge and “bioaugmentation”. In 

bioaugmentation a commercial bioadditive containing a variety of lyophilized strains of bacteria 

is added to the wastewater prior to treatment as a replacement for activated sludge. Within this 

reactor the mixture was aerated via perforated tube, while being sampled at five different points 

throughout the reactor. These samples were then tested for the same parameters as the water had 

been prior to treatment [33]. 

The data obtained by this experiment showed several results. First, the high levels of bacteria 

in the unprocessed canal water confirmed previous observations of substantial amounts of 

untreated wastewater being released into the waterways of the area. In addition, it was confirmed 

that the high levels of salinity, conductivity, and dissolved solids are due largely to the tide, as all 

were generally highest in the samples taken at high tide. Heavy metals were also present in the 

untreated water, with Iron and Lead having particularly high concentrations. Results showed that 

the bioaugmentation was substantially less efficient at removing both BOD and COD than the 

traditional activated sludge system. Bioaugmentation removed 55% and 62% of COD and BOD 

on average, respectively. Activated sludge, however, removed 89% and 96.8% of COD and 

BOD, respectively [33]. 

2.3.2 The Effect of Biofouling on Passive Sampler Performance 

 

 Passive sampling is a technique used to monitor the concentration of organic and 

inorganic pollutants in low concentrations and to assess water quality.  Older grab sampling 

techniques utilize bottle samples to record pollutant concentrations at specific time intervals.  

However, these techniques are susceptible to variations in the pollutant concentrations in natural 
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waters.  Limitations to the grab sampling method arise from fluctuations of contaminant 

concentrations over time and the intermittency of pollution events. However, the technique of 

passive sampling is well equipped to monitor time dependent concentrations of pollutants and is 

not as sensitive to the innate variations of the aqueous environment.  The greater stability of 

passive sampling results in more reliable data for the long term monitoring of pollutants. In 

addition, passive sampling reduces electricity usage and is thereby is the most cost-effective 

method. Over the past twenty years, passive sampling technology has greatly advanced and is 

becoming an increasingly more common method of pollution monitoring in water treatment 

facilities [34]. 

 Passive sampling is based on the free flow of analyte molecules from the sample medium 

to the receiving phase in another medium due to a difference in the chemical potentials of the 

analyte of the two media.  The analyte molecules continue to flow between the media until 

equilibrium is established. This results in the isolation of the analyte molecules in the receiving 

phase of the passive sampler.  The absorbed analyte molecules in the passive sampler can then be 

dissolved and analyzed [35]. 

Different types of passive samplers are used to acquire information about pollution 

concentrations.  Linear, or non-equilibrium, passive samplers do not reach equilibrium within a 

sampling period.  These types of samplers have a high capacity for collecting target pollutants 

over the entire sampling period, providing the time-weighted average of the concentration of 

pollutants over a specific period of time. Another type of passive samplers, equilibrium passive 

samplers, are not used to determine the time-weighted average because the equilibrium times of 

different passive samplers may differ.  Instead, equilibrium passive samplers signify the level of 
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the pollutant contamination in the monitored section.  Contaminants pass through a sorption 

medium and are trapped in the receiving medium inside in the sampler [35]. 

Environmental conditions and biofouling can greatly affect passive sampler performance.  

Surfaces submerged in water become colonized by bacteria and other microorganisms resulting 

in the formation of a biofilm.  Biofilms reduce the sampling uptake rate of the passive sampler 

by increasing resistance to mass transfer of contaminants from the water to the receiver.   The 

resistance to mass transfer is caused by an increased barrier thickness and blockage of pores. In 

addition, certain microorganisms are capable of biodegradation, resulting in the decomposition 

of analytes in the water that contact the biofilm surface and subsequently the miscalculation of 

the concentration of pollutants [36].   

Current research has been completed to measure the effect of biofouling on uptake rate in 

passive samplers and two main approaches have been utilized to examine the biofouling effect.  

The first method entails the biofouling of a membrane and the measurement of the sampling 

uptake rates of the contaminants.  The second method involves the addition of triolein to 

compounds in the passive sampler. The differences in the release rates of the compounds are then 

related to differences in biofouling.  Richardson et al. experimented with biofouled membranes 

and the addition of triolein to compounds in coastal waters over a four week period.  The results 

of the experiment showed that biofouling reduces contaminant uptake by fifty percent.  

Additional research by Huckins et al. implies that the addition of organic solvents and pesticides 

may reduce biofouling [37]. 
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2.4 Analytical Techniques  

2.4.1 Fluorescence Spectroscopy 

Fluorescence is a specific type of photoluminescence, the general term used to describe the 

interaction that occurs when molecules are excited by the absorption of photons of 

electromagnetic radiation and then, consequently, the re-emission of light energy. The 

phenomenon of fluorescence occurs when a beam of light is passed through a sample and the 

photons of light excite the electrons of the molecules in the sample. The electrons jump into 

higher energy molecular orbitals and then as they fall back into their original orbitals they emit 

energy in the form of light. Fluorescence is characterized by this almost immediate re-emission 

of energy after absorption, the entire event occurring in only 10
-12

 to 10
-9

 second [22].
 

Fluorescence can be measured through the use of a fluorescence spectrometer. A typical 

instrument consists of a radiation source, a primary monochromator, a secondary 

monochromator, a detector, an amplifier, and a readout device. Light from the source of radiation 

is passed through the primary monochromator, which allows only the wavelength of light 

required for excitation of the molecules in the sample to pass through. The second 

monochromator, located at a 90° angle from the incident optical path, absorbs this primary 

radiant energy, transmitting only the fluorescent radiant energy. The geometrical arrangement of 

this device makes it particularly sensitive, around three to four orders of magnitude more 

sensitive than the spectrophotometer, and therefore a very important analytical tool [23].
  

In biological and biochemical fields of study, the fluorescence spectrometer is often used to 

detect fluorescent probes. There are three classes into which fluorescent probes can be divided: 

intrinsic probes, extrinsic covalently bonded probes, and extrinsic associating probes. 
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Tryptophan is one of the three aromatic amino acid residues found in proteins which act as  

intrinsic fluorophores (the other two amino acids being tyrosine and phenylalanine)[24] and 

although typical proteins are comprised of only 1.1 molar percent tryptophan residues, this 

particular amino acid is a very valuable probe of protein structure [25]. In comparison to the 

absorption maxima (λmax) and extinction coefficient (ε) for both tyrosine (λmax=274.8, ε=1405) 

and phenylalanine (λmax=257.6, ε=195), tryptophan has a higher wavelength of absorption and a 

much higher extinction coefficient (λmax=279.0, ε=5579). Both of these factors contribute to the 

dominance of the tryptophan emission signal, making it the “ultimate energy acceptor in 

proteins” [23]. For this reason, tryptophan can be used as a fluorescent probe to determine the 

relative concentrations of protein, and hence of organic materials, contained within different 

samples of wastewater.  

2.4.2 Ultraviolet Molecular Absorption Spectroscopy 

In the process of electronic excitation, the electrons of a molecule, originally found at the 

lowest energy state, the ground state, absorb radiant energy and move into higher energy states. 

In order for radiation to cause this electronic excitation, it must be in UV region of the 

electromagnetic spectrum. The near-UV (quartz) region of the electromagnetic spectrum, which 

extends from 200 to 380 nanometers, is the main area of focus in ultraviolet spectroscopy. 

In the case of organic molecules there are three different types of electrons separated into two 

categories: bonding electrons and nonbonding electrons. The energy required to excite the 

electrons involved in saturated hydrocarbon bonds (one σ bond) is often more than that which 

UV light produces, and hence paraffinic compounds are quite useful as solvents. The electrons 

found in unsaturated hydrocarbon bonds (such as those found in aromatics and conjugated 
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olefins), which usually contain one σ bond and one π bond, are capable of being excited by UV 

radiation. For this reason, these electrons, as well as those not involved in bonding (n electrons), 

may absorb UV radiation. N electrons are found in organic compounds containing nitrogen, 

oxygen, sulfur or halogens. Functional groups that contain electrons which can absorb radiation 

in the UV region are known as chromophores [29]. Wastewater contains both nitrate (-ONO2), 

which has an absorption peak around 220 nm, and nitrite (-ONO), which has an absorption peak 

at 270 nm [30].
 

Another important parameter used when analyzing wastewater which can be determined 

using the UV-Vis spectrophotometer is the COD. The Chemical Oxygen Demand is a measure of 

the amount of organic material within a given sample of water, or effluent in general, which is 

susceptible to chemical oxidation. The standard method employed in the determination of COD 

involves a variety of toxic chemicals and takes several days; hence many scientists have begun to 

seek new analytical techniques to employ. The UV-Vis spectrophotometer can be used to 

estimate the COD of a sample based on the fact that the organic materials in the effluent show 

well-known absorption peaks in the UV-Visible region of the electromagnetic spectrum. These 

peaks result from the incorporation of absorbing groups, such as aromatic compounds [30]. In a 

previous study, conducted by Mrkva in 1975, a correlation between this organic matter in natural 

waters and the UV absorbance at 254 nm was discovered and using this particular wavelength 

allows for the estimation of the COD [31].
 

Absorption is detected using a device called an ultraviolet/visible spectrophotometer. This 

device uses two light sources: a tungsten lamp for visible light and a deuterium lamp for 

ultraviolet light. The beam of radiation from the light sources is divided into its component 

wavelengths by a prism or diffraction grating. Each monochromatic beam of light is then divided 
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into two identical beams of light by a half-mirrored device. One of the beams of light passes 

through the sample cell, a quartz cuvette containing the sample being studied dissolved in a 

solvent, while the other passes through a reference cell. After passing through these cells, the 

intensities of the two beams of light are then compared. The difference in the intensities gives a 

direct measure of the absorption by the sample [29].
 

2.4.3 Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) 

Inductively coupled plasma atomic emission spectroscopy (ICP-AES) is one of the most 

commonly employed analytical techniques because it is capable of detecting trace amounts, 

typically 1-10 parts per billion, of many trace elements. Similar to atomic emission spectrometry, 

in ICP technology samples are decomposed to their elemental components inside high 

temperature argon plasma, the atomic constituents being excited to higher energy levels. These 

components are then analyzed based on the wavelength of light their electrons emit when 

returning to their ground states.  ICP-AES involves four main processes: sample introduction and 

aerosol generation, ionization of specific elements by argon plasma, separation of light emitted 

by atoms into characteristic wavelengths, and quantification of each sample calibrated against 

standards [41].  
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Figure 2: ICP-AES Diagram 

Solid samples are introduced to the device by preparing a solution of the sample dissolved 

in water. (This technique is robust enough that liquid samples can be directly introduced to the 

machine.) A nebulizer aspirates the sample solution with high velocity argon, creating a fine 

mist. Only about 2% of this mist passes through the spray chamber because larger droplets are 

expelled via a drain for they are too large to be vaporized in the plasma torch. The smaller 

droplets of the aerosol then are mixed with more argon in the torch body where a coupling coil 

creates an argon “flame” by transmitting radio frequencies to the heated argon gas. Any solvent 

which is still remaining in the sample is then removed by the plasma and the sample particles are 

then atomized and ionized based on the following ideas [41]. 

The purpose of using argon plasma instead of using a regular flame source, is to provide 

strong atomic emissions from all the elements contained in the sample. Very high temperatures, 

in the range of 7,000 to 10,000 Kelvin, are needed and the most convenient manner in which to 

obtain there temperatures is through the employment of an inert-gas plasma (argon plasma). The 

argon plasma is a gaseous state of matter which contains high concentrations of free electrons 

and highly charged ions. When the liquid droplets of the sample are introduced to the 
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superheated argon plasma, they are converted into salt particles through the process of 

desolvation. The salt particles are then divided into individual molecules; these molecules will 

subsequently fall apart to atoms and ions [41]. 

 

Figure 3: ICP-AES Process 

The plasma excites the atoms and ions, causing their electrons to jump into higher 

molecular orbitals. When returning to the original, ground states, these electrons will emit 

electromagnetic radiation in the UV-Visible range of the electromagnetic spectrum. Each 

element contained in the sample emits a specific wavelength and the intensity of the radiation 

emitted will be proportional to the concentration of the element.  A spectrometer, used to detect 

and record these emissions, and industry standards are used to perform highly qualitative 

analyses of a variety of samples [41]. 
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2.4.4 Ion Exchange Chromatography 

 Natural and artificial zeolites (sodium aluminum silicates) have been used for many years to 

remove calcium and magnesium ions from water because they include metal ions, which are able 

to exchange places with the other metal ions. Ion exchangers are now being produced which 

combine a polymer (a resin which acts as an insoluble inert support) and a functional group, 

which dictates whether the exchanger is anionic or cationic. Acids are usually used as the 

functional group in cation exchange resins while amines or quaternary ammonium salts are 

generally used in anion exchange resins.
8
 Both types of exchangers can be used for the 

analyzation of wastewater, the dominant ions being Cl
-
, NO2

-
, NO3

-
, PO4

-3
, and NH4

+
 [29]. 

The rate of ion exchange, and hence separation of the ions, is governed by their relative 

affinities. The metal ions in the sample are in constant competition for binding of the functional 

groups. Generally at equal concentrations the ion with the highest affinity for the functional 

group will take the binding site and move the slowest through the column. An ion’s affinity is 

determined by its charge and its size: the greater the charge and the larger the size, the higher the 

affinity. The total cation or anion content of a sample is also able to be determined simply by 

using either a cation or an anion exchanger and then titrating the H
+
 or OH

-
, respectively [29].  

2.4.5 Colorimetry: Ammonium Test 

In wastewater, when uric acid and urea from human and animal urine come into contact with 

the urease enzymes produced by various strains of bacteria, ammonia is produced [26]. 

Therefore, although ammonia nitrogen is present at low concentrations in many bodies of water 

as a result of the decay of plants and animals, high levels of ammonia may indicate pollution 

from wastewater facilities and high levels of nitrogen are toxic to a great deal of aquatic 
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organisms. Ammonia (nitrogen) concentrations in water samples can be measured through direct 

Nesslerization [27]. 

Nessler’s reagent, first proposed by J. Nessler in 1856, is an alkaline solution of mercury (II) 

iodide in potassium iodide, which can be used for the colorimetric determination of ammonia. 

The reagent is added to dilute samples of wastewater where it reacts with ammonia fairly rapidly 

to form an orange-brown product [22]. The intensity of the color is dependent on the 

concentration of ammonia in the sample. A mineral stabilizer comprised of potassium sodium 

tartrate, sodium citrate, and demineralized water, was added to each sample to reduce the 

cloudiness of the sample caused by magnesium and calcium traces in the water [27]. Clarity of 

the solution is further increased by the addition of polyvinyl alcohol, which stabilizes the 

colloidal product of Nessler’s reagent and ammonia. Absorbance can then be quantified in a 

spectrophotometer. The level of ammonium in the sample is indicative of the health of the 

biofilm because ammonium levels directly correspond to the biofilm’s nitrification abilities [28]. 

3 Methodology 

3.1 Experiment 1 

 

The rotating biological contactor with a slow speed of rotation was designed to examine 

the chemical and physical properties of biofilm when it is grown in a substrate containing salt. 

Heavy metals were later on added to the substrate of the already developed biofilm and any 

subsequent effect this had on the biofilm was analyzed. The salt and the heavy metal (nickel) 

were added specifically to roughly imitate the type of water which fills the canals in the city of 

Recife, Brazil. The canals, which were built to connect the rivers in the region and to collect run-

off from rain, are thoroughly contaminated by sea water and wastewater and this has become a 
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great issue for the inhabitants of the city. Through this study, and other related studies examining 

the use of fixed biofilms for wastewater treatment, cities such as this one may be able to 

decontaminate their water. 

In order to conduct this experiment, a rotating biological contactor was setup in the 

following manner. Five discs were setup on an axle, with two small rubber spacers in between 

each disc, which was slowly rotated at 4 rpm in a glass tank. The base of the tank contained 3.42 

liters of wastewater and this volume was maintained through the employment of a drainage tube. 

The base and the lid of the tank each had the dimensions of 27.25 cm x 10.25 cm x 13 cm. 2.4 L 

of fresh wastewater, collected from the wastewater treatment center of Nancy, France, was fed 

into the system every day using a pump. The discs on which the biofilm grew were identical, 

smooth, circular plastic discs with a diameter of 13 cm and a small hole cut in the center for the 

axle to pass through; they were labeled with numbers 1 to 5. An air pump was also installed, 

providing the system with a steady supply of air.  

Maintenance procedures were performed on the RBC every two days. The substrate 

container was replaced with a new container containing 4.8 L of a wastewater and 10 g/L NaCl 

solution. The solution was prepared by dissolving 48 grams of NaCl in the wastewater a day 

prior to the intended day of use, so that the salt would be fully dissolved. From December 8, 

2009 until February 4, 2010, this was the substrate used in the reactor for Experiment 1. 

Beginning February 5, 2010, 0.25 mg/L of nickel (Nickel (III) Sulfate) was added to each new 

substrate solution. On February 25, 2010, the concentration of nickel was increased to 0.5 mg/L. 

The biofilm’s efficiencies were indirectly measured by the chemical analyses of the 

wastewater using the following tests: Ultraviolet-Visible Spectroscopy, Fluorescence 
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Spectroscopy, Ion Exchange Chromatography, and the Ammonium Test. Wastewater samples 

were collected from both the reactor and the new substrate container each time that the substrate 

container was replaced. The water was then filtered through a coffee filter and stored in the 

refrigerator until the tests were conducted. The sludge deposited in the reactor was also collected, 

at various intervals (when it appeared there was a sufficient quantity to collect), and tested for 

the presence of heavy metals using ICP-AES Spectrometry.  

The growth of the biofilm was monitored daily by scanning the discs using the Epson 

Perfection 4490 Photo Flat Bed Scanner and the Epson Scan program.  The parameters of the 

program were set to 8-bit grey image with a resolution of 800 dpi. The dimensions of the image 

size were set to 28.5mm x 96.9 mm.  The setup for the acquisition was set to Paramètrage 1. 

Each disc was scanned by first drying the back of the disc and then centering it on a mask in 

order to correctly align the scanned image with the set parameters. Six images were acquired 

each scanning session. The first image, 1, is a blank scan (the mask with no disc on it). Discs 1-5 

then appear as image numbers 2-6. After scanning, the discs were repositioned in the contactor in 

the exact same order each day, in numeroligical order. 

3.2 Experiment 2  

 

Rotating biological contactor “Experiment 2” was designed specifically to determine whether 

being in the presence of a magnetic field affects the growth and development of biofilm. A 

previous study conducted by Marie-Noëlle Pons at ENSIC in Nancy, France yielded quite 

fascinating results which suggested that biofilm developing in the presence of a magnetic field 

may grow more thickly and robustly. The very structure of the biofilm in this previous study was 

even found to be different than what is commonly observed when there is no magnetic field. 
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Interestingly, instead of sloughing off at various intervals throughout its growth, this biofilm 

appeared to slowly slide to the outer perimeter of the disc. Experiment 2 was set up in a similar 

manner to the contactor previously studied, but Experiment 2 had a higher speed of rotation and 

included four biodiscs, two of which were located within the magnetic field and two which were 

located outside of the magnetic field. 

The construction of this RBC was quite similar to that of Experiment 1. The axle that held 

the four discs was placed in a glass tank, the base and the lid of which each had the dimensions 

of 27.25 cm x 10.25 cm x 13 cm. Four wing nuts were used to firmly attach the lid to the base, in 

order to provide protection to the apparatus. The base was filled with 3.42 L of wastewater and 

the level of this water was kept constant through the use of a drainage tube. A feed line 

connected to a water pump allowed 4.8 L of fresh wastewater to enter the system at a steady rate 

over the course of two days. The wastewater was collected from the municipal wastewater 

treatment plant in Nancy, France. 

The discs on which the biofilm grew were all identical and made of smooth plastic. They 

were arranged in the following manner: disc number 1 was placed on the axle followed by two 

small rubber spacers; a magnetic disc was placed on the axle next, with the magnets facing 

upwards (away from disc 1); discs two and three were then added, with two spacers separating 

each disc; the second magnetic disc was then placed facing downwards (towards disc 1); and 

lastly the fourth disc was added, along with spacers, to complete the assembly. This apparatus 

rotated through the wastewater substrate at a speed of 127 rpm through the use of a motor. The 

discs also were provided with a constant supply of air through the use of an air line attached to 

an air pump. 
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Every two days, maintenance procedures were performed on Experiment 2. This included 

replacing the empty wastewater container with a fresh container containing 4.8 L of wastewater 

substrate. At this time, samples from both the reactor and the new wastewater substrate were 

obtained and filtered through a coffee filter before being stored in plastic bottles in the 

refrigerator until tests were conducted with them. These tests included Ultraviolet-Visible 

Spectroscopy, Fluorescence Spectroscopy, Ion Exchange Chromatography and the Ammonium 

Test.   

Biofilm growth on the discs was monitored by scanning the discs using the Epson Perfection 

4490 Photo Flat Bed Scanner and the Epson Scan program.  The parameters of the program were 

set to 8-bit grey image with a resolution of 800 dpi. The dimensions of the image size were set to 

28.5mm x 96.9 mm.  The setup for the acquisition was set to Paramètrage 1. Each disc was 

scanned by first drying the back of the disc and then centering it on a mask in order to correctly 

align the scanned image with the set parameters. Five images were acquired each scanning 

session. The first image, 1, is a blank scan (the mask with no disc on it). Discs 1-4 then appear as 

image numbers 2-5. After scanning the discs were repositioned in the contactor in the exact same 

order each day, in numeroligical order. The discs were also placed in the same exact alignment 

every day by lining up markings located on a certain spot on the edge of each disc. 

3.3 Experiment 3 

 

The third experiment was designed to monitor biofouling and to determine the best 

configuration of the plastic films in a passive sampler.  To set up the experiment,  a plastic 

garbage bag was cut into rectangular pieces.  Each plastic retangular film had dimensions of 1.5 

cm x 7 cm.   The  films were labeled 1 through 8 and a through g.  Small holes were cut in the 
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top of films 1 through 8 and the films were attached to a plate by inserting screws into the holes 

of each film. The plate was positioned horizontally at the bottom of the reactor. Films a through 

g were hung vertically on thin metal poles using metal binder clips. Two films were attached to 

each of the four poles.  The order of the films, from right to left, was e and f on the first pole, g 

and h  on the second pole, a and b on the third pole, and c and d on the last pole.  

The rectangular films were positioned in a reactor of dimensions of 27 cm x 10.5 cm x 13 

cm.  The reactor had a holding capacity of 2.5 L.  The reactor was not covered and was exposed 

to the surroundings.  Rena Air 50 was connected to a tube attached to the  left side of the reactor 

to provide air flow to the bottom of the reactor and the horizontally positioned films.  Substrate 

was pumped into the right side of the reactor at a rate of 400 mL per hour for 15 minutes an hour.  

A drainage tube enabled excess water to exit the reactor resulting in a constant volume.  The 

substrate was changed every other day and the empty substrate container was replaced with a 

new container, containing 4.8 L of pure wastewater from the Nancy, France wastewater 

treatment facilitiy. 50 mL samples of the new substrate and the water in the reactor were taken 

every other day.  The samples were filtered using a coffee filter and stored in the refrigerator.  

The samples from the substrate and the reactor were tested using Fluorescence Spectroscopy, UV 

Spectroscopy, Ion Exchange Chromatography, and the Ammonium Test. 

Every morning the plastic films were scanned using the Epson Perfection 4490 Photo Flat 

Bed Scanner and the Epson Scan program.  The parameters of the program were set to 8-bit grey 

image with a resolution of 800 dpi and the dimensions of the image size were set to 28.5 mm x 

96.9 mm.  The setup for the acquisition was changed to Paramètrage 7 and each plastic film was 

scanned by centering the film inside a mask in order to correctly align the scanned image with 

the set parameters. Seventeen images were acquired through the scanning.  A blank image was 
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scanned followed by films 1 through 8 and then a through g.  Each image was saved in the 

format Experiment 3_year/month/day_image number.tif. The blank was recorded as image 

number one, films 1 through 8 were recorded as images 2 through 9, and films a through g were 

recorded as images 10 through 17.  The films were repositioned in the same order as they were 

prior to removal. 

3.4 Analytical Techniques 

3.4.1 Opacity 

 

The scans of the discs and slides from runs 22, 23, and 24 were analyzed using the Greyscale 

Fortran program written by Marie-Noëlle Pons. This program and the Spatial Gray Level 

Dependence Method (SGLDM) were used to analyze the gray level of each pixel in the scan and 

find their averages, both horizontally and vertically. Using this information, the opacity, or the 

degree to which an object reduces the passage of light, was measured for each biofilm disc and 

plastic film to gauge biofilm growth and accumulation.  Biofilm growth directly corresponds to 

the average value of the opacity. The biofilm accumulation was plotted against time for Runs 22, 

23, and 24. 

The original scans of both the discs and slides contained the full mask, which would have 

significantly altered the average darkness of the image and result in apparently thicker biofilms. 

Therefore, it was necessary to modify the images to contain only the scanned disc or slide. For 

Runs 22 and 23, this was achieved for the discs by using the program “Visilog 6.3” to select 

three points around the perimeter of the disc. The Fortran program used to analyze the disc 

images created a circle based upon these three points and only analyzed the data within that 

circle. To account for the center area of the discs (which have no accumulated biofilm as they 
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never touch the water) and the edges, where biofilm regularly sloughs off and is often damaged, 

only the area from 36% to 98% of the radius of the disc was analyzed. The program works on a 

rectilinear system in only the horizontal and vertical directions, and hence it was necessary to 

transform the circular disc scans to rectangles. To achieve this, the Fortran program stretched the 

portion of the image being analyzed so that the inner radius was the lower edge of a rectangle 

and the outer radius was the upper edge. 

For Experiment 3, the program “ImageJ” was used to remove the masks from the scans of the 

slides. The program allowed a rectangular area that contained the plastic film to be selected and 

the rest of the image to be cropped away. The top portion of each film was also cropped away to 

remove any other artifacts created by the hole (for those that sit on the plate at the bottom of the 

tank) or the writing on the film.  

3.4.2 Fluorescence Spectroscopy 

 

Fluorescence Spectroscopy was used to observe the amount of protein found in the 

wastewater samples from the reactors and substrates of the three experiments. The spectral 

signatures, both absorption and fluorescence, of samples from the substrate (raw wastewater) and 

from the reactor (treated effluent) from Runs 22, 23, and 24 were found to be similar. All three 

runs presented an absorption band at around a wavelength of 288 nm and two fluorescence 

maxima centered at around 325 nm and 350 nm (using 280 nm excitation). The samples were 

excited at a wavelength of 280 nm because this is where tryptophan, an aromatic amino acid 

found in most proteins and the source of most of the intrinsic fluorescent emission properties of 

folded proteins, has a maximum absorption (λmax). For this reason, the amount of fluorescence 

directly correlates to the amount of protein in the sample. Data to support this reasoning was 

presented in 1993 by Angell et al., who used the biofilm removed from stainless steel coupons to 
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demonstrate the tryptophan is indeed a relaible indicator of bacterial biomass. The fluorescence 

spectra from each of the samples from all of the runs were recorded; the absorption values from 

288 nm were extracted and compiled into a graph used to compare the relative amounts of 

protein in the reactor and the substrate samples. 

3.4.3 Ultraviolet-Visible Spectroscopy 

 

The wastewater samples from the reactor and substrate of Runs 22, 23, and 24 were 

analyzed with Ultraviolet-Visible Spectroscopy to estimate the Chemical Oxygen Demand and 

nitrate production.  COD measures the amount of organic material, within a sample of 

wastewater, which is susceptible to chemical oxidation.  The COD for each sample can be 

estimated from the absorption peak at 254 nm. In addition, the absorption peak at 220 nm is 

proportional to the nitrate concentration and was used to determine nitrate production for the 

samples from the reactors and substrates.   

3.4.4 Ion Exchange Chromatography and the Ammonium Test 

 

Ion Exchange Chromatography was used to analyze the relative amounts nitrate and nitrite 

ions present in the samples from the reactors and substrates of Runs 22, 23, and 24.   Due to the 

high concentration of salt in Experiment 1, the samples from the reactors and substrates of Runs 

22, 23, and 24 were diluted 10 fold.  In addition to the Ion Exchange Chromatography analytical 

technique, the Ammonium Test, which employs the direct Nesslerization method, was performed 

on each sample from Runs 22, 23, and 24. This test allowed the levels of ammonia to be 

quantitatively determined. The relative increases and decreases observed in the levels of the 

nitrate, nitrite, and ammonia were then plotted against time to give a graphic representation of 

the process of nitrification, or lack thereof, in each of the runs. 
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Biofilm is a useful tool in the bioremediation of wastewater because it is comprised of many 

species of nitrifying bacteria. It is important to remove organic nitrogen from the wastewater 

before it exits the treatment plant because water bodies which are fertilized with nitrogen 

produced by human activities exhibit the syndrome of Eutrophication. As a result of 

Eutrophication, algal blooms arise, depleting the oxygen content in the water. Low oxygen levels 

induce the deaths of many fish and other organisms.  

In a biotic reaction carried out by the bacteria through the chemical processes of proteolysis 

and aminization, the organic nitrogen in the system is converted into amines (R-NH2). Through 

the process of ammonificiation, the amines are then converted first into ammonia (NH3) and then 

into ammonium (NH4
+
). In the final, and perhaps most important, step performed by these 

bacteria, through the two-step microbial process of nitrification, ammonium is oxidized to nitrate 

(NO3
-
).  Nitrite (NO2

-
) is formed as an intermediate in this process before being converted into 

nitrate. High levels of free ammonia and ammonium in the substrate will promote the growth of 

these species of nitrifying bacteria as they metabolize the ammonia into nitrate. 

Organic N  R-NH2 

R-NH2  NH3 + H2O  NH4
+
 + OH 

2 NH4
+
 + 3 O2  2 NO2

-
 + 2 H2O + 4 H

+
 + energy 

2 NO2
-
 + O2  2 NO3

- 

 In contrast to nitrification, denitrification is the predominantly microbial process which 

reduces nitrate and nitrite into gaseous forms of nitrogen, i.e. N2O, N2, and NO. The 

denitrification process occurs only under anaerobic conditions. When the bacteria in the reactor 
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are faced with a depletion of oxygen, they will begin to use nitrate as an acceptor of electrons, 

instead of oxygen. Nitrate levels are hence depleted in this process [48]. 

3.4.5 Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) 

 

Heavy metal concentrations within a biofilm are a good indication of the substances that 

make up the biofilm, in addition to what the biofilm has absorbed from the surrounding medium. 

To obtain this data, sloughed biofilm was collected from Experiment 1 on a weekly basis, and 

dried in an oven at 105ºC for 24 hours. The dried biofilm was then tested using Inductively 

Coupled Plasma Atomic Emission Spectroscopy (ICP-AES), from which the concentrations of a 

variety of metals could be obtained. 

4 Results 

The following section summarizes the results acquired from the scanning of the biofilm 

discs from Runs 22 and 23 and the plastic films from Experiment 3.  It also details the analytical 

techniques, and the corresponding results, which were performed on the wastewater samples 

collected from the reactors and substrates of these experimental runs.  The techniques performed 

were Opacity, Fluorescence Spectroscopy, Ultraviolet-Visible Spectroscopy, Ion Exchange 

Chromatography, and Ammonia Test. In addition, the results of the Inductively Coupled Plasma 

Atomic Emission Spectrometry for Experiment 1 are analyzed.  

4.1 Experiment 1 

 

4.1.1 Opacity 

 

Experiment 1 was the only slowly rotating biological contactor maintained and examined 

in this study and was also the longest running experiment. The variation of opacity of the five 
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discs used in Experiment 1 is plotted in Figure 4. The opacity increased on discs 1, 2, 3, 4, and 5 

in a similar fashion from day 0 to day 47. After day 47, discs 1, 2, 4, and 5 continued to show 

similar results with no conspicuous or troublesome peaks in any of the data. Between day 47 and 

day 52, disc 3 experienced a sharp 63.5% drop in opacity and a 297% increase in standard 

deviation due to the accidental detachment of much of the biofilm on the disc (the opacity and 

standard disc of disc 3 alone is shown in Figure 5). Over the next several days, disc 3 

experienced further detachment of its biofilm and by day 57 only 27% of the biofilm growth 

measured on day 47 remained. Enough time had not elapsed by the conclusion of this experiment 

to determine the rate of biofilm regrowth on this abused disc.  The scanned images from a few 

randomly selected days of the experiment showing biofilm growth over time on disc 2 can be 

seen in Figure 6.   

 

Figure 4: Biofilm Growth over Time on Discs 1 through 5 of Experiment 1 
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Figure 5: Biofilm Growth over Time with Standard Deviations 
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• Figure 6: Images from biofilm of disc 2 on day 15 (day 1 = December 6, 2010), day 31, day 51, and day 72, respectively  
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4.1.2 Fluorescence Spectroscopy 

The fluorescence absorption peaks for both the substrate and the reactor samples taken 

from Experiment 1 remained relatively stable throughout the course of the experiment (see 

Figure 7). The intensity of the peak from the reactor samples, and hence the relative protein 

concentrations, which are indicative of the bacterial biomass, remained consistantly lower than 

those of the substrate samples from day 1 to day 80. The sharp peak in the fluoresce absorption 

on day 24 of the substrate sample could be attributed to an array of environmemtal factors, but 

does not seem to be evidence of any major change or occurance within the experiment. This data 

confirms that the biofilm has indeed matured enough to begin the removal of organic materials 

from the wastewater.  

The slight decrease which occurs from day 61 to day 63 may be attributed to the addition 

of the heavy metal nickel to the Experiment 1 substrate on day 59. Previous studies have 

determined that the introduction of the heavy metals Ni
+2

 or Cu
+2

 at a concentration of 0.2 mg/L 

to the substrate of a reactor can quench the fluorescnce of the wastewater sample by as much as 

40%. (Quenching is stabilized at higher concentrations of these metal ions). This occurs due to 

the affinity the metal ions possess for certain functional groups directly attached to aromatic 

rings, such as those incorporated in tryptophan. The chelation of the metal ions with the aromatic 

compounds results in the deactivation of the shared electrons and quenching of the fluorescence. 

The mere fact that 0.25 mg/L of nickel was added to the substrate in this experiment would 

explain why the fluoresence intensity decreased only a very slight amount. (metal ions and 

fluorescence) [47]. 
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The wavelength of the fluorescence emission maximum of tryptophan is highly sensitive 

to changes in the polarity of its local environment, i.e. it is solvatochromatic. This fact could 

potentially be a good non-destructive technique for the monitoring of biofilm’s interaction, or 

lack thereof, with pollutants such as heavy metals. The chemical property of solvatochromism 

leads to the pronounced change in the position of λmax and sometimes in the intensity of λmax 

correlating to a change in the polarity of the medium.  Tryptophan presents an emission 

maximum peak in the range from ~308 nm (azurin) to ~355 nm (glucagon) seemingly dependent 

upon the chromophore of the molecule’s amount of exposure to the solvent. The average λmax 

occurs at 355 nm.  

Quantum mechanical studies have predicted that the electron density shifts from the 

pyrrole ring to the benzene ring upon excitation of the Trp molecule. Therefore, when positively 

charged residues in the medium come into close proximity to the benzene end or when 

negatively charged residues come into close proximity to the pyrrole end of the Trp ring, the λmax 

will shift to longer wavelengths (a red shift); the opposite situation will hence produce an 

opposite effect, shifting λmax to a shorter wavelength (a blue shift). The size of this shift is 

inversely dependent upon the distance from the charge to the center of the Trp ring. The presence 

of the two emission peaks, which present themselves at ~325 nm and ~350, may be a result of 

the ions from NaCl or the metal ions from the nickel compound interacting with the Trp residues 

in the bacterial biomass. (The NaCl and the nickel were added to the substrate of Experiment 1 in 

order to imitate the large variations in metal ion content due to pollution incidents and the 

inclusion of sea water in the canals in Racife, Brazil) [46]. 

Although the position of the emission peaks does not seem to change after the addition of 

the nickel on day 61, the relative intensity of the emission peaks are slightly distorted (see Figure 



60 
 

8). The peak located at ~350 nm seems to increase in intensity while the peak located at ~325 nm 

seems to decrease in intensity. Then, by day 74 and the conclusion of the experimentation with 

the 0.25 mg/L concentration of nickel in the substrate, the peaks have both shifted back to their 

original relative intensities (where they were located before nickel was added). It appears that the 

biofilm is in some manner interacting with or affected by the nickel in the substrate, but 

unfortunately it appears that the conclusion of this experiment occurred too soon to gain any 

concrete results in regards to the heavy metal-biofilm interaction. This is important to know for 

designing more efficient biofilms or wastewater filtration devices to deal with heavy metal 

contamination. 

 

Figure 7: Protein Levels in Water Samples from the Reactor and Substrate of Experiment 1 Over Time 
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Figure 8:  Results of Fluorescent Spectroscopy: Emission Peak Shifts on Days 57, 63, and 72 

 

4.1.3 Ultraviolet-Visible Spectroscopy 

  

The reactor of Experiment 1 exhibited relatively steady levels of COD over the course of 

the testing (see Figure 9). However, the difference in levels found in the reactor and the substrate 

increased dramatically over the first 40 days. After 40 days the difference decreased, likely as a 

result of sloughing that began to occur during the experiment. Marked increases in the measured 

COD of the reactor at days 25, 57, and 74 are most likely due to the high rise of the COD value 

in the substrate. This may have been caused by a variety of environmental factors, such as the 

incorporation of heavy metals into the wastewater through heavy rainfall (many of the rooftops 

in Nancy, France are constructed of a material which includes copper and many of the drainage 

gutters are constructed of a material which contains lead). The decrease in the COD of the 

reactor on day 59 may be attributed to the dilution of the wastewater by heavy rainfall. The fact 

0

20

40

60

80

100

120

140

160

180

200

200 250 300 350 400 450 500 550

Experiment 1: Fluorescence Emission Peak's 

Intensity Shifts

Day 57

Day 63

Day 72



62 
 

that so many external factors influence the composition of the substrate made the COD levels of 

the substrate random throughout the experiment. 

Aside from the incorporation of metal ions through the contamination of the wastewater 

by heavy metals, nickel was added at a fixed amount to the substrate of Experiment 1 beginning 

on day 61 of the experiment. This could account for the steady increase in the COD levels in 

both the substrate and reactor from day 61 to day 74 because the COD value for a sample can be 

increased depending upon the concentration of inorganic ions present. This occurs due to the fact 

that the conductivity of a solution is directly dependent upon the amount of ions, responsible for 

the conductive process, that are present. These ions can be oxidized together with the organic 

load, hence increasing the COD value. Previous studies have concluded that it is quite possible 

up to one-third of a sample’s COD value arises from the oxidation of the inorganic compounds 

and hence through the addition of heavy metals into a reactor’s substrate, the sample’s COD 

value will become inflated [30]. The quick increase in the COD from day 78 to day 80 may also 

be attributed to this idea because on day 78 of the experiment the heavy metal (nickel) 

concentration of the substrate was doubled. 
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Figure 9: COD Levels in Water Samples from the Reactor and Substrate of Experiment 1 Over Time 
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Figure 10: Nitrate Production in Water Samples from the Reactor and Substrate of Experiment 1 Over Time 
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graph does not include any data from before this time point, the exact date that this increase 

began cannot be known). The maximum level of nitrite and the minimum level of nitrate are 

observed on day 59. Subsequent to this date, the nitrite levels slowly begin to decline as the 

nitrate levels slowly begin to increase. At about day 71, the nitrate levels begin to plateau, while 

the nitrite levels begin to return to their original levels. The nitrate levels are significantly lower 

than the nitrite levels.  It is possible that the addition of salt to the substrate interfered with the 

nitrification process. The sodium ions from the sodium chloride may have formed molecules 

with the oxygen, such as sodium oxide or sodium peroxide, thereby decreasing the oxygen 

levels, which are required to convert nitrite to nitrate. Overall, although the nitrite levels rose and 

fell dramatically throughout the experiment, the concentration of nitrite at the beginning of the 

experiment and at the end of the experiment remained about equal.  This occurs because of the 

role which nitrite plays in the nitrification pathway, which is that of an intermediate between the 

ammonia and the nitrate. The nitrite and nitrate levels are magnified for easier viewing in Figure 

12. 

All these results are to be expected of the bacteria in the biofilm, because the nitrification 

process began when the biofilm was mature enough to undergo this endeavor. These results are 

further supported by those obtained for the nitrate production from UV-Visible Spectroscopy. 

However, it is quite interesting that the nitrification process appears to have started (on day 59) 

at the same exact time that the heavy metal nickel was introduced to the substrate, perhaps 

indicating that the introduction of these metal ions into the substrate may have somehow 

stimulated the nitrification process. This idea could not be confirmed because the experiment 

was not maintained long enough after the addition of nickel to yield any substantiating results. 
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Figure 11: Combined Results of Ammonia Test and Ion Chromatography: Nitrification in Samples from the Reactor of 
Experiment 1 

 

Figure 12: Ion Chromatography Results:  Nitrate and Nitrite Concentrations in the Samples from the Reactor of Experiment 1 
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Figure 13:  Ammonia Production by Samples from the Substrate and Reactor of Experiment 1 
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decreased slightly on day 79 but remained much higher than it was before the addition to the 

substrate. The concentration of nickel in the pure wastewater may have been high even before 

the addition of the nickel in the laboratory on day 73. This would account for the extremely 

elevated levels of nickel in the sloughed biofilm on day 73.  Heavy precipitation between days 

73 and 79 may have lowered the natural level of nickel present in the wastewater, and 

subsequently decreased the concentration of nickel in the sloughed biofilm.  

On day 56, zinc became considerably more prominent in the system. The average 

concentration of zinc between days 56 and 79 was 580% higher than the average concentration 

of the four previous samples. Unlike nickel, zinc was not added to the substrate, so an external 

factor must have accounted for its sudden high concentrations.  Days 56 though 79 all occurred 

in February, 2010. This month had a relatively high average temperature of 5ºC (41ºF) and 

substantial precipitation. January, however, had an abnormally low average temperature of 1ºC 

(33.8ºF, the lowest of the past eight years in Nancy, France). It is possible that the low 

temperature in January resulted in snow being the primary type of precipitation. As a result, the 

snow in January did not extract nearly as much zinc from pipes and motor oil on the street as the 

rain in February. Therefore, the concentration of zinc in the sloughed biofilm was higher in 

February, days 56 through 79, than January, days 27 to 58.  
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Figure 14:  Metal Concentrations in Sloughed Biofilm Over Time 
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detachment of this portion of biofilm, no new biofilm growth (no change in opacity) was 

observed on disc 4 from day 28 to day 38. New biomass began to accumulate on day 38 at a rate 

comparable to the rate before the accident. 

            The accumulation of biomass on discs 1, 2, and 3 came to an abrupt halt when between 

days 42 and 46 a large quantity of the biofilm sloughed off unexpectedly and inexplicably. Disc 

1 lost 55.2% of its opacity (increase of 555% in standard deviation), disc 2 lost 62.9% of its 

opacity (increase of 338% in standard deviation), and disc 3 lost 62.6% of its opacity (increase of 

487% in standard deviation), as a result of this bizarre occurrence. Perhaps the growth of the 

biofilm in the magnetic field, on discs 2 and 3, created by the magnetic discs was adversely 

affected by its location. This idea is difficult to provide conclusive results for given the fact that a 

great deal of biomass was also lost by disc 1, which was located outside of the magnetic field. 

            Discs 1 and 2 resumed their accumulation of biofilm and hence an increase in opacity is 

observed, beginning on days 44 and 46, respectively. The opacity of disc 3, however, continued 

to slowly decline as time passed. Overall, there was no noticeable difference between the 

opacities of the discs located in the magnetic field and those located external to the magnetic 

field. Figure 16 and Figure 17 compare selected days of the biofilm growth over time on disc 2, 

which was located inside the magnetic field, and disc 3, which was located outside the magnetic 

field. 
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Figure 15: Biofilm Growth over Time on Discs 1 through 4 of Experiment 2 

 

 

        Figure 16:  Images from biofilm of disc 1 on day 10 (day 1 = January, 5, 2010), day 25, day 44, and day 45, respectively.  
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Figure 17: Images from biofilm of disc 3 on day 10 (day 1 = January, 5, 2010), day 25, day 44, and day 45, respectively.  

 

4.2.2 Fluorescence Spectroscopy 

 

As seen in Figure 18, the samples from the reactor of Experiment 2 consistently had a 

lower amount of protein than the samples from the substrate.  The biofilm absorbs and removes 

organic material from the wastewater in the reactor and converts the organic nitrogen to an end 

product of nitrate, subsequently lowering the amount of trypophan in the reactor. Therefore, as 

expected, less protein and residual organic matter were present in the samples from the reactor 

than from the substrate each day [42].  In addition, the results showed that the biofilm more 

efficiently removed protein from the wastewater in the reactor as time progressed. As the biofilm 

grew thicker, more ammonium was converted to nitrite and then oxidized to nitrate resulting in 

lower concentrations of fluorecing tryptophan, which can be used to monitor biofilm efficiency. 

Biofilm Growth on Disc 3 of Experiment 2
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Figure 18: Protein Levels in Samples from the Reactor and Substrate of Experiment 2 

 

4.2.3 Ultraviolet-Visible Spectroscopy 
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Figure 19: COD in Samples from the Reactors and Substrates of Experiment 2 
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Figure 20:  Nitrate Production in Samples from the Reactor and Substrate of Experiment 2 
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maximum of 36.02 mg N/L on day 23 to 0.18 mg N/L on day 35. This is as expected because in 

order for the process of nitrification to begin, enough nitrifying bacteria must accumulate/ 

multiply and mature in the biomass. This appears to have occurred on day 23.  

In accordance to this idea, the overall decreasing levels of ammonia coincide with a rise 

in nitrite levels beginning on day 23. The maximum level of nitrite and the minimum level of 

nitrate are observed on day 31. Subsequent to this date, the nitrite levels slowly begin to decline 

as the nitrate levels slowly begin to increase. At about day 38, the nitrate levels begin to plateau 

while the nitrite levels begin to return to their original levels. Similar to, and for the same reasons 

as Experiment 1, although the nitrite levels rose and fell dramatically throughout the experiment, 

the concentration of nitrite at the beginning of the experiment and at the end of the experiment 

remained about equal. The nitrite and nitrate levels are magnified for easier viewing in Figure 

22. These results, up to day 41, are as to be expected of the biofilm. 

On day 41, the concentration of nitrate began to decrease.  Perhaps, a denitrifying strain 

of bacteria in the biofilm, such as p. aeruginosa, began to multiply at a faster rate than the other 

bacterial strains in the biofilm. (Denitrification is the most energetically favorable of the 

respiration mechanisms). This would result in the conversion of nitrate to nitrogen gas and hence 

a decline in the nitrate concentration. The subsequent increase in the nitrate concentration on day 

44 may have been the result of a shifting microbial electron accepting mechanism, in which 

aerobic denitrification and aerobic respiration compete within the bacterial cells of the biofilm. 

As a result, the bacteria would expend all of their energy upon respiration and the denitrification 

process would be impeded [45]. However, the decrease in the nitrate levels could simply be 

attributed to the faulty equipment used in this experiment. The air pump and the motor often 

stopped running for varying periods of time before the problem was recognized and fixed. When 
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either of these machines stopped running, the aerobic biofilm was not exposed to the correct 

levels of oxygen and the organisms begin to use nitrate as a source of oxygen. This would also 

account for the decline in nitrate levels. 

 

Figure 21: Combined Results of Ammonia Test and Ion Chromatography: Nitrification in Samples from the Reactor of 
Experiment 2 
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Figure 22: Ion Chromatography Results: Nitrate and Nitrite Production from Samples from the Reactor of Experiment 2 

 

Figure 23: Ammonium Production by Samples from the Reactor and Substrate of Experiment 2 
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4.3 Experiment 3  

 

4.3.1 Opacity 

 

The opacity of the plastic films in “Experiment 3” was analyzed to determine the best 

configuration of the plastic films in a passive sampler.  The extent of biofouling on the plastic 

films orientated vertically and horizontally was monitored through observations of the biofilm 

accumulation. The biofilm growth was plotted against time and the data was graphed to compare 

the biofilm growth on the plastic films hanging vertically in the reactor to those positioned 

horizontally on a plate in the bottom of the reactor.   

As seen in Figure 24, which compares the two configurations, biofilm accumulation 

increased as time progressed in both the plastic films positioned vertically and horizontally in the 

passive sampler. On days 10 through 20, a significant plummet in biofilm accumulation was seen 

on the films positioned horizontally, but not on the films positioned vertically.  This may be 

attributed to hydrodynamic forces, the velocity of the liquid in the aqueous environment, and the 

collision of liquid particles with the biofilms. In addition, removing and replacing the plate 

containing the horizontally positioned films from the reactor for the daily scanning may have 

disturbed the biofilm growth, resulting in the decreased opacity.  It is possible that the vertically 

positioned films were less susceptible to fluctuations in the fluid and particle collisions than the 

horizontally positioned films.  Sludge and other debris settling at the bottom of the reactor may 

also have adversely affected biofilm accumulation on the horizontally positioned films. 
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Biofilm accumulation among the horizontally positioned plastic films appeared to be 

more variable than the accumulation on the vertically positioned films.  Figure 25 shows that the 

accumulation steadily increased on the vertically positioned films with slight biofilm loss seen 

on day 20 by most of the films.  This may be attributed to heavy biofilm accumulation resulting 

in sloughing and then subsequent regrowth for the remainder of the experiment. Figure 26 

displays that there is no clear pattern for biofilm accumulation on the horizontally positioned 

films.  It appears that biofilm loss and regrowth fluctuated on the different films.  However, 

beginning on Day 30 biofilm accumulation increased to the same extent until the end of the 

experiment in both configurations.   Figure 27 and Figure 28 compare selected days of the 

biofilm growth over time on film b, which was positioned vertically in the plastic sampler, and 

film 2, which was positioned horizontally in the plastic sampler. 

 

 

Figure 24: Average Biofilm Growth over Time in Vertically and Horizontally Positioned Films of Experiment 3 
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Figure 25: Biofilm Growth Over Time in Vertically Positioned Films A through H of Experiment 3 

 

Figure 26: Biofilm Growth Over Time in Horizontally Positioned Films 1 through 8 of Experiment 3 
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                 Figure 27:  Images from biofilm of plastic film b on day 1, day 7, day 14, day 20, day 25, and day 34.  

 

Biofilm growth on vertically positioned plastic film b
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                Figure 28: Images from biofilm of plastic film 2 on day 1, day 7, day 14, day 20, day 25, and day 34.  

 

 

4.3.2 Fluorescence Spectroscopy 

 

 Figure 29 shows that there was a lower amount of protein in the samples from the reactor 

than from the samples from the substrate of Experiment 3.  This trend demonstrates that the  

biofilm accumulation on the plastic films of the passive sampler absorbed organical residual 

matter, hence lowering the concentration of trypotphan and converting organic nitrogen to an end 

product of nitrate. 

Biofilm growth on horizontally positioned plastic film 2
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Figure 29: Protein Levels from Samples from the Reactor and Substrate of Experiment 3 

4.3.3 Ultraviolet-Visible Spectroscopy 

 

The COD levels found in the reactor of Experiment 3 through UV-Visible Spectroscopy, 

seen in Figure 30, were lower than those found in the substrate. There is also a negative trend 

over time, although less pronounced. At days 17 and 33, the measured COD increases, but both 

of these increases may be attributed to simultaneous rises in the COD levels of the substrate 

being used by the reactor. The levels found in the substrate are random. 
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Figure 30: COD from Samples from the Reactor and Substrate of Experiment 3 

Nitrate levels in the reactor of Experiment 3 began lower than those of the substrate (see 

Figure 31). Between days 17 and 23, nitrate levels of the reactor increased considerably above 

the nitrate levels of the substrate. At days 33 and 34, nitrate production decreased substantially, 

lowering nitrate levels of the reactor below those of the substrate. The instability of nitrate 

production indicates that the process of nitrification is not taking place within the biofilms of in 

Experiment 3.  
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Figure 31: Nitrate Production in Samples from the Reactor and Substrate of Experiment 3 

4.3.4 Ion Chromatography and the Ammonium Test 

 

The ammonia, nitrate, and nitrite levels within the fixed film biological contactor, 

Experiment 3, were collected through the analytical techniques of Ion Chromatography and the 
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32.  
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Figure 33 shows that the levels of ammonia were declining, so it can be surmised that if the 

experiment had been allowed to run for an extended period of time, the nitrate levels would have 

increased as the other steps of the process transpired.   

 

Figure 32: Combined Results of Ammonia Test and Ion Chromatography: Nitrification in Samples from the Reactor of 
Experiment 3 
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Figure 33: Ammonium Production in Samples from the Reactor and Substrate of Experiment 3 

 

 

5 Conclusions 

5.1 Experiment 1 

 

Compared to the biofilm that developed on the discs in Experiment 2, which accumulated 

quickly and appeared robust, the biofilm that formed on the discs in Experiment 1 grew at a 

much slower rate and seemed to be of a more delicate construction.  In a previous study, it was 

determined that there exists a relationship between cell surface hydrophobicity (CSH) and the 

formation of the biofilm. CSH has been found to be one of the factors affecting biofilm 

formation which affects the mechanism of bacterial attachment and it is influenced by factors 

such as the presence of cell appendages containing protein and extracellular polymeric 

substances. Growth conditions also affect CSH, which was found to decrease after the addition 
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of sodium chloride (NaCl) to the growth medium and this decrease resulted in the formation of 

thinner and more fragile biofilms than those formed under high CSH conditions. Detachment 

was observed to occur less frequently and on a smaller scale while the subsequent reattachment 

and growth of the biofilm was found to be retarded under low CSH conditions. 

This previous study reported that the hydrophobicity of bacterial cell colonies raised in a 

substrate containing sodium chloride fell to zero faster than the hydrophobicity of bacterial 

colonies grown in plain substrate did. It therefore appears that the sodium chloride must have 

interacted with the bacteria in some manner, causing changes to their intrinsic hydrophobicity. 

An increase in exopolysaccharide production, and hence a change in the cell physiology and the 

cell surface properties, has been shown to occur in the presence of salts and this would lead to a 

decrease in hydrophobicity if these exopolysaccharides are predominantly neutral or hydrophilic. 

The effects on cell surface hydrophobicity caused by the alteration of the growth conditions 

through the addition of sodium chloride, and consequently the effects on biofilm formation and 

growth, can be attributed to this [51]. 

However, although it appears that the presence of sodium chloride in the substrate 

affected the development and growth of the biofilm, whether the nitrifying properties of the 

biofilm were affected could not be determined. The salt was added to the substrate before the 

biofilm had been given an adequate amount of time to develop and mature and hence begin the 

process of nitrification. Therefore, in the future, the biofilm will be allowed to grow on the discs 

in the biological contactor for a longer period of time, the levels of nitrate and ammonia kept 

under constant observation, and only when it is certain nitrification has begun will the sodium 

chloride be added. 
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In previous experiments completed by Claire Perrin et al. in 2009, nickel has been shown 

to increase the growth of biofilm when provided in moderate quantities. The addition of nickel to 

a substrate results in an over expression of the curli gene in bacteria, specifically E. Coli. The 

excess curli production converts certain bacteria from their natural planktonic form to a fixed 

biofilm by inducing adherence of bacterial cells to one another. The belief is that the attachment 

of the heavy metals to the EPS matrix of the biofilm protects the bacteria from the harmful 

effects of the heavy metal. In pure culture studies, it has been found that biofilm grown cells are 

two to six hundred times more resistant to metal stress than planktonic cells. This also relates to 

the absorption capacity of the biofilm because it directly corresponds to the chelat-forming 

capacity of the EPS matrix due to its inclusion of high numbers of carboxyl, hydroxyl, and acetyl 

groups as well as ketal-linked pyruvates [52]. 

 With respect to the biofilms being tested in this experiment, the increase of biomass due 

to bacterial conversion from a planktonic state may explain the results of protein and COD 

levels. Although the biomass of discs 1, 2, 4 and 5 steadily increased throughout the experiment 

as shown by the measured opacity levels of the scans, the efficiency of the biofilms’ degradation 

of organics decreased after day 59, when nickel was added to the system. The difference in levels 

of both protein and COD between the water samples from the reactor and the substrate decreased 

after day 59, indicating the deteriorating function of the biofilm as the addition nickel resulted in 

a lower number of live cells that degrade these organic materials.  In addition, it has been 

observed that metal ions compete against organic compounds for active sites on biofilms 

hampering organic degradation [53]. 
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5.2 Experiment 2 

 

 The experiment with the fast rotating biological contactor, Experiment 2, demonstrated 

that the application of a magnetic field and rotation speed affects biofilm development. On days 

42 through 46, large portions of biofilm suddenly detached from the disc.  The biofilm on the 

discs inside of the magnetic field sloughed off about 2 days before the separation of the biofilm 

from the disc outside of the magnetic field. Studies have shown that biofilm exposure to a 

magnetic field results in transcriptional changes to planktonic cells, which affect the surface 

adhesion of the free cells to the biofilm, resulting in dispersion and the rapid formation of denser 

and thinner biofilm [49].  In comparison to a previous experiment by Marie Noëlle Pons, in 

which a magnetic field was applied to biofilms rotating at a slower speed, biofilm detachment 

occurred 5 to 7 days later than in Experiment 2.  This may attributed to the velocity of the 

rotating contactor, which resulted in shearing, or the constant elimination of small portions of the 

biofilm.   

The magnetic field also influences the biodegradation of organic materials in the 

wastewater.  Solutions exposed to magnetic fields readily absorb atmospheric oxygen.  Due to 

the fact that most microorganisms are aerobic, the increased oxygen concentration of the 

magnetized wastewater results in more efficient metabolic activity and elimination of organic 

materials.  In addition, the increased oxygen concentration may result in the formation of free 

radicals in the biofilm, which also reduce the concentration of organic matter [50].  The 

reduction of organic materials through the increased oxygen concentration may have contributed 

to the reduced COD and protein levels of the samples from the reactor compared to the samples 

from the substrate of Experiment 2. However, there is no control experimental data available to 
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compare to the COD and protein level findings.  In addition, although it is unclear if the 

initiation of the nitrification process was affected by the application of the magnetic field, 

nitrification is an aerobic process and the increased oxygen concentration may have catalyzed the 

conversion of organic nitrogen to nitrate.  

5.3 Experiment 3 

 

The opacity results of Experiment 3 were the most essential in determining which 

configuration of plastic films exhibits the least biofouling in a passive sampler.  The opacity 

measurements showed that biofilm accumulation increased as time progressed to the same extent 

in both the vertically and horizontally oriented plastic films.  However, the films positioned 

horizontally on the plate at the bottom of the passive sampler were more susceptible to fluid 

fluctuations than the films hanging vertically in the passive sampler.  Removing the plate for 

daily scanning disturbed biofilm growth on the horizontally positioned films, resulting in a 

variable growth pattern among films 1 through 8.  

Biofilm accumulation was more constant on the vertically positioned films, a to g, 

because there were minimal disturbances to the biofilm during the scanning procedure. It is 

probable that the horizontally positioned films would have obtained greater biofilm accumulation 

than the vertically positioned films over time if the scanning had not displaced the growing 

biofilm.  In addition, debris and sloughed biofilm settling on the plate at the bottom of the reactor  

may have disrupted biofilm accumulation.  Due to the fact the films hanging vertically in the 

passive sampler exhibited consistent biomass accumulation over time and that the horizontal 

films would most likely have had greater biomass accumulation if they were not removed from 
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the reactor, it can be surmised that the vertical orientation is the best configuration in a passive 

sampler. 

The other analytical tests were less significant in determining the best orientation of the 

plastic films.  However, the results of these tests were indicative of the efficiency of the biomass 

that formed on the plastic films. The lower protein concentration and Chemical Oxygen Demand 

in the samples from the reactor than the samples from the substrate of Experiment 3 

demonstrated that the biofilms were effectively removing organic materials from the water.  

However, the results of the Ion Chromatography and Ammonium Test showed that the biofilm 

had not matured enough to complete the nitrification process and to convert organic nitrogen into 

nitrate.  This may have been the result of the short duration of the experiment, the material the 

biofilm was growing on, or environmental disturbances to the biofilm.  

6 Appendices 

6.1 Procedures 

6.1.1 Maintenance of the Biological Contactors 

Maintenance procedures were performed every other day on Runs 22, 23, and 24 to 

replenish the substrate supply, which feeds each reactor; to remove any buildup that may affect 

the functioning of the contactors; and to monitor the growth of the biofilms. 

6.1.1.1 Procedure for the Maintenance of Experiment 1 

 

1. Turn off the motor and the water pump that are associated with the rotating biological 

contactor. 

2. Remove the tubing connected to the RBC: the tubing which connects the water pump to 

the glass contactor lid (the feed line), the tubing which connects the air pump to the lid 

(the air line), and the third spacer tube (used only to keep the other two tubes in place). 
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3. Take the glass contactor lid off the apparatus. 

4. Remove the screw which connects the axle to which the biodiscs are attached to an arm 

that extends from the motor. 

5. Gently lift the axle with the biodiscs and place it into a vice. Tighten the vice so that the 

axle is secure. 

6. Unfasten the outer screw. Carefully remove the small rubber spacers and the biodiscs, 

placing each biodisc on a paper towel, biofilm side up, in a separate Petri dish. 

7. Scan each biodisc according to the procedure described in the “Biofilm Scanning” 

section. 

8. Replace the biodiscs and the spacers on the axle in the correct order. Biodisc 1 is placed 

on first, followed in numerological order up to biodisc 5. Reattach the end screw to 

secure the biodiscs in place. 

9. Before putting the axle back into the reactor, take a sample of water from the reactor 

using a small, empty glass jar. Pour the water through a coffee filter placed in a funnel 

and into a plastic sample container. Screw the cap on the container and label the container 

with the run number, the date, and with the letter R for reactor. Place the sample in the 

refrigerator. 

10. Position the axle in the reactor and replace the screw that attaches the axle to the arm of 

the motor. 

11. Replace the glass lid of the reactor. 

12. Connect the three tubes back to the glass lid. Every few days make sure to detach the 

tubing completely from the apparatus and run water through it to clean it out. 

13. Every two days, exchange the empty substrate container with a new container filled with 

4.8 L of freshly made substrate (wastewater mixed with salt and heavy metals). Take a 

sample from the substrate container and then filter and label it as described in step 9, but 

with an S instead of an R. 

14. Turn the water pump and the motor back on (the motor needs a little assistance to start 

spinning). 



95 
 

6.1.1.1.1 Image of Experiment 1 Apparatus 

 

6.1.1.2 Procedure for the Maintenance of Experiment 2 

 

1. Turn off the motor and the water pump that are associated with the rotating biological 

contactor. There is no need to turn off or unplug the air pump.  

2. Then remove the feed line and the air line from the glass cover protecting the RBC. 

3. Unscrew the four wing nuts which secure the lid to the glass water container and remove 

the cover. 

4. Detach the rubber rotating belt from the large gear attached to the axle of the RBC and to 

the small gear attached to the motor.  

5. Remove the axle on which the biodiscs are held and place it on a table, balanced on the 

large gear. Refer to image 6.1.1.2.2. 

6. Detach the outer screw and the metal spacer from the axle. Carefully remove the small 

rubber spacers and then the first biodisc. Wipe the back of the biodisc dry with a paper 

towel and then place it on a paper towel in a Petri dish.  

7. Next, remove the first magnetic disc, wipe clean with a paper towel, and place it on 

another paper towel out of the way (magnet side facedown).  

8. Remove the next two biodiscs, also wiping their backs dry and putting them in Petri 

dishes. 

9. Remove the second magnetic disc, wipe it clean, and then place it off to the side as well, 

but not in close proximity to the other magnet. 
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10. Scan the biodiscs according to the “Biodisc Scanning” procedure. 

11. Reassemble the biodiscs, the magnetic discs, and the spacers on the axle. Make sure that 

the biodiscs are all placed back in the correct order. 1 is installed first followed in 

numerological order up to 4, with the magnetic discs located between 1-2 and 3-4. The 

magnets on the magnetic discs should be facing one another, so that discs 2 and 3 are 

located in the magnetic field. There is also a small marking on discs 2-3 and both 

magnetic discs; make sure to align these markings. Replace the end screw to secure the 

biodiscs in place. 

12. Before replacing the axle with the biodiscs in the RBC, use a small, empty glass jar to 

collect some of the reactor water to test. Store the sample by following the procedure 

described in step 9 of the “Procedure for Maintenance of Experiment 1”.  

13. Gently place the axle back into the RBC container. 

14. Reattach the rubber rotating belt and secure the cover back on with the wing nuts.  

15. Reconnect all the tubing to the RBC. Every few days make sure to detach the tubing 

completely from the apparatus and run water through it to clean it out. 

16. At this point, every two days, replace the empty substrate container with a new container 

filled with 4.8 L of freshly obtained wastewater. Take a sample from the substrate 

container and then filter and label it as described in step 9 of the “Procedure for 

Maintenance of Experiment 1”, but with an S instead of an R. 

17. Turn the water pump and the motor back on 
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6.1.1.2.1 Image of Experiment 2 Apparatus 

 

6.1.1.2.2 Image of Axle with Biofilm and Magnetic Discs 

 

 

6.1.1.3 Procedure for the Maintenance of Experiment 3 

 

1. Turn off the pump and motor attached to the reactor by unplugging it.  
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2. Replace the empty substrate container every two days with a new substrate container 

containing pure wastewater from the Nancy treatment plant.   

3. Collect a sample of the substrate  and label it with Experiment 3, the date, and S. Refer to 

step 9 of the “Procedure for the Maintenance of Experiment 1”. 

4. Detach each of the hanging plastic films (a-g) and the plastic films from the plate at the 

bottom of the reactor (1-8) and lay them flat on a papertowel to remove new biofilm 

growth from the backside of the films. 

5. Use a tweezer to place the films into Petri dishes to prevent damage while carrying them 

to the scanner. 

6. Follow the “Biofilm Scanning” procedure for Experiment 3. 

7. Collect a sample of the solution in the reactor and label it with Experiment 3, the date, 

and R. Refer to step 9 of the “Procedure for the Maintenance of Experiment 1”. 

8. Reattach films 1-8 onto the plate and replace the plate back in the bottom of the reactor.  

Make sure the plate is centered in the middle of the reactor. 

9. Reattach the hanging biofilms in the same order as they were prior to removal.  

10. Plug in the pump and motor to turn them on. 

6.1.1.3.1 Image of Experiment 3 Apparatus 
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6.1.1.3.2 Image of the Horizontally Positoned Plastic Films on the Plate 

 

 

6.1.1.3.3 Image of the Plastic Films on the Plate in the Bottom of the Reactor 

 

 

6.1.1.3.4 Image of the Vertically Hanging Plastic Films 
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6.1.2 Wastewater Substrate Preparation Procedure  

Wastewater was regulary delivered from the wastewater treatment facility in Nancy, 

France.  The wastewater was stored in a cold room until use in order to minimize 

microbiological activity.  Runs 23 and 24 used pure wastewater with no additives as their 

substrate.  The wastewater used in Experiment 1, however, was modified through the addition of 

salt and heavy metals. 

6.1.2.1 Experiment 2 and 24 Substrate Preparation 

 

1. Obtain water (transported in 10.0 L plastic vessels) from the cold room. 

2. Store the water in the refrigerator in the lab to reduce microbiologic activity 

3. When reactors have used up their current supply, pour 4.8 L of water into a plastic 5.0 L 

or 6.0 L vessel.  

6.1.2.2 Experiment 1 Substrate Preparation  

 

1. Obtain water (transported in 10.0 L plastic vessels) from cold room.  

 

2. Store water in the refrigerator in the lab to reduce microbiologic activity. 

 

3. One day prior to the time when the substrate container will need to be switched, measure 

out 48.0 g of salt (NaCl), or 10 g per L of water that will be used in the experiment.  

 

4. Mix the salt into 4.8 L of wastewater (in a 5.0 L or 6.0 L plastic vessel) by combining 

small amounts of water and salt and mixing until the salt is fully dissolved. Then combine 

the small amounts with full volume of water.  

 

5. Beginning February 5, 2010, using a 2 mL volumetric pipette, add 2.85 mL of 

concentrated Ni(III)SO4 solution (50 mg Ni(III)SO4 per 100 mL H2O) to obtain an overall 

concentration of 0.25 mg Ni/ L.  

 

6. Beginning February 22, 2010, using a 2 mL volumetric pipette, add 5.70 mL of 

concentrated Ni(III)SO4 solution (50 mg Ni(III)SO4 per 100 mL H2O) to obtain an overall 

concentration of 0.50 mg Ni/ L.  

 

7. Cap the vessel and store in the refrigerator until it is needed to replace the substrate. 
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6.1.3 Biofilm Scanning and Analysis  

 

The biofilm discs and plastic films from Runs 22, 23, and 24 were scanned using the 

EPSON Perfection 4490 Photoscanner and the EPSON scan program.  The discs and films were 

placed on masks to ensure proper alignment with the set parameters.  The resulting images were 

analyzed using the Greyscale Fortran Program to measure the differences in opacity as time 

progressed.  Darker images indicated thicker biofilm growth.  

6.1.3.1 Experiment 1 and Experiment 2 Biofilm Scanning 

 

1. Turn on computer, and log into username Zeiss. 

 

2. Open the program EPSON Scan and turn on the EPSON Perfection 4490 Photo scanner. 

 

3. Under Paramètre select Paramètrage 1. 

 

4. Turn off lights in the room. 

 

5. Insert the mask into the scanner, aligning the edge with the A4 marking, and select 

Aperçu in the EPSON Scan program to ensure that the orientation is correct and that the 

mask is clean. If not use a paper towel to clean off any smudges present. 

 

6. Ensure that the mask edge is aligned with A4 and select Numériser. 

 

7. In the new window, under Emplacement, select Personnalisé and click on Parcourir(B) 

to select the appropriate folder to save the scanned image (Disque local (F:) 

Biofilm2 Run22 or 23 as appropriate). 

 

8. Write the name that the file will be saved as next to Préfixe. Filename format should be:  

run[#]_[year][month][day]. For example, the names of scans of discs from Experiment 1 

on February 15, 2010 will all begin with: run22_100215_ 

9. Ensure the Numéro de début is 001. This number will increase automatically with each 

scan, and will automatically be added on to the end of the file name. 

 

10. Ensure that the file type (under Format de l’image) is TIFF. 

 

11. Click OK to create the scanned blank. 

 

12. Remove the first disc (#1) from its petri dish, wipe the back of it with a paper towel, and 

place it into the mask. 
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13. Click Numériser and ensure that all options are the same as for the blank except for 

Numéro de début, which should read 002.  

 

14. Click OK. 

 

15. After scanning is finished, return the disc to its Petri dish. 

 

16. Repeat the process for the remaining discs in the proper order. 

 

17. Once finished, close the program, log out of the computer, and turn off the scanner. 

 

6.1.5.2 Experiment 1 and Experiment 2 Analysis 

 

1. Turn on computer and log into username Zeiss.  

2. Open Visilog 6.3. 

3. Select File, Ouvrir, choose the folder containing the images of the run to be analyzed, 

and choose the first image that will be analyzed (do not select number 001, the blank, 

throughout the process). 

4. Select the Point button on the toolbar, which appears as a blue set of intersecting lines. 

5. Make three approximately equidistant points around the border of the scanned image of 

the disc. 

6. Click the Afficher les coordonnées des objets Point button, which appears as three red 

points, two of which are connected to the third via red dotted lines. This will copy the 

coordinates of the three points into a spreadsheet. 

7. Close the image of the scanned disc and repeat the process with each scanned image for 

that run. 

8. Save the spreadsheet into the run’s folder as “coordinates[x].dat”, in which [x] is the 

number of the time that the procedure has been carried out.  

9. In the explorer, right click the file and open with Excel. 

10. Add “.tif” to the end of all of the file names by, in a new column, entering: 

=[cell of filename]&”.tif”. 

11. All of the coordinates for points in each scan will be in a vertical column. Move the 

coordinates so that they are in a horizontal row for each scan, before deleting the extra 

rows from the spreadsheet, so that there is only one row for each scan file. 
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12. Copy the names that include “.tif” at the end into a new spreadsheet, and save this 

spreadsheet in the run’s folder as “names.txt”. 

13. Copy the point coordinates into a new excel spreadsheet and save this in the run’s folder 

as “points.txt”. 

14. Copy the entire run folder into the C: drive of the computer. 

15. Ensure that the files “angles.txt” and “dists.txt” are in the folder. If not, copy and paste 

them from a previous similar experiment. 

16. Open the DOS Terminal (Invite de Commandes), and move back in directories by typing: 

cd.. 

Once inside the directory containing the run folder, change to the appropriate directory by 

typing (for Experiment 1, for example): cd run22 

17. Open the grayscale Fortran program by typing: tex_disc_general 

18. After each of the prompts, give the appropriate response: 

Input file name: names.txt 

Case: 2 

Name of points file: points.txt 

Min: 38 

Max: 98 

Name of stats file: stats_22.txt   or stats_23.txt, as is appropriate. 

Name of SGLDM file: sgldm_22.txt    or sgldm_23, as is appropriate 

Angle file: angles.txt 

Distance file: dists.txt 

Size of warped image: 1024 

19. Open the new file “stats_22.txt” in excel, using delineated spacing, and add a new 

column labeled “Opacity” with the following equation: =G$2-G2 

*note: Use the values from the column labeled “Mean1”, which may not be G. 

20. Drag this equation down to obtain the difference between the first entry of “Mean1” and 

the following entries. 

21. Organize the data in excel so as to group the data from each disc together. 

 

6.1.5.3 Experiment 3 Biofilm Scanning 

 

1. Turn on computer, and log into username Zeiss. 
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2. Open the program EPSON Scan and turn on the EPSON Perfection 4490 Photo scanner. 

 

3. Under Paramètre select Paramètrage 7. 

 

4. Turn off lights in the room. 

 

5. Insert the mask into the scanner, aligning the edge with A4 marking, and select Aperçu in 

the EPSON Scan program to ensure that the orientation is correct and the mask is clean. 

If not use a paper towel to clean off any smudges present. 

 

6. Ensure the mask edge is aligned with A4 and select Numériser. 

 

7. In the new window, under Emplacement, select Personnalisé and click on Parcourir(B) 

to select the appropriate folder to save the scanned image (Disque local (F:) 

Biofilm2 Run24). 

 

8. Write the name the file will be saved as next to Préfixe. Filename format should be:  

run[#]_[year][month][day]. For example, the names of scans of discs from Experiment 3 

on February 15, 2010 will all begin with: run24_100215_ 

9. Ensure the Numéro de début is 001. This number will increase automatically with each 

scan, and will automatically be added on to the end of the file name. 

 

10. Ensure the file type (under Format de l’image) is TIFF. 

 

11. Click OK to create the scanned blank. 

 

12. Remove the first plastic film (#1) from the plate, wipe the back of it with a paper towel, 

and place it into the mask. 

 

13. Click Numériser and ensure that all options are the same as for the blank except for 

Numéro de début, which should read 002.  

 

14. Click OK. 

 

15. After scanning is finished, return the film to the plate. 

 

16. Repeat the process for the remaining films in proper order (1-8 followed by a-h). 

 

17. Once finished, close the program, log out of the computer, and turn off the scanner. 

 

6.1.5.4 Experiment 3 Analysis 

 

1. Turn on computer and log into username Zeiss.  
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2. Open the application ImageJ. 

3. Select file, open, and choose the first scanned image from Experiment 3 (ignoring 001. 

All files ending in 001 will be ignored) 

4. Click on the Polygon Selections button, and click four points around the plastic slide to 

surround it. In order to avoid unnatural artifacts in the perceived gray levels of the slide, 

do not include in the selection the area of the slide with a hole (for those attached to the 

plate on the bottom of the tank) or a letter (for those hanging from above the tank). 

5. Select edit, then copy to system. 

6. Select file, new, system clipboard. 

7. Save the “cut” image as a TIF file in a subfolder of Run24 also called Run24. The name 

of the image should be the same as it was before being cut. 

8. To move to the next image to be cut, select file and open next. The rectangle made on the 

previous image will appear again, and the corners may be dragged to appropriate 

positions on the new image. 

9. Copy the names that include “.tif” at the end into a new spreadsheet, and save this 

spreadsheet in the run’s folder as “names.txt”. 

10. Copy the entire run folder into the C: drive of the computer. 

11. Ensure that the files “angles.txt” and “dists.txt” are in the folder. If not, copy and paste 

them from a previous similar experiment. 

12. Open the DOS Terminal (Invite de Commandes), and move back in directories by typing: 

cd.. 

Once inside the directory containing the run folder, change to the appropriate directory by 

typing (for Experiment 3, for example): cd Experiment 3 

13. Open the grayscale Fortran program by typing: tex_disc_general 

14. After each of the prompts, give the appropriate response: 

Input file name: names.txt 

Case: 2 

Name of points file: points.txt 

Minimum number of columns and rows:  

400 

1600 

Name of stats file: stats_24.txt 

Name of SGLDM file: sgldm_24.txt     

Angle file: angles.txt 

Distance file: dists.txt 
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15. Open the new file “stats_24.txt” in excel, using delineated spacing, and add a new 

column labeled “Opacity” with the following equation: =G$2-G2 

*note: Use the values from the column labeled “Mean”, which may not be G. 

16. Drag this equation down to obtain the difference between the first entry of “Mean” and 

the following entries. 

17. Organize the data in excel so as to group the data from each film together. 

 

6.1.6 Fluorescence Spectroscopy 

 

 Fluorescence spectroscopy was performed once a week on Runs 22, 23, and 24 in an 

effort to estimate the relative amounts of organic materials in each of the samples of wastewater. 

The objective was to determine whether there was a difference in the levels of the organic 

materials between the reactor and substrate samples. The only peak that was pertinent to the 

study was that of tryptophan, which is located at a wavelength 288 nm. The procedure for 

fluorescence spectroscopy was:  

1. Turn on the PC. 

2. Log into the computer under Pons. 

3. Turn on the Digilab Hitachi F-2500 fluorescence spectophotometer using the button on 

the front of the device and make sure the lamp light turns on. 

4. Open FL Solutions 2.0 on the desktop. 

5. Set a baseline for the acquisition by loading a new method. 

6. Load a new method. Click Method, Load, Program Files, FL Solutions, MNP, and then 

raman_eau.flm. 

7. Fill a plastic cuvet with deionized water. 

8. Press Measure to obtain the reading. 

9. Press Report and save the Excel file of the baseline. 

10.  Load a new method.  Click Method, Load, Program Files, FL Solutions, MNP, and then 

eau_sync.flm. 
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11. Rinse the plastic cuvette with the sample and then refill the cuvette with the same sample. 

12. Press Measure to obtain the reading. 

13. Press report and save the Excel file. 

14. Close the windows and repeat steps 11 through 13 for each sample. 

6.1.7 Ultraviolet-Visible Spectroscopy  

 Ultraviolet-Visible Spectroscopy was performed on samples from Runs 22, 23, and 24 

each week.  The purpose was to estimate the chemical oxygen demand (COD) for the substrate 

and reactor samples.   The peak at a wavelength of 254 nm corresponded to the COD 

measurement. The procedure for Ultraviolet-Visible Spectroscopy was:  

1. Turn the computer on. Login with the username ECCMA9. Do not start the LabPowerJ 

software at this point. 

2. Turn the UV-Vis Anthélie Light Spectrophotometer on (the switch is located on the 

back). Allow the spectrophotometer to run its auto test. 

3. When asked the question “Porte-cuve vide?”,  check to make sure that the cuvette holder 

is empty and then push the Val (validate) key. 

4. When asked the question “Imprimer?” (Print), move the right arrow to Abandonner 

(Abandon) and then push the Val key. 

5. Once the auto test is finished, the word Absorbance will be indicated on the 

spectrophotometer screen. Move the down arrow to the sub-menu Configuration and then 

move the right arrow to Liaison RS232. Press the Val key. 

6. Open the LabPowerJ software and prepare the program for spectra scanning.  

7. Click on the sub-menu Méthode, then choose Nouvelle méthode, and finally choose 

Balayage despectre.  

8. Edit the parameters by clicking on éditer at the bottom of the main window. Change 

Début (start) to 200 nm and Fin (end) to 600 nm. 

9. Zero the spectrophotometer by first filling the quartz cuvette with DI water and then start 

the baseline acquisition by clicking on OK. The device will tell how the baseline 

acquisition is progressing. 

10. Prepare the first sample by filling the quartz cuvette with the sample and then pouring it 

out (to rinse the cuvette). Refill the cuvette with the sample, wipe it clean with a paper 

towel, and then place it in the spectrophotometer. 
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11. Scan each sample by clicking on the yellow M icon in the LabPowerJ software.  

12. Save the spectrum as an Excel file by choosing the export to excel option located under 

the Fichier option in the menu bar of the main window. 

13. Repeat steps 10 through12 for every sample. 

6.1.8 The Ammonium Test 

 The concentration of ammonia was determined from the reactor and substrate samples 

from Runs 22, 23, and 24 once a week. The samples were diluted 20 fold with the Hamilton 

Digital Diluter in order to obtain an accurate reading with the Hach Spectrophotometer.  The 

samples were prepared using the Nesslerization process and the absorbance of each sample was 

measured at 425 nm. The procedure for the Ammonium Test was:  

1. Dilute each of the wastewater samples, both the substrate and reactor samples, 20 fold 

using the Hamilton Digital Diluter. 

Set the digital diluter to 90% and 50% (4.5 mL DI H20 and 0.5 mL sample).  

Place the tube into the sample bottle and press the down arrow (the diluter will measure 

the appropriate amount of both the DI water and the sample). Then place the tube into a 

clean, empty test tube and press the up arrow to expel the two components of the diluted 

sample into the test tube. The sample is now diluted 10 fold. 

Then set the digital diluter to 99% and 0% to add 5 mL more of distilled water to dilute 

the sample 20 fold. 

Lastly, remember to make a blank sample. Use the machine while it is set to 99% and 0% 

to add 10 mL of DI water to a test tube. 

2. Add two drops of mineral stabilizer to each test tube, including the blank. 

 

3. Add two drops of polyvinyl alcohol to each test tube, again including the blank. 

4. Using an Eppendorf 100-1000 µL Manual Single Channel Pipet, add 400 µL Nessler’s 

Reagent to each test tube.  

5. Place caps on the test tubes and invert each tube several times to mix the sample. 

6. Measure the absorption of each sample using a spectrophotometer set at a wavelength of 

425 nm. 

First zero the spectrophotometer using the blank. Wipe the test tube with a paper towel to 

clean the glass and then place the tube into the machine. Choose the Signale Unique 
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option on the machine and then make sure that the wavelength is set t 425 nm before 

pressing Zéro.  

Test each sample in the same manner by first wiping off the test tube and then placing it 

into the machine. However, for the samples instead of pressing Zéro press the Lire button 

and record the absorbance. 

7. To determine the ammonium concentration in each sample, use the calibration curve with 

the equation y=3.651x with an R
2
 value of 0.999. Plug the absorbance value for each 

sample into the following equation: [N·NH4] in mg/L = 3.651(Absorbance Value)*20. (It 

must be multiplied by 20 to account for the 20 fold dilution). 

6.1.9 Ion chromatography 

 Each week the samples from Runs 22, 23, and 24 were prepared to be run in the HPLC 

machine by a trained laboratory technician.  All of the samples were diluted 10 fold in order to 

account for the high salt concentrations in Experiment 1 and in order to maintain comparable 

data between the runs. The procedure for ion chromatography was: 

1. Count the number of samples that will be tested. 

2. Label 1.5 mL ion chromatography vials with numbers from ranging from 1 to the number 

of samples. 

3. Using the auto-dilution apparatus, combine 0.5 mL of the first sample with 4.5 mL of 

deionized water (using the 90% and 50% settings for the 5 mL and 1 mL tubes, 

respectively) to make a 90% diluted solution. 

4. Using a 10 cc plastic syringe, remove the diluted sample. 

5. Attach a 0.45 µm syringe filter and fill a labeled 1.5 mL vial.  

6. Record the number of the vial and which sample it contains. Repeat for all of the 

samples. 

7. Store the sample vials in refrigerator until the ion chromatography test is to be carried 

out.  

 

The ion chromatography testing was carried out by Steve Pontvianne, the lab technician 

at ENSIC. Once the diluted sample vials were prepared, they were delivered him the 

results would be received by email or in person. 
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6.1.10 Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) 

 

 Samples of the sludge taken from reactor  of Experiment 1 were analyzed with ICP-AES 

to test the heavy metal concentrations. 

1. Using a small plastic handheld strainer, remove the sludge and sloughed biofilm from the 

bottom of the tank, creating minimal turbulence. If turbulence is created and biofilm is 

kicked up into the water, remove as much as possible, depositing into small glass jar. 

 

2. Without attaching a lid, place the jar into an oven at 105ºC for 24 hours to fully dehydrate 

the sludge. 

 

3. Using a metal scraping implement, remove dried sludge from the jar. Ensuring the dried 

sludge is fully crushed, without flakes, transfer to a labeled plastic vial and cap the vial. 

 

4. Deliver vial to be analyzed via ICP-AES 
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