
Frankenstein and Frankenstein’s Monster: 

Improvements on Solving Binary MQs on an FPGA 

 
A Major Qualifying Project  

Submitted to the Faculty of Worcester Polytechnic Institute  

In partial fulfillment of requirements for the Degree of Bachelor of 

Science in Electrical and Computer Engineering  

 

 

 

 

 

 

 

By  

Coco Mao, Andrew Gray, Patrick Hunter, Joshua Eben, Matthew Lund, Samuel David 

 

 

 

 

 

 

This Report represents the work of one or more WPI undergraduate 

students submitted to the faculty as evidence of completion of a degree 

requirement. WPI routinely publishes these reports on the web without 

editorial or peer review.  

 

 

 

 

 

Date: 4/25/2024  

Project Advisor: Dr. Köksal Muş 

 



1 

Table of Contents 
Table of Figures 4 

Abstract 5 

Introduction 5 

Implementations of MQ/SAT Problems 6 

Crossbred Algorithm 6 

AmoebaSAT 7 

Frank Kennedy’s Implementation 8 

The Frankenstein Algorithm 10 

GRASP 10 

Our Process 11 

Decide 11 

Deduce 11 

Verify 11 

Conflict analysis/resolution 12 

Reset + Merge 12 

Implementation Concepts 12 

Column arrays 12 

The window 12 

Decision Trees 13 

Watched Variables 13 

Linear Block Distance 14 

Decision Algorithm 14 

Weight Change with a Substitution 16 

Case 1: Lookup table/Substituted Variable 16 

Case 2: Sorted Variable Score Array 17 

K value decision 17 

Look Up Table for Python Implementation 18 

Identifying Differences 19 

Deduction 19 

Case 0 19 



2 

Intermediate Steps 20 

Case 1 20 

Case 2 20 

Case 3 21 

Choosing a New Board 21 

Exhaustive Searching 23 

Exhaustive Searching Results 25 

Exhaustive Searching Expanded 27 

LUTs in Python to Verilog Conversion 29 

Converting Frankenstein to Verilog 31 

Debugging with PYNQ-Z2 31 

Limitations of the PYNQ-Z2 board 32 

Conclusion 34 

Acknowledgements 35 

References 36 

Appendix 37 

Appendix A: Improving Solving Look Up Table to Account for Quadratics and Two Term 

Differences by Matthew Lund 37 

Appendix B: Finding Binary Weight of Two Code 39 

Appendix C: Binary Weight of Two Lookup Table Code 40 

Appendix D: Two Equation Weight of Two Solving Module Code 41 

Appendix E: Two Equation Weight of Two Solving Simulation Code 42 

Appendix F: Two Equation Weight of Two Solving Results 45 

Appendix G: Exhaustive Search Code 46 

Appendix H: Exhaustive Search Simulation Code 50 

Appendix I: Weight of Three Lookup Table 51 

Appendix J: Parametrized Binary Weight Code 53 

Appendix K: Digilent Starting Code 53 

Appendix L: Case 2 and 3 LUTs 53 

Appendix M: CDCL History 65 

 



3 

  



4 

Table of Figures 
Figure 1: Example Boolean system with three variables 5 

Figure 2: An example degree two Macaulay matrix (Joux 2018) 6 

Figure 3: Reduced Row Echelon of Figure 2’s Matrix (Joux 2018) 7 

Figure 4: Grevlex Row Echelon Form of Matrix (Joux 2018) 7 

Figure 5: AmoebaSAT model for 4 Variable SAT Case (Nguyen, et al. 2020) 8 

Figure 6: GRASP example implication graph (Silva & Sakallah, 1996) 10 

Figure 7: Flowchart of the solver algorithm 11 

Figure 8: Decision tree, visualized 13 

Figure 9: Flowchart of LUTs 19 

Figure 10: Table of Differences 19 

Figure 11: LUTs for Varying 1 Difference 20 

Figure 12: Comparison of A35 and A200 FPGA (Xilinx Website) 21 

Figure 13: Comparison of PynqZ2 board and Nexys FPGA 22 

Figure 14: Term Assignment Code Snippet 24 

Figure 15: Exhaustive Searching Flow Diagram 24 

Figure 16: Exhaustive Search Vivado Simulation Results 25 

Figure 17: Exhaustive Search Resource Utilization 25 

Figure 18: X2 and X4 = 1 on Board 26 

Figure 19: X2 and X5 = 1 on Board 26 

Figure 20: UART printing module in VHDL 27 

Figure 21: Example output with input equations shown 28 

Figure 22: XOR transpose in Python 30 

Figure 23: XOR transpose in Verilog 30 

Figure 24: LUT for 2 quadratic independent differences 31 

Figure 25: Block diagram of the Frankenstein HDL implementation 32 

Figure 26: Results from all implementations 34 

 

 

  



5 

Abstract 
 The goal of this project was to solve the Boolean Satisfiability Problem (SAT) by 

implementing an exhaustive search method for a binary quadratic system of equations on FPGA 

hardware. We first used Python to construct a proof-of-concept CDCL solver for quadratic 

Boolean systems, which we named the Frankenstein algorithm. Additionally, we drafted look up 

tables (LUTs) that analyzed two equations and defined variables based on one, two, or three term 

differences between the pair of equations. These LUTs were created because for these equations, 

the terms that differ have a limited number of solutions, so some variables can be defined early. 

We also created an algorithm that determines the decision order for variables based on their 

frequency and the current state of the solver. After that, the team worked on converting the Python 

code to Verilog. Our group successfully implemented the LUTs and some of Frankenstein in 

Verilog and System Verilog, with one additional module created in VHDL. Although SAT is a 

continuous research problem, our group created a solid foundation that leaves plenty of room for 

future groups to expand on. 

 

Introduction 
 The Boolean Satisfiability Problem (SAT) is a popular problem in cryptography. The 

SAT problem determines if a Boolean system can be satisfied by finding a combination of 

assignments for the variables that makes the entire system true. Additionally, the Multivariate 

Quadratic (MQ) problem builds on the SAT problem by introducing quadratic terms to Boolean 

systems. This project views Boolean systems as a quadratic system of equations, where every 

equation must be satisfied for the system to be satisfied. An example of our Boolean system 

interpretation is shown in Figure 1. 

 

𝑋1 + 𝑋2 + 𝑋3 + 𝑋1𝑋2 = 1 

𝑋1 + 𝑋2 + 𝑋1𝑋2 + 𝑋2𝑋3 = 1 

𝑋2 + 𝑋1𝑋2 + 𝑋2𝑋3 + 𝑋1𝑋3 = 0 

Figure 1: Example Boolean system with three variables 

 

The purpose of our MQP is to prepare for post-quantum cryptography by researching and 

improving current multivariate public key crypto systems, such as Rainbow and LUOV. In a 

public key, the size of the finite field, number of variables, and number of polynomials determine 

the hardness of the MQ problem given, as well as the specific time and space complexities. 



6 

 There have been numerous attempts at solving the MQ problem as well as the SAT 

problem, such as the Crossbred algorithm, the AmoebaSAT algorithm, as well as algorithms 

created by previous iterations of this project, such as the one made by Frank Kennedy. Frank’s 

goal was to solve linear systems using an efficient exhaustive search. The goal of this project is 

to improve Frank’s algorithm, as well as laying the groundwork for the next steps in the 

implementation on an FPGA.  

 

Implementations of MQ/SAT Problems 

 

Crossbred Algorithm 

 The Crossbred algorithm was developed by French cryptographers Antoine Joux and 

Vanessa Vitse, and it focused on solving systems of quadratic binary polynomials using 

Macaulay matrices, much like the FXL/BooleanSolve algorithm it is based on (Joux 2018). A 

Macaulay matrix illustrates the presence of each linear and quadratic term in the Boolean system.  

 
Figure 2: An example degree two Macaulay matrix (Joux 2018) 

 

The main problem with a lot of solving algorithms that involve the use of this matrix is 

the number of calculations performed. For one Boolean system, an algorithm may perform up to 

2n-k calculations, where n is the number of unknown terms and k is the number of known 

variables that can be taken out of the system (Joux 2018).  Joux and Vitse were able to mitigate 

this issue by eliminating known variables as they are discovered. 

 The algorithm works by first organizing the matrix columns in alphabetical order, like the 

matrix in Figure 2, and then computing the last rows of the organized matrix’s reduced row 

echelon form. By being able to just compute the last rows of the system, excluding variables with 

the X1 term from the reduced row echelon form as shown in Figure 3, we can solve for the rest 

via exhaustive search methods, and then checking the solutions with the equations that contain 

X1 (Joux 2018).   



7 

 
 

Figure 3: Reduced Row Echelon of Figure 2’s Matrix (Joux 2018) 

 

 However, it is not necessary to eliminate all the known variables from the system. Joux 

and Vitse explain that a more refined version of the algorithm involves ordering the columns of 

the matrix in graded reverse lexicographic order, with all quadratic terms first before the linear 

terms, creating a row echelon form of the matrix shown in Figure 4. From the last 3 rows, we see 

that all the equations have X1, X2, and X3 in degree 1. This allows us to assign X4 to whatever 

we want and solve for the other variables, theoretically eliminating them from the search. 

 

Figure 4: Grevlex Row Echelon Form of Matrix (Joux 2018) 

 

In terms of implementation, Joux and Vitse tackled the Fukuoka Type I MQ challenges issued in 

2015 to assess the hardness of solving the systems of equations (Joux 2018). They used a 

network of Opteron and Xeon processors and were able to solve challenges using up to 74 

differing variables taking an estimated maximum of 300,000 hours to solve (Joux 2018). 

 

AmoebaSAT 

 The AmoebaSAT algorithm is a cooperation between software and the hardware of an 

FPGA based on amoeba cell biology. Primarily used in Internet of Things applications, the 

algorithm is based on how an amoeba can grow and move from light signals called “Bounceback 

signals” (Ngyuen, et al. 2020). These signals establish a set of rules, those being that each 

variable cannot be both 1 and 0 at the same time, all literals cannot be 0, and other rules to 



8 

resolve situations where a variable cannot be either 0 or 1. These decisions end up consuming a 

lot of memory to operate. 

 

 

 

Figure 5: AmoebaSAT model for 4 Variable SAT Case (Nguyen, et al. 2020) 

 

 An iteration of this algorithm known as AmoebaSATslim (ASATslim) reduces the 

amount of memory it uses by omitting certain rules from the bounce back signals and instead 

implements them as temporary signals on a branch-by-branch basis. Although it will need nearly 

the same number of iterations as the original AmoebaSAT algorithm, due to memory issues 

being mitigated to a degree, ASATslim is capable of handling more iterations compared to 

AmoebaSAT. An evolution of this algorithm, ASATone, further reduces the computational 

resources needed by representing variables as single branches.  

This version of the ASAT algorithm was able to implement h copies of the uf50-100.cnf 

3-SAT instance, a set of 50h variables and 218h that only have one solution on a Zynq 

Ultrascale+ FPGA. When compared to a software implementation using a Ryzen 3960X 24 Core 

CPU, the FPGA was anywhere between 3 and 15 times faster while using less power, running 

under ten watts. Parallelization was important to the FPGA’s speed, with multiple instances of 

ASATone running at once. 

 

Frank Kennedy’s Implementation 

 Frank Kennedy’s implementation was built off previous work from WPI students Liam 

Stearns, Carlton Mugo, and James McAleese, groups from the past two years. The main idea of 

Frank’s recursive algorithm was to split the system into smaller groups. Essentially, each 

subgroup is able to be solved independently of every other group. This decreases the number of 



9 

solutions to 2n-s, where n is the total number of variables, and s is equivalent to the number of 

groups. Kennedy created these groups by finding partial solutions to the linear terms of the 

equations. Kennedy started his improvements by observing when two different equations 

differed only in one variable. Frank then found what the solution of that variable would be when 

the right hand side, presence of the differing variable, and the anticipated sum of every other 

variable in the equation were manipulated for each of the two equations.  

In terms of Kennedy’s recursive searching algorithm for the sets of equations, he 

intended on splitting the system matrix into smaller pieces, treating the linear portion as its own 

section. Kennedy assigns a weight, the number of linear variables present, to each equation. 

After weighing each equation, the equations are then sorted from lowest to highest weight. This 

organized form of the matrix is then further reorganized starting with the first equation in the 

matrix. If a 1 is found, the entire column swaps places with the first 0 column, removing that 

column from other reorganizations. The reorganization process repeats until an upper right-hand 

triangle is formed, which creates a decision order on how to assign the variables. This first 

variable can be set to 0 first, and then check every equation to see if it they are unsatisfied. If no 

equations are unsatisfied after the last variable is decided, then the solution is considered SAT. If 

an equation is unsatisfied, then the first variable to be set to 0 in the current variable assignments 

is set to 1 and the process starts from that assignment. If no solution is found after a complete 

exhaustive search, then the system is considered UNSAT. 

Although Kennedy was unable to finish or implement this searching algorithm, he states 

that the algorithm has 2n/2 solutions, which is a significant improvement when compared to the 2n 

complexity of exhaustive searching. From his report, Kennedy states that he “utilized many hard 

coded values in order to establish the equations and matrices used in the setup portion of the 

code,” and that the process could be made more efficient if he setup the matrices and equations 

from a memory file instead. Kennedy suggested that creating a lookup table of solutions for 

cases in which two variables differ would be worth investigating. The only issue he saw with this 

method would be that there would be a significant jump in memory usage and the board he was 

using did not have enough non-volatile flash to store this data, suggesting that a more powerful 

board might be necessary. 

  



10 

The Frankenstein Algorithm 

GRASP 

GRASP is an exhaustive search algorithm that learns from mistakes it makes and 

prevents them from occurring in the future. GRASP learns by creating a decision tree, which 

remembers the order of each decided variable, allowing for easier backtracking. Backtracking 

occurs after a conflict, a scenario where an equation has become unsatisfied. This is where the 

term Conflict Driven Clause Learning (CDCL) comes from, as GRASP is the earliest example of 

a CDCL. GRASP was finished in 1996, and the success of GRASP cemented the CDCL 

architecture as the standard for SAT solvers. 

Figure 6 below shows an example of a binary decision tree. The tree begins by deciding 

the most frequent variable and then decides variables in order of most frequent to least. The 

decisions are stored in the tree, as well as the decision level that they were decided at. The 

Frankenstein algorithm is based on the CDCL architecture, including the use of a decision tree 

similar to the one GRASP uses. 

  

 

Figure 6: GRASP example implication graph (Silva & Sakallah, 1996) 

 



11 

Our Process 

The Frankenstein algorithm can be broken down into several steps, all of which are described 

below. 

 

Figure 7: Flowchart of the solver algorithm 

Decide 

In the decide block, the algorithm determines which variable should be decided. The decision 

order of the variables is determined using our decision order algorithm, and the value of the 

variable is chosen randomly. After a decision, the algorithm moves to the deduce block. If the 

decision stage is entered after all the variables have been decided, then it is assumed that the 

algorithm has reached a valid assignment of variables, and the algorithm finishes. 

Deduce 

In the deduce block, equations are checked to see if they have one remaining variable. If there is 

one variable, then that variable is solved for since every other variable in the equation has a 

definition and this variable must have a certain assignment, or else the equation will become 

unsatisfied. Deduction repeats until there are no more variables that can be deduced. After 

deduction ends, the algorithm moves to the verification block. 

Verify 

At the verification step, all equations with all their variables defined are checked to see if they 

are satisfied with the current variable assignment. If any of these equations are unsatisfied after 

substituting every variable, then a conflict has arisen, and the algorithm moves to the conflict 

analysis block. If not, then the algorithm moves to the reset + merge block. 



12 

Conflict analysis/resolution 

When a conflict occurs, the algorithm will append a clause that prevents the current variable 

assignments from ever occurring. Afterwards, all variable assignments up to and including the 

last decided variable are reverted, and the root of the level’s definition, the last decided variable, 

is flipped. Finally, the matrix is restored to how it was before the assignment. After conflict 

analysis, the algorithm moves back to the deduce block. 

Reset + Merge 

Occurring just before the decision block, the algorithm will first check if the assignment should 

be reset if the clauses it is finding are not useful. When a reset occurs, the learned clauses are not 

removed, and only the variable assignments are reset. For merging, if there is a quadratic term 

that is still inside the window with only one defined variable with a definition of 1, then in the 

matrix, the quadratic term’s bit will be XORed with the undefined variable’s column in the 

matrix. 

 

For example, in a system where x1 is defined to be 1, the term x1x2 essentially interpreted as x2. 

The matrix represents the presence of every term in each equation, so XORing x1x2 into x2 is 

the algorithm’s way of interpreting x1x2 as x2. 

Implementation Concepts 

In addition to these main steps, a few auxiliary systems were created to help organize and 

improve the algorithm. 

Column arrays 

In the matrix, column indices are stored in a separate array. Our algorithm will frequently modify 

the order of columns, since physically swapping every column in the matrix will consume a lot 

of processing power. The column array maps the current index of the column to its original 

index, indices representing the current column order and values representing the column indices 

in the original matrix.  The column order of the original matrix is never modified, and its data is 

only modified during the merging process.  

The window 

The window represents the area of the matrix the algorithm is looking at. When parsing the 

matrix, blocks such as deduction, verification, and merging will only look at columns within the 

window. For a window of size n, the window will start at the RHS, the leftmost column, and 

observe every column up to the n-1th column from the left. The purpose of the window is to 

exclude defined quadratic terms from evaluation since they will be merged into the linear 



13 

columns during the merge process. Note that the column array is used to move the defined 

quadratic terms to the end of the column order. 

 

Decision Trees 

 
 

Figure 8: Decision tree, visualized 

 

Decision trees help organize the variable assignments into different decision levels, which are 

used during the reversion process. In the decision tree shown in Figure 8, each branch represents 

a different decision level, while non-branches are variable assignments that belong on the same 

level. x1 represents the root of the lowest decision level, while x2 and x3 in the valid branch 

represent the second and third levels, respectively. Roots are always variables that were decided 

in the decide block. A root’s outgoing nodes are either roots of higher decision levels, or deduced 

variables on the root’s current decision level. 

Watched Variables 

For an equation to be verified, it must have zero variables that are undefined. Similarly, for a 

variable to be deduced from an equation, the equation must have one undefined variable. With 

this logic, if an equation does not meet these requirements, then verification or deduction can be 

skipped for the equation. The watched variable system will keep track of at most two undefined 

variables for every equation and added clause. If a watched variable is defined, then for every 

equation that had that watch variable, it will be assigned a new undefined variable. Eventually, 

equations will have less than two watch variables, which marks them eligible for deduction or 

verification. The watched variable system is much faster than the deduction and verification 

processes, so this significantly speeds up the algorithm. 

  

   

 

      



14 

Linear Block Distance 

Basically, when a conflict clause is added to the system, the amount of decision levels present is 

the linear block distance for the clause. For resetting, the average LBD is calculated after some 

amount (around 300-700) of iterations of the algorithm. If the LBD of the clause being added is 

higher than the average by a significant amount (aka, the LBD average is multiplied by a number 

greater than 1), then the search restarts. 

 

Decision Algorithm 
 

The Decision Order is determined by scoring the n variables based on how much Hamming 

weight they contribute to the entire 𝑚 x 𝑛 equation system with linear term matrix 𝐿 (𝑚 x 𝑛 ) and 

quadratic term matrix 𝑄 (𝑚 x 
𝑛(𝑛−1)

2
). For the sake of reducing time in the algorithm, we 

calculate the hamming weights of every column 𝐿(𝑖) and 𝑄(𝑖𝑗), 𝐿 itself, and 𝑄(𝑖) : the matrix of 

quadratic 𝑥𝑖 terms in 𝑄 at the beginning of the algorithm. As we go down the decision tree, this 

allows us the need to only change 𝐿 itself, and 𝑄(𝑖) instead of recalculating the weights for every 

branch. 

  

Variables are rated for substitution by score. The total score 𝑆(𝑖) of variable 𝑥𝑖 is a combination 

of the two possible changes of the hamming weight of the equation system by substituting it as 

either 0 or 1. When the variables are ready to be ranked, S(i) is sorted to determine the top k 

variables. The calculation of the value of k is explored in a later section. Denoting 𝑝𝑖 as the 

probability of 𝑥𝑖 being 1, and the zero and one scores as 𝑆0(𝑖) and 𝑆1(𝑖), 𝑆(𝑖) can be expressed 

as follows: 

 

𝑆(𝑖) = (1 − 𝑝𝑖)𝑆0(𝑖)  +  𝑝𝑖𝑆1(𝑖) 

 

For the scope of this project, 𝑝 is 0.5 universally, meaning an equal chance of any 𝑥 being 0 or 1. 

If further developments in the algorithm include a way to guess a reasonable 𝑝𝑖 value, the 

equation can be adjusted easily. 𝑆0(𝑖) and 𝑆1(𝑖) can be expressed as:  

 

𝑆0(𝑖)  =  𝑊(𝑄(𝑖))  +  𝑊(𝐿(𝑖)) 

𝑆1(𝑖)  =  𝑊(𝑄(𝑖))  +  𝑊(𝐿(𝑖)) + (𝑊(𝐿𝑁(𝑖))  −  𝑊(𝐿𝑁(𝑖) ⊕ 𝑄(𝑖))) 

 

𝑆1(𝑖)  =  𝑆0(𝑖) +   (𝑊(𝐿𝑁(𝑖))  −  𝑊(𝐿𝑁(𝑖) ⊕ 𝑄(𝑖))) 

 



15 

Where 𝑊 is Hamming weight, 𝑄(𝑖) is the matrix of quadratic 𝑥𝑖 terms (𝑚 x 𝑛  −  1 ), 𝐿(𝑖) is the 

𝑥𝑖 term (𝑚 x 1), and 𝐿𝑁(𝑖) is the matrix of all linear terms except 𝑥𝑖 (𝑚 x 𝑛 − 1 ). Substituting 

these 𝑆0(𝑖) and 𝑆1(𝑖) values into 𝑆(𝑖), we obtain the following: 

𝑆(𝑖)  =  (1  −  𝑝𝑖)𝑆0(𝑖)  +  𝑝𝑖 (𝑆0(𝑖)  +   (𝑊(𝐿𝑁(𝑖))  −  𝑊(𝐿𝑁(𝑖) ⊕ 𝑄(𝑖)))) 𝑆(𝑖) 

=  ((1  −  𝑝𝑖)𝑆0(𝑖)  +  𝑝𝑖𝑆0(𝑖))  +  𝑝𝑖 (𝑊(𝐿𝑁(𝑖))  −  𝑊(𝐿𝑁(𝑖) ⊕ 𝑄(𝑖))) 

𝑆(𝑖)  =  𝑆0(𝑖) +  𝑝𝑖 (𝑊(𝐿𝑁(𝑖))  −  𝑊( 𝐿𝑁(𝑖) ⊕ 𝑄(𝑖))) 

𝑆(𝑖)  =  𝑆0(𝑖) +  𝑝𝑖Δ𝑊(𝐿𝑁(𝑖)) 

 

For both possible values of 𝑥𝑖 , the equation system’s hamming weight will decrease by 𝑆0(𝑖), as 

it represents columns being XORed into L or RHS. However, for only the case where 𝑥𝑖 =

1, 𝐿 changes by the Hamming Distance between 𝐿𝑁(𝑖) and 𝑄(𝑖).  

 

Because of our initial calculations, 𝑆0(𝑖) can be calculated in 𝑂(1) time. However, because of 

the dimensions of 𝑄(𝑖) and 𝐿𝑁(𝑖), calculating Δ𝑊(𝐿𝑁(𝑖)) with pinpoint accuracy is 𝑂(𝑚𝑛). 

This makes determining 𝑆(𝑖) take 𝑂(𝑚𝑛) time by proxy. Despite this, there is a way to get 

around this by estimating Δ𝑊(𝐿𝑁(𝑖)) instead, in 𝑂(1) time. As such, the algorithm is free to 

choose if it wants speed or accuracy.  

 

How do we predict the value of 𝑊(𝑉1  ⨁ 𝑉2) in terms of 𝑊(𝑉1) and 𝑊(𝑉2)? While we can’t get 

an exact value in 𝑂(1), 𝑊(𝑉1) and 𝑊(𝑉2) could potentially influence 𝑊(𝑉1  ⨁ 𝑉2). First, we 

identify which vector has less hamming weight, and denote that weight as 𝐿𝑊, and the other 

weight as 𝐻𝑊Let 𝑇𝑊 be the maximum value W(V) can be. Then,  

 

𝑊 (𝑉1  ⨁ 𝑉2)  ≅ (𝐻𝑊  −  
𝐻𝑊

𝑇𝑊
𝐿𝑊  +  

𝑇𝑊  −  𝐻𝑊

𝑇𝑊
𝐿𝑊) 

 

The RHS of this equation can be rearranged into either :  

 

 (𝐻𝑊 +  (1 −  
2𝐻𝑊

𝑇𝑊
)𝐿𝑊) =  (𝐿𝑊 +  (1 −  

2𝐿𝑊

𝑇𝑊
)𝐻𝑊) 

 

Using this in our equation for 𝑆(𝑖),  

 

𝑆(𝑖)  =  𝑆0(𝑖) +  𝑝𝑖Δ𝑊(𝐿𝑁(𝑖)) 

𝑆(𝑖)  =  𝑆0(𝑖) +  𝑝𝑖(𝑊(𝐿𝑁(𝑖))  −  𝑊( 𝐿𝑁(𝑖) ⊕ 𝑄(𝑖)) 



16 

𝑆(𝑖)  ≅  𝑆0(𝑖) +  𝑝𝑖 ( 𝑊(𝐿𝑁(𝑖)) − (𝑊(𝐿𝑁(𝑖)) + (1 −
2𝑊(𝐿𝑁(𝑖))

m(n − 1)
) 𝑊(𝑄(𝑖)))) 

𝐸(𝑖)  =  𝑆0(𝑖)  −  𝑝𝑖 ( 1 − 
2𝑊(𝐿𝑁(𝑖))

m(n −  1)
) 𝑊(𝑄(𝑖)) 

𝐸(𝑖)  =  𝑊(𝑄(𝑖))  +  𝑊(𝐿(𝑖))  −  𝑝𝑖 ( 1 −  
2𝑊(𝐿𝑁(𝑖))

m(n −  1)
) 𝑊(𝑄(𝑖))  

=  𝑊(𝐿(𝑖))  +  (1 −  𝑝𝑖 ( 1 −  
2𝑊(𝐿𝑁(𝑖))

m(n −  1)
))𝑊(𝑄(𝑖))  

 

Using this formula, 𝑆(𝑖) can be estimated in O(1) time.  

 

Substitution 
 

Suppose the algorithm has decided to substitute a specific number k of variables 𝑣1, 𝑣2,   …  𝑣𝑘 as 

bitSequence 𝑏1, 𝑏2,   …  𝑏𝑘 . This can either be the result of a lookup table or sorted variable score 

array. Regardless of the source of the decision, new system of size 𝑛 − 𝑘 will be created with 

matrices 𝑁𝐿 and 𝑁𝑄 and iterated through.  

 

First, create the 𝑁𝑄 and 𝑁𝐿 matrices by extracting all the unsubstituted columns in 𝑄 and 𝐿 . 

Alter the hamming weights of the variables in NQ by subtracting the weights of the appropriate 

quadratic columns eliminated.  

 

Δ𝑊(𝑁𝑄(𝑖))  =   − ∑ 𝑊 (𝑄(𝑖𝑣𝑗))

𝑘

𝑗=1

 

Δ𝑊(𝑁𝐿)  =   − ∑ 𝑊 (𝐿(𝑣𝑗))

𝑘

𝑗=1

 

 

While altering the non-substituted variable quadratic weights is 𝑂(𝑘(𝑛 − 𝑘)), and can become 

𝑂(𝑛2) if k is chosen as some factors times n, it is a one-time operation that only has to be done 

before the iterations.  

 

Case 1: Lookup table/Substituted Variable 

 



17 

Alter NL accordingly based on the variables substituted as 1. If this isn’t the first iteration use the 

result of the previous iteration bit sequence XORed with the current iteration bit sequence to 

make the alteration quicker. If the linear term of variable 𝑣𝑖 does not change, its respective XOR 

value will be zero. Otherwise, it’s 1, and you XOR it with the appropriate quadratic column.  

 

Case 2: Sorted Variable Score Array 

 

Define 𝑏𝑖𝑡𝑆𝑒𝑞𝑘 as : 0𝑏𝑖𝑡𝑆𝑒𝑞𝑘−1(0),   …  0𝑏𝑖𝑡𝑆𝑒𝑞𝑘−1(2𝑘−1 − 1), 1𝑏𝑖𝑡𝑆𝑒𝑞𝑘−1(2𝑘−1 −

1),   …  1𝑏𝑖𝑡𝑆𝑒𝑞𝑘−1(0) 

 

Ex. 𝑏𝑖𝑡𝑆𝑒𝑞1= 0,1 𝑏𝑖𝑡𝑆𝑒𝑞2 = 00,01,11,10 𝑏𝑖𝑡𝑆𝑒𝑞3 = 000,001,011,010,110,111,101,100 

 

Iterate through all 2𝑘potential bit sequences. Because of how 𝑏𝑖𝑡𝑆𝑒𝑞 is designed, when XORing 

a previous iteration the result will always be all zero except for 1 bit 𝑐𝑏. XOR the appropriate 

quadratic columns in Q containing 𝑐𝑏 onto NL. Now the remaining variables can be sorted by 

score, in 𝑂((𝑛 − 𝑘) log(𝑛 − 𝑘)) time.  

 

Once RHS is changed accordingly, the new system is ready for testing. The number of XORs on 

RHS depend on 𝑊(𝑏𝑖𝑡𝑆𝑒𝑞), as the quadratic columns in Q containing 𝑐𝑏 with the other variable 

being substituted as 1 are the ones being XORed. This makes the RHS calculation 

𝑂(𝑊(𝑏𝑖𝑡𝑆𝑒𝑞))  per iteration, not 𝑂(𝑛 − 𝑘) every single time like 𝑁𝐿 . 

K value decision 

 

The value of k in the algorithm is determined by calculating the theoretical complexity of solving 

2𝑘systems of size 𝑛 − 𝑘 . This can be calculated as the total time to calculate every RHS, every 

NL, and solving every subsystem, as NQ is the same for every new equation system. On every 

iteration, The time complexity for NL is constantly 𝑚(𝑛 –  𝑘), but for RHS it varies. Using 

bitSeq, the time complexity is 𝑚𝑊(𝑣). Therefore, the total time can be expressed with the 

formula:  

 

𝑇(𝑘)  =  𝑅𝑇 ( ∑ 𝑚ℎ𝑘

𝑘

ℎ = 0

𝐶ℎ) + 2𝑘(𝐿𝑇𝑚(𝑛 − 𝑘) + 𝐹(𝑛 − 𝑘)) 

 

Where 𝑅𝑇 and 𝐿𝑇 are constants chosen based on how long it takes to perform the L and RHS 

parts of the algorithm, and F is the average time it takes to solve a system. For the sake of 

simplicity, let 𝐹(𝑛)  =  𝐹𝑇2𝜙𝑛, as most MQ SAT problems are generally 𝐹(𝑛)  =  𝑂(2𝜅𝑛)for 



18 

some value 𝜅 . Now all of 𝑇(𝑘) is differentiable except for the first 𝑅𝑇 part. However, SIMGA 

can be easily calculated because adding the h and k – h term results in RtmkCh, and since RT is 

a constant anyway, we’ll use it to tank the ½ that should be there.  

 

𝑇(𝑘) = 𝑅𝑇𝑚𝑘2𝑘   +  2𝑘(𝐿𝑇𝑚(𝑛  −  𝑘)  +  𝐹(𝑛 − 𝑘)) 

𝑇(𝑘) = 2𝑘(𝑚𝑘𝑅𝑇 + 𝑚(𝑛 − 𝑘)𝐿𝑇)  +  𝐹𝑇2𝜙(𝑛−𝑘)+𝑘 

𝑇(𝑘) = 𝑚2𝑘(𝑘𝑅𝑇 + (𝑛 − 𝑘)𝐿𝑇)  +  𝐹𝑇2𝜙𝑛2(1−𝜙)𝑘 

 

𝑑𝑇

𝑑𝑘
= 𝑚2𝑘(ln 2 (𝑘(𝑅𝑇 − 𝐿𝑇) + 𝑛𝐿𝑇) + (𝑅𝑇 − 𝐿𝑇)) + ln 2 𝐹𝑇2𝜙𝑛(1 − 𝜙)2(1−𝜙)𝑘 = 0 

𝑚 (𝑘(𝑅𝑇 − 𝐿𝑇) + 𝑛𝐿𝑇 +
(𝑅𝑇 − 𝐿𝑇)

ln 2
) + 𝐹𝑇2𝜙𝑛(1 − 𝜙)2(−𝜙)𝑘 = 0 

𝐹𝑇2𝜙𝑛(1 − 𝜙)2(−𝜙)𝑘 = 𝑚 (𝑘(𝐿𝑇 − 𝑅𝑇) − 𝑛𝐿𝑇 +
(𝐿𝑇 − 𝑅𝑇)

ln 2
) 

This equation is unsolvable, also due to the scope of this project we don’t have a clear range of 

values for 𝐿𝑇 𝑅𝑇 𝜙 and 𝐹𝑇. For now, we propose 2 methods to determine k : calculate the 

difference between the left and right side in the equation and whatever value is lowest is the 

optimal k. Or select k such that the new system is approximately half the size of the previous 

system.  

 

𝑘(𝑛 − 1) −
𝑘(𝑘 − 1)

2
+ 𝑘 =

𝑛(𝑛 + 1)

4
 

𝑘2

2
  −   (𝑛  +  

1

2
) 𝑘 +

𝑛(𝑛 + 1)

4
= 0 

𝑘 = (𝑛  +  
1

2
) − √

𝑛(𝑛 + 1)

2
+

1

4
≅ 𝑛 (1 −

1

√2
) 

 

 

Look Up Table for Python Implementation   
From Kennedy’s work, the team decided that LUTs could further provide speed up the 

reduction when solving the SAT problem. The aim is to identify similar equations and deduce a 

solution using LUTs. We concluded that the differences above three would not provide the 

necessary speed up intended for the algorithm, thus LUTs were only created for differences up to 

three. The figure below shows how the LUTs are utilized in the Python Implementation. These 

LUTs lay the foundational work for Verilog conversion. However, we decided to forgo those 

implementations as it did not fit our scope. That process can be found in Appendix A.  

 



19 

 

Figure 9: Flowchart of LUTs 

Identifying Differences 

The system of equations is XORed by its transposed matrix. By XORing, the difference 

of each equation can be shown. In the table below, the matrix stores the number of different 

variables between every single equation. From the table, we can conclude that Eq 1 and Eq 2 

have two differences as its algebraic sum of the XOR result is 2. Note that only the upper 

triangle of the matrix is used, the bottom half is ignored as they are identical. The matrix is used 

in later steps to sort the equations by their varying differences (See step 2 of Figure 9).  

 

Figure 10: Table of Differences 

Deduction 

Case 0 

When the difference between two equations is zero, it means that the equations are equal. 

Thus, the corresponding row and column are deleted from the matrix, and the equation is 

removed from the original system. 



20 

Intermediate Steps 

To use the Case 1, Case 2, Case 3 LUTs, it is necessary to differentiate the terms (whether it is 

quadratic or linear, dependent or independent). 

• A linear term is when the term is associated with only one variable. Ex: x1, x2, x3 

• A quadratic term is when the term is associated with more than one variable. Ex: x1x2, 

x2x3 

• A dependent equation is when the terms in the equation have a dependency on each other. 

Ex: x2 + x2x3 + x2x4 

• An independent equation is when the terms in the equation have no dependency on each 

other. Ex: x3 + x7 + x5x6 

The team developed an algorithm that allowed the categorization of the equations based on the 

combination of terms. Therefore, allowing the use of these LUTs automatically. 

It is also necessary to assume a value for Rest. Rest is the value for the rest of the 

equation which is the same. Rest can be either 0 or 1, which is unknown to the solver. 

Case 1 

In Case 1, there is only one variable that is different between the two equations. This 

variable can either be a linear term or a quadratic term shown below. Here, the variable Z 

indicates that pairs of solutions that make up to zero. Thus, in one_quad_map, (xa, xb) can be the 

combination that is: (0,0), (1,0), (0,1).  

 

Figure 11: LUTs for Varying 1 Difference 

Case 2 

In Case 2, there are five variations of terms that can make up the cases. The LUTs follow 

the same guidelines are the Case 1 LUTs. However, due to the variations, it is possible to 

multiple sets of solution for different equations. The LUTs can be found in Appendix L. 



21 

Case 3 

In Case 3, there are thirteen variations of terms that can make up the three differences. 

Case 3 LUTs simplifies the equations to Case 2 or Case 1. However, in some cases, it must use 

reclusiveness as the equation can only simplify Case 3 LUTs to other types of Case 3 LUTs. 

These LUTs can be found in Appendix L.  

 

Choosing a New Board 
 Due to the high computational and memory costs of this project, we will need to utilize 

more memory on the FPGA. With taking Frank Kennedy’s input and recommendations on 

getting a better board than the Digilent Basys-3 board with the Artix-7 A35 FPGA on-board, we 

decided to look for a board that fulfills these requirements: 

1. Has more than 32 megabits of non-volatile flash 

2. At least 5 times as many logic cells as Basys-3 (A35 has 33,280) 

3. At least 5 times as much Block RAM (BRAM) (5 * 1800 kilobits on Basys-3) 

When accounting for these requirements, a board with the Artix-7 A200 FPGA, more 

specifically, Digilent’s Nexys Video board would be the best for this application. The A200 

Artix-7 FPGA has 215,360 logic cells, covering the second requirement, and has 13 megabits of 

BRAM, fulfilling the third requirement. The board itself has 32 megabytes of non-volatile flash 

on board when compared to the 32 megabits on the Basys-3, fulfilling the first requirement. 

 
 

Figure 12: Comparison of A35 and A200 FPGA (Xilinx Website) 

 

Using this board would allow for implementation of systems of equations with a larger 

number of equations and a numerous number of differing terms, executing programs in a 

reasonable amount of time. 

https://www.xilinx.com/products/silicon-devices/fpga/artix-7.html#productTable


22 

 

 

Figure 13: Comparison of PynqZ2 board and Nexys FPGA 

 

Aside from this board chosen, the team wanted to explore implementing code using 

Python onto a Xilinx Zynq 7000 System-on-Chip (SoC) board, more specifically the PYNQ-Z2 

board. PYNQ itself is an open-source project developed by Advanced Micro Devices (AMD) 

that takes Python and any associated libraries and translates it to hardware description language 

during run-time or for parallelization of the code.  

The modules are being converted to Verilog to be able to run properly on the board. Not 

everything of the module needs to be converted between languages, but the board was not as 

“plug and play” as expected. Some of the Python programs work as expected, but much of the 

top-level module must be converted into Verilog and System Verilog. This is a different effort 

from the full CDCL in System Verilog. The two boards can be used to compare a Python 

implementation vs a full HDL implementation and determine the performance differences. 

  



23 

 

Exhaustive Searching 

 When looking at the previous exhaustive search code from Frank Kennedy, the team saw 

that there were many areas that could be improved. The first one that was shown was the creation 

of classes, column-swapping, and weight assignments, which would not impact the time 

complexity of 2n, where n is the number of linear terms. The classes also contained more 

information than what was needed for exhaustive search to be performed. 

 After consideration, we were able to create a new packed structure 16 bits long for the 

equation’s coefficients, with n for the implementation being five linear terms (5 linear terms + 10 

quadratic terms + RHS = 16). This structure is used to create a packed array of 16 hard-coded 

equations generated with the use of a random number generator online to perform the exhaustive 

search. Although the initial idea was to use a clocked 16-bit linear feedback shift register (LFSR) 

to create the array, there ended up being some cross-clock domain synchronization issues making 

some equations have all values of X (don’t care in System Verilog) and concerns of true 

randomness not being possible that resorted to the use of the hard-coded equations discussed. 

While this hard-coded solution is not the final idea, the team intends to move this 

implementation to read off an SD card loaded onto the Nexys board, which will take a longer 

amount of time to determine a proper way of doing so in the future. 

From there, XOR all of the equations together, similar to the simulation in the improving 

linear solving section. This is to determine what terms are needed to be accounted for to solve 

the system. In regard to the terms, we use five of the switches on the Nexys board to assign 

values of 1 or 0 to the linear terms X1 to X5 and assign the quadratic values via a bitwise AND 

between these linear terms. All of these terms are concatenated into a 15-bit long string as shown 

in the code snippet in Figure 14 to easily perform a bitwise AND between them and the term 

coefficients (bits 16 to 1) of the XORed equations. 

 



24 

 
 

Figure 14: Term Assignment Code Snippet 

 

 Once the AND operation has been completed and stored in a 15-bit wire, all of the bits in 

it are XORed together for the addition to compare to the RHS value created from XORing all of 

the initial equation coefficients’ RHS to determine if the combination of switches is solving the 

system. If it is a solution, the set of LEDs corresponding to the switches will turn on, indicating 

that it is a solution; if not, then an LED not controlled by the LED will be turned on, indicating 

that it does not provide a solution. As Matthew’s solution was only concerned with 

combinational logic, a clock was not required for Matthew’s implementation to operate. Of 

course, with wanting to read from an SD card in the future, there will arise the need to use a 

clock and ensure that the SD card is fully read from to ensure the system of equations is properly 

solved. 

 

 
 

Figure 15: Exhaustive Searching Flow Diagram 

 

When the solution flag within the code is 1, the team also wants a string to be outputted 

saying that a solution has been found at the value of the terms. This is currently being worked on 

and utilizes the UART protocol to operate while encoded our string into ASCII text for 

communication purposes. At the time of this report, we are able to print out the equations into a 

terminal and some of the solutions.  

16 

Coefficients

/Equations 

XORed all 

together 

AND 
Resulting 

Coefficients 

w/ Terms 

XOR all 

ANDed 

terms 

Compare with 
final RHS 

and display 

if right 



25 

Exhaustive Searching Results 
 First, to test if the exhaustive searching works, we simulated the searching module, 

updating the terms register of the simulation every 10 nanoseconds, and comparing it to what the 

good_out wire, the representation of the LEDs, gave. As shown in Figure 13, any time that the 

wire had a hexadecimal value of 20 (binary value of 100000), that would mean that the 

combination of terms was not a solution to the system. Conversely, when the wire equals the 

terms register, that indicates that the combination is a valid solution. Figure 14 shows that 

Matthew’s implementation uses little-to-no resources of the board, meaning that this 

implementation can be scaled to include many more linear terms, thus more quadratic terms as 

well, up to however many switches that you would want to control the value of the linear terms. 

 To prove that the simulation is correct, we also generated the bitstream and programmed 

the Nexys board to run the exhaustive search code. Figure 15 shows that a hex value of 0a (X2 

and X4 = 1) does not provide a solution to the system, while a value of 12 (X2 and X5 = 1) is a 

solution and turns on the LEDs shown in Figure 16. 

 
Figure 16: Exhaustive Search Vivado Simulation Results 

 

 
Figure 17: Exhaustive Search Resource Utilization 

 



26 

 

 

Figure 18: X2 and X4 = 1 on Board 

 

Figure 19: X2 and X5 = 1 on Board  

 

  



27 

Exhaustive Searching Expanded 
In order to meet the challenge of solving larger and more complex systems, the 

exhaustive solver was expanded to eight variables (as a proof of concept), which creates an 

individual equation size of 35 bits. The solution length is the same length as the number of 

variables, which in this case is 8 terms long. Eight was chosen just to show expandability, the 

solver is adjustable for more. To meet the need for showing larger solutions, UART printing was 

used. The starting code provided by Digilent (Appendix K) in VHDL served as a good example 

for how the UART printing worked. The code was modified to accept parameters based on the 

equation length and size, as shown in FIGURE X. The parameters allow the VHDL module to be 

called from the Verilog top level.  There was a focus on parametrization so that it could be easily 

changed. The length of the terms, number of equations, and number of variables are all 

modifiable from the top level of the module, without changing any VHDL code. 

 

Figure 20: UART printing module in VHDL  

 

Figure 21 shows an example output with 5 variables. The equations are printed first, then 

the solutions are shown. Because of the limitations of Verilog, the solutions wire length must be 

determined at compile time. This means that the solutions wire length must be guessed. Figure X 

shows what happens as a result of this. When the solutions wire is longer than the number of 

solutions, the solutions are just repeated. If the system has no solutions, the entire solutions wire 

is all 0’s. The dont care (X) is added in to be written over, due to VHDL restrictions on for loops. 



28 

 

Figure 21: Example output with input equations shown 

 

The exhaustive solver is similar to the previous exhaustive solver, where a terms wire is 

created and iterates through all possible options. If the solution works, it is appended to the 

solutions and later sent to the UART printing VHDL module. The specific benefit of adding the 

UART printing and slightly modifying the exhaustive solver is that the project is now 

expandable to a much larger set of equations. The modules have parameters to be easily changed. 

The problem with exhaustive searching is the high complexity as the solutions are 

expanded. The actual running of the module is still less than 2 seconds, but the process to create 

(synthesis, implementation, and bitstream generation) took about 15 minutes with 8 variables and 

10 equations. Although the system can be expanded, it will take exponentially longer to build. 

The team needed another solution.  

  



29 

LUTs in Python to Verilog Conversion 

After the CDCL in python finished, the group convened to work together on converting 

the files to System Verilog. This includes, the LUTs, operations on the LUTs, and other 

important CDCL functions. This presented a unique set of challenges, as the original code 

contained many functionalities that do not exist in System Verilog, such as dynamic arrays.  

As of the end of this MQP, the modules are mostly completed but the code itself has not 

been run on a board yet. Figure 22 and 23 show two of the same modules, one in python and one 

in System Verilog. The module takes in an NxM matrix and returns an NxN matrix with the 

differences between equations. For example, xor_transpose[2][4] will show the number of 

differences between equations 2 and 4. This shows the difficulty in converting modules, as many 

python functionalities are not available in System Verilog. For example, the inputs in System 

Verilog must be more explicitly defined, including the size of arrays. 

 



30 

Figure 22: XOR transpose in Python 

 

Figure 23: XOR transpose in Verilog 

 

Another major accomplishment of the group was the conversion of additional LUTs from 

python to System Verilog. These LUTs cover cases for one, two, and three differences between 

equations. Currently the Case 3 LUTs are not implemented with recursiveness, however, it is an 

expansion of the previous section mentioning differences between two equations. They cover 

different types of cases such as differences being quadratic dependent (xaxb + xaxc, where one 

of the differences is a shared term and the other is not). Although the LUTs are written, they still 

require testing to ensure accuracy and performance. There are a number of important tables that 

speed up the calculation complexity. Figure 24 shows an example of one table below. 



31 

 

Figure 24: LUT for 2 quadratic independent differences 

 

Converting Frankenstein to Verilog 

Alongside the equation difference algorithm, the Frankenstein algorithm was also set to be 

converted to Verilog. To accomplish this, a modular approach was used, converting only small 

parts of the algorithm at a time into Verilog. The PYNQ board was helpful in testing these 

modules, as it allowed for the hardware modules to replace their Python counterparts in the 

algorithm and essentially use the Python version of the algorithm to test the hardware. 

Debugging with PYNQ-Z2 

 

The PYNQ-Z2 board runs a Jupyter server on its CPU, which allows for Python code to be ran 

on it. Additionally, it allows for a bitstream to be loaded into the FPGA fabric. To communicate 

between the FPGA fabric and CPU, the AXI4 Protocol is necessary, and communication was 

done via shared registers between the fabric and the CPU. In hardware synthesis, each module 

was wrapped with an AXI4 Lite wrapper, which handled AXI4 signal processing and linked the 

shared registers to their respective port definitions in the module. Each AXI4 wrapped module 

was connected to an AXI interconnect module, which was connected to the ZYNQ7 Processing 



32 

System module that is responsible for connecting the CPU to the bitstream. A block diagram of 

all the Verilog-translated modules created by the end of the project are shown in Figure ??. 

 

Figure 25: Block diagram of the Frankenstein HDL implementation 

Limitations of the PYNQ-Z2 board 

While debugging hardware with the PYNQ-Z2 did prove useful in translating some of the 

modules to HDL, it also had some serious drawbacks. There were a lot of discrepencies between 

testing the module in Vivado simulations and with register manipulation in Jupyter. Most of the 

time, a module could work perfectly in a Vivado simulation, but on actual hardware it does not 

carry out its intended behavior. Debugging modules with these problems is tedious compared to 

the simulations, as any clues about the bug can be drawn only from the shared registers. 

Additionally, making any changes to the HDL requires the bitstream to be regenerated, which 

would take almost 15 minutes to generate and load into the PYNQ board. For working modules 

at runtime, the AXI4 protocol ended up significantly hindering the performance of the HDL 

implementation. Multiple AXI4Lite signals were written and read each time a module was used, 

and the modules that were converted to HDL were the most frequently used parts, so the HDL 



33 

implementation was already making thousands of AXI4 calls every second. Thankfully, once the 

entire algorithm is in the FPGA fabric, there would be no need to wrap the modules in AXI4, 

since the modules can directly connect with one another. 

  



34 

Conclusion 
During our time on the project, our goals were to solve a Boolean system of equations 

with linear and quadratic terms, expand on the two equation variable differences started by 

Frank, and create a working solver on an FPGA. We researched other CDCL solvers to create 

our own CDCL solver. We also created LUTs used to analyze potential solutions from two 

equations with up to three different variables. Additionally, we started implementation of the 

Frankenstein algorithm on an FPGA, and fully implemented the LUTs on hardware. Although 

the project is unfinished, a significant amount of progress was made, and future MQP teams can 

pick up where we left off. 

The Python implementation successfully implements CDCL concepts and the decision 

order algorithm. The mixed algorithm (Python and FPGA) takes much longer to execute than the 

regular Python implementation. However, this is likely due to delay from the AXI4 

communication between the FPGA fabric and the CPU, which is only used for testing on the 

PYNQ board. 

 

Figure 26: Results from all implementations 

 

The pure Python implementation, mixed Python/FPGA implementation, and the pure 

Python with equation difference checking were ran against each other on the PYNQ board in a 

variety of trial suites, and their execution time was measured. Each trial suite had 100 Boolean 

systems, where each system had the number of variables listed in Figure 26. Our 

recommendation for the future of this project would be to finish the Verilog implementation of 

our algorithm, along with improving anything we have done for the implementation. 

 

 

 

 



35 

 

Acknowledgements 

 Firstly, we would like to thank our advisor Professor Köksal Mus and the rest of the 

team: Samuel David, Coco Mao, Patrick Hunter, Andrew Gray, Joshua Eben, and Matthew Lund 

for their extensive support and assistance in completing this much of the project. Professor 

Mus’s experience in the FPGA field was extremely beneficial whenever the group needed it, or 

improvements could be made to the existing code. We would also like to thank the Electrical and 

Computer Engineering Department at WPI for providing us with the opportunity to work on 

many hands-on projects throughout our undergraduate experience. Additionally, we would like 

to thank Frank Kennedy for providing a good starting point for the project and helping us select 

our board parameters. Finally, we would like to thank the sources cited and numerous forum 

posts on how to fix our niche issues when creating our program. 

 

  



36 

References 

A. H. N. Nguyen, M. Aono, & Y. Hara-Azumi. (2020). FPGA-Based Hardware/Software Co- 

Design of a Bio-Inspired SAT Solver. IEEE Access, 8, 49053–49065. 

https://doi.org/10.1109/ACCESS.2020.2980008 

Bellini, E., Makarim, R. H., Sanna, C., & Verbel, J. (2022). An Estimator for the Hardness of the  

MQ Problem. In L. Batina & J. Daemen (Eds.), Progress in Cryptology—AFRICACRYPT 

2022 (pp. 323–347). Springer Nature Switzerland. 

Joux, A., & Vitse, V. (2018). A Crossbred Algorithm for Solving Boolean Polynomial Systems.  

In J. Kaczorowski, J. Pieprzyk, & J. Pomykała (Eds.), Number-Theoretic Methods in 

Cryptology (pp. 3–21). Springer International Publishing. 

Kennedy, F. (2023). Solving Binary MQs on FPGA. Worcester Polytechnic Institute; Digital  

WPI. https://digital.wpi.edu/show/k643b455z 

https://doi.org/10.1109/ACCESS.2020.2980008
https://doi.org/10.1109/ACCESS.2020.2980008
https://doi.org/10.1109/ACCESS.2020.2980008
https://digital.wpi.edu/show/k643b455z
https://digital.wpi.edu/show/k643b455z


37 

Appendix 

Appendix A: Improving Solving Look Up Table to Account for 

Quadratics and Two Term Differences by Matthew Lund  

Building from Kennedy’s work on comparing two equations with one differing linear 

variable, we decided to create a simulation written in System Verilog in the Xilinx Vivado ISE to 

generate all of the combinations of coefficients for the equations of the format shown in Figure a, 

excluding the Rest and RHS. The aim was to be able to create a lookup table of common 

solutions for when equations may appear very similar besides two coefficients that involve linear 

or quadratic terms, hence the exclusion of Rest and RHS. The goal is that this lookup table 

would be able to be referenced in recursive searching algorithms when breaking down equations 

with differences in three or more terms, decreasing the complexity of solving these kinds of 

systems. 

 

X1 X2 X3 X4 X1X2 X2X3 X3X4 REST RHS 

0 0 1 0 1 0 0 0 1 

Figure a: Equation Format for Weight of 2 Solving with Example Coefficients 

 

Using this specific set of terms, Matthew was able to cover all of these five different scenarios:  

1. Two different linear terms (X1, X3), 

2. One linear and one quadratic without a shared term (X1, X2X3),  

3. One linear and one quadratic with a shared term (X1, X1X2),  

4. Two quadratics without a shared term (X1X2, X3X4),  

5. Two quadratics with a shared term (X1X2, X2X3).  

This equation format also uses the assumption that there are more terms that we are not looking 

at that are the same between each equation that both reduce down to a simple “Rest” term of 

either 1 or 0, similar to Frank’s research. The RHS can be either the same or different for each 

equation and thus is not accounted for in the binary weight as well as the rest. 

In order for me to figure out what every combination of weight of two was for the seven 

coefficients, I started with a simple bit-counting simulation in Verilog that would use a seven-bit 

counter as an input and output a 1-bit flag that says if the input value has a binary weight of 2. 

From there, I was able to construct the table shown in Figure 8 that shows the combination of 

two sets of coefficients that follow the following rules: 

1. The coefficients can NOT be the same value (blacked out in Figure b) 



38 

2. The combination of coefficients cannot be covered twice  

(i.e (EQ1 = 0000011, EQ2 = 0000101) and (EQ1 = 0000101, EQ2 = 0000011) 

 
Figure b: Valid Combinations of Coefficients 

 

The table demonstrates that there are 190 total valid combinations of coefficients that can 

be iterated through, alongside the different variations of RHS (00, 01, 10, and 11 for 

{EQ1,EQ2}, respectively) and Rest (0 or 1), resulting in a total of 1,520 systems in the format 

portrayed in Figure c. 

 
Figure c: Format for Two Equations with Weight Two in Code 

 

Knowing all of this, Matthew was able to create a look-up table to iterate two counters through 

all of the valid coefficients from Figure 8 and form a simulation that would also iterate through 

the combinations of the RHS for the equations via a two-bit value (RHS[1] = RHS2 and RHS[0] 

= RHS1), as well as the rest value, outputting all data on the number of total systems created, 

what the equations are, all valid combinations of X1, X2, X3, and X4 iterated via a 4-bit counter 

mapped to each linear term (the quadratic terms are just the linear terms multiplied by each other 

through the use of bitwise AND), as well as the number of solutions for each system. The 

systems are solved via conducting a bitwise-XOR on both equations generated, then performing 

a bitwise-AND on the resulting coefficients and the possible solution made by the 4-bit counter. 

From there, the resulting string is XOR’d with each other and compared to the final RHS value. 

If the values are the same, then it is labeled a valid solution and displayed in the console of the 

simulation.  The code for finding the weight of two, look-up table, solving module, simulation, 

and the results can be found in Appendices B, C, D, E, and F respectively. At the end of 

Matthew’s  time on this project, Matthew was also able to create the look-up table for cases 

involving a weight of three and modified the weight-finding code to parametrize the binary 

weight. The code for these will be in Appendix I and J respectively. 

{Coefficient_EQ1,REST, RHS1} 
{Coefficient_EQ2,REST, RHS2} 

 



39 

 

Appendix B: Finding Binary Weight of Two Code 

module hamming #(parameter length = 7)( //Defines how many bits long testing    

 input [length-1:0] counter, //arrays start @ 0 

 output flag2 

 ); 

     

 integer i; 

 reg [length -1:0] weight; 

     

 always @ (counter) begin 

     weight = 0; 

     for(i = 0; i <= length; i = i + 1)begin 

         if(counter[i] == 1'b1) begin 

             weight = weight + counter[i]; 

         end 

     end 

 end 

     

 assign flag2 = (weight > 1 && weight < 3) ? 1'b1 : 1'b0; 

     

endmodule 

  



40 

Appendix C: Binary Weight of Two Lookup Table Code 

module weight2_lut( 

 input [4:0] counter, 

 output reg [6:0] coeff 

 ); 

     

 always @ (counter) begin 

     case(counter) 

         5'd0: coeff <= 7'd3; 

         5'd1: coeff <= 7'd5; 

         5'd2: coeff <= 7'd6; 

         5'd3: coeff <= 7'd9; 

         5'd4: coeff <= 7'd10; 

         5'd5: coeff <= 7'd12; 

         5'd6: coeff <= 7'd17; 

         5'd7: coeff <= 7'd18; 

         5'd8: coeff <= 7'd20; 

         5'd9: coeff <= 7'd24; 

         5'd10: coeff <= 7'd33; 

         5'd11: coeff <= 7'd34; 

         5'd12: coeff <= 7'd40; 

         5'd13: coeff <= 7'd48; 

         5'd14: coeff <= 7'd65; 

         5'd15: coeff <= 7'd66; 

         5'd16: coeff <= 7'd68; 

         5'd17: coeff <= 7'd72; 

         5'd18: coeff <= 7'd80; 

         5'd19: coeff <= 7'd96; 

         default: coeff <= 7'd3; 

     endcase 

end 

endmodule 

  



41 

Appendix D: Two Equation Weight of Two Solving Module Code 

module solver( 

 input [3:0] terms, 

 input [8:0] Co_1, Co_2, 

 output solved 

 ); 

     

 wire X1, X2, X3, X4; 

 assign {X4, X3, X2, X1} = terms[3:0]; 

     

 //X1 + X2 + X3 + X1X2 + X2X3 + X3X4 + Rest = RHS 

 //7 Terms + Rest + RHS = 9 Bit long Equations 

     

 wire X1X2 = X1 & X2; 

 wire X2X3 = X2 & X3; 

 wire X3X4 = X4 & X3; 

     

 wire [8:0] temp_eq = Co_1 ^ Co_2;   //XOR arrays 

     

 wire result = (X1 & temp_eq[8]) ^ (X2 & temp_eq[7]) ^ (X3 & temp_eq[6]) ^(X4 * 

temp_eq[5]) ^(X1X2 & temp_eq[4]) ^(X2X3 & temp_eq[3]) ^(X3X4 & temp_eq[2]) ^ 

temp_eq[1]; 

     

 assign solved = (result == temp_eq[0]) ? 1'b1 : 1'b0; 

     

endmodule 

  



42 

Appendix E: Two Equation Weight of Two Solving Simulation Code 

`timescale 1ns / 1ps 

 

module weight2_table( 

 

 ); 

 reg [4:0] eq1_count, eq2_count;   //iterate for loop 

 reg [2:0] RHS;  //for equations 

 wire RHS1, RHS2; 

 assign {RHS2, RHS1} = RHS[1:0]; 

 reg [1:0] Rest;   //for equations 

 wire [6:0] eq1_co, eq2_co;  //output of lut 

 integer sys_num, solutions_num; //for # of systems and solutions per system 

 reg [4:0] terms; //for iterating through X1-X4 

 wire solved; //for saying if solution 

     

 //Equations 

 wire[8:0] eq1, eq2; 

 assign eq1 = {eq1_co, Rest[0], RHS1}; 

 assign eq2 = {eq2_co, Rest[0], RHS2}; 

     

 weight2_lut eq1_coefficient( 

     .counter(eq1_count), 

     .coeff(eq1_co) 

 ); 

     

 weight2_lut eq2_coefficient( 

     .counter(eq2_count), 

     .coeff(eq2_co) 

 ); 

     

 solver algorithm( 

     .terms(terms[3:0]), 

     .Co_1(eq1), 

     .Co_2(eq2), 

     .solved(solved) 

 ); 



43 

     

 initial begin 

     eq1_count = 0; 

     eq2_count = 1; //avoid "squared" positions 

     RHS = 3'b000; 

     Rest = 2'b00; 

     sys_num = 0; 

     solutions_num = 0; 

     terms = 0; 

     #20; 

     while(Rest[1] != 1'b1) begin 

         while(RHS[2] != 1'b1) begin 

             while(eq1_count <= 18) begin 

                 while(eq2_count <= 19) begin 

                     sys_num = sys_num + 1; 

                     $display("System # %d", sys_num); 

                     $display("EQ1 : %b", eq1); 

                     $display("EQ2 : %b", eq2); 

                     while(terms[4] != 1) begin 

                         if(solved) begin 

                             solutions_num = solutions_num + 1; 

                             $display("Solution : X1 = %b X2 = %b X3 = %b X4 = %b", terms[0], 

terms[1], terms[2], terms[3]); 

                         end 

                         #5 terms = terms + 1; 

                     end 

                     terms = 0; 

                     solutions_num = 0; 

                     eq2_count = eq2_count + 1'b1; 

                 end 

                 eq1_count = eq1_count + 1'b1; 

                 eq2_count = eq1_count + 1'b1; 

             end 

             RHS = RHS + 1'b1; 

             eq1_count = 0; 

             eq2_count = 1; 

         end 



44 

         Rest = Rest + 1'b1; 

         RHS = 3'b000; 

         eq1_count = 0; 

         eq2_count = 1; 

     end 

     $stop; 

 end 

     

     

endmodule 

  



45 

Appendix F: Two Equation Weight of Two Solving Results 

 Due to the brevity of the results, a link to the text on Github has been provided. 

 

 

  

https://github.com/Matthew-Lund/FPGA-SAT-Solver-MQP/blob/main/Weight2_Table_Results.txt


46 

Appendix G: Exhaustive Search Code 

module exhaustive_search( 

 //input clk, reset_n, 

 input [4:0] sw, 

 output [5:0] led 

 ); 

     

 // Define packed struct for equation coefficients 

 typedef struct packed { 

     logic [15:0] coefficient; 

 } EquationCoeff; 

     

 //16 equations with 15 coefficients + RHS 

 EquationCoeff EQ_Matrix [0:15];   //X1 + X2 + X3 + X4 + X5 + X1X2 + X1X3 + X1X4 

+ X1X5 + X2X3 + X2X4 + X2X5 + X3X4 + X3X5 + X4X5 = RHS 

     

 wire X1, X2, X3 ,X4 ,X5 ,X1X2, X1X3, X1X4, X1X5, X2X3, X2X4, X2X5, X3X4, 

X3X5, X4X5; 

 wire [4:0] Terms = sw[4:0]; 

 assign X1 = Terms[0]; //Assign Linear Terms 

 assign X2 = Terms[1]; 

 assign X3 = Terms[2]; 

 assign X4 = Terms[3]; 

 assign X5 = Terms[4]; 

     

 //Assigning Quad Terms 

 assign X1X2 = X1 & X2; 

 assign X1X3 = X1 & X3; 

 assign X1X4 = X1 & X4; 

 assign X1X5 = X1 & X5; 

 assign X2X3 = X2 & X3; 

 assign X2X4 = X2 & X4; 

 assign X2X5 = X2 & X5; 

 assign X3X4 = X3 & X4; 

 assign X3X5 = X3 & X5; 

 assign X4X5 = X4 & X5; 

     



47 

 wire [14:0] term_string = {X1, X2, X3, X4 ,X5, X1X2, X1X3, X1X4, X1X5, X2X3, 

X2X4, X2X5, X3X4, X3X5, X4X5}; //easier for computation 

     

 //Equations 

 assign EQ_Matrix[0].coefficient = 16'b01001_1011_001_11_0_1; //X2 + X5 + X1X2 + 

X1X4 + X1X5 + X2X5 + X3X4 + X3X5 = 1 

 assign EQ_Matrix[1].coefficient = 16'b10110_0001_101_01_1_0; 

 assign EQ_Matrix[2].coefficient = 16'b11001_1010_010_10_0_1; 

 assign EQ_Matrix[3].coefficient = 16'b11110_1100_111_00_1_0; 

 assign EQ_Matrix[4].coefficient = 16'b01011_0011_011_10_1_0; 

 assign EQ_Matrix[5].coefficient = 16'b01000_0100_110_01_0_0; 

 assign EQ_Matrix[6].coefficient = 16'b00000_0101_101_01_0_1; 

 assign EQ_Matrix[7].coefficient = 16'b01101_1001_111_01_1_0; 

 assign EQ_Matrix[8].coefficient = 16'b00100_0100_101_01_0_1; 

 assign EQ_Matrix[9].coefficient = 16'b11100_0000_100_00_1_0; 

 assign EQ_Matrix[10].coefficient = 16'b10110_1000_101_10_1_1; 

 assign EQ_Matrix[11].coefficient = 16'b00101_1111_100_00_1_0; 

 assign EQ_Matrix[12].coefficient = 16'b11111_1011_010_00_0_0; 

 assign EQ_Matrix[13].coefficient = 16'b01101_0011_101_01_0_0; 

 assign EQ_Matrix[14].coefficient = 16'b00001_0010_001_00_0_1; 

 assign EQ_Matrix[15].coefficient = 16'b10100_0111_100_11_0_1; 

     

 //XOR all coefficients together 

 wire [15:0] EQ_XOR = (EQ_Matrix[0].coefficient ^ EQ_Matrix[1].coefficient ^ 

EQ_Matrix[2].coefficient ^ EQ_Matrix[3].coefficient ^ 

                       EQ_Matrix[4].coefficient ^ EQ_Matrix[5].coefficient ^ EQ_Matrix[6].coefficient 

^ EQ_Matrix[7].coefficient ^ 

                       EQ_Matrix[8].coefficient ^ EQ_Matrix[9].coefficient ^ 

EQ_Matrix[10].coefficient ^ EQ_Matrix[11].coefficient ^ 

                       EQ_Matrix[12].coefficient ^ EQ_Matrix[13].coefficient ^ 

EQ_Matrix[14].coefficient ^ EQ_Matrix[15].coefficient); 

     

 //AND all coefficients and terms together 

 wire [14:0] EQ_AND = EQ_XOR[15:1] & term_string; 

     

 //XOR EQ_AND together 



48 

 wire EQ_SUM = (EQ_AND[14] ^ EQ_AND[13] ^ EQ_AND[12] ^ EQ_AND[11] ^ 

EQ_AND[10] 

                  ^ EQ_AND[9] ^ EQ_AND[8] ^ EQ_AND[7] ^ EQ_AND[6] ^ EQ_AND[5] 

                   ^ EQ_AND[4] ^ EQ_AND[3] ^ EQ_AND[2] ^ EQ_AND[1] ^ EQ_AND[0]); 

     

 //Check to see if sum = RHS of XOR'd equations 

 wire solution = (EQ_SUM == EQ_XOR[0]) ? 1'b1 : 1'b0; 

     

 assign led = (solution) ? {1'b0,Terms[4:0]} : 6'b1_00000; //display the solution on the 

LEDs 

     

 //Used for Simulation Purposes (working on a way to do this on FPGA) 

   /*initial begin 

     $display("Solving System of Equations"); 

     $display("Equation 1: %b", EQ_Matrix[0].coefficient); 

     $display("Equation 2: %b", EQ_Matrix[1].coefficient); 

     $display("Equation 3: %b", EQ_Matrix[2].coefficient); 

     $display("Equation 4: %b", EQ_Matrix[3].coefficient); 

     $display("Equation 5: %b", EQ_Matrix[4].coefficient); 

     $display("Equation 6: %b", EQ_Matrix[5].coefficient); 

     $display("Equation 7: %b", EQ_Matrix[6].coefficient); 

     $display("Equation 8: %b", EQ_Matrix[7].coefficient); 

     $display("Equation 9: %b", EQ_Matrix[8].coefficient); 

     $display("Equation 10: %b", EQ_Matrix[9].coefficient); 

     $display("Equation 11: %b", EQ_Matrix[10].coefficient); 

     $display("Equation 12: %b", EQ_Matrix[11].coefficient); 

     $display("Equation 13: %b", EQ_Matrix[12].coefficient); 

     $display("Equation 14: %b", EQ_Matrix[13].coefficient); 

     $display("Equation 15: %b", EQ_Matrix[14].coefficient); 

     $display("Equation 16: %b", EQ_Matrix[15].coefficient); 

 end 

     

 always @(*) begin 

     if(solution) begin 

         $display("Solution Found: X1 = %b, X2 = %b, X3 = %b, X4 = %b, X5 = %b", Terms[0], 

Terms[1], Terms[2], Terms[3], Terms[4]); 

     end 



49 

     else begin 

         $display("Solution not found at this state"); 

     end 

 end*/ 

     

endmodule 

  



50 

Appendix H: Exhaustive Search Simulation Code 

`timescale 1ns / 1ps 

 

 

module exhaust_sim(); 

 reg [4:0] terms; 

 wire [5:0] good_out; //showing what terms work 

     

 exhaustive_search uut( 

 .sw(terms), 

 .led(good_out) 

 ); 

     

 initial begin 

     terms <= 5'b00000; 

      repeat(31) begin //go until 5'b11111 

             if(terms == 5'b11111) begin 

              $stop; 

             end 

             #10 terms <= terms + 1'b1; 

      end 

 end 

endmodule 

 

 

  



51 

Appendix I: Weight of Three Lookup Table 

 

module weight3_lut( 

 input [4:0] counter, 

 output reg [6:0] coeff 

 ); 

     

 always @ (counter) begin 

     case(counter) 

         5'd0: coeff <= 7'd7; 

         5'd1: coeff <= 7'd11; 

         5'd2: coeff <= 7'd13; 

         5'd3: coeff <= 7'd14; 

         5'd4: coeff <= 7'd19; 

         5'd5: coeff <= 7'd21; 

         5'd6: coeff <= 7'd22; 

         5'd7: coeff <= 7'd25; 

         5'd8: coeff <= 7'd26; 

         5'd9: coeff <= 7'd28; 

         5'd10: coeff <= 7'd35; 

         5'd11: coeff <= 7'd37; 

         5'd12: coeff <= 7'd38; 

         5'd13: coeff <= 7'd41; 

         5'd14: coeff <= 7'd42; 

         5'd15: coeff <= 7'd44; 

         5'd16: coeff <= 7'd49; 

         5'd17: coeff <= 7'd50; 

         5'd18: coeff <= 7'd52; 

         5'd19: coeff <= 7'd56; 

         5'd20: coeff <= 7'd67; 

         5'd21: coeff <= 7'd69; 

         5'd22: coeff <= 7'd70; 

         5'd23: coeff <= 7'd73; 

         5'd24: coeff <= 7'd74; 

         5'd25: coeff <= 7'd76; 

         5'd26: coeff <= 7'd81; 

         5'd27: coeff <= 7'd82; 

         5'd28: coeff <= 7'd84; 

         5'd29: coeff <= 7'd88; 

         5'd30: coeff <= 7'd97; 



52 

         5'd31: coeff <= 7'd98; 

         5'd32: coeff <= 7'd100; 

         5'd33: coeff <= 7'd104; 

         5'd34: coeff <= 7'd112; 

         default: coeff <= 7'd3; 

     endcase 

 end 

endmodule 

 

  



53 

Appendix J: Parametrized Binary Weight Code 

 

module weightfinding#(parameter length = 7, parameter weight = 3)(  

 input [length-1:0] counter, //arrays start @ 0 

 output flag 

 ); 

     

 integer i; 

 reg [length -1:0] weight_count; 

     

 always @ (counter) begin 

      weight_count = 0; 

      for(i = 0; i <= length; i = i + 1)begin 

           if(counter[i] == 1'b1) begin 

               weight_count = weight_count + counter[i]; 

           end 

      end 

 end 

     

 assign flag = (weight_count > (weight-1) && weight_count < (weight+1) ) ? 1'b1 : 1'b0; 

     

endmodule 

 

 

Appendix K: Digilent Starting Code  

https://digilent.com/reference/learn/programmable-logic/tutorials/nexys-video-basic-user-

demo/start  

Appendix L: Case 2 and 3 LUTs 

# Constants  

Z = [(0,0), (1,0), (0,1)]       # pairs of solution that for Zeros  

P = (1,0)                       # Any Pair; Don't Care 

ONE = (1,1) 

 

""" 

    Rest + xa + xb = RHS 

    "Rest + Coeffs of eq1 + Coeffs of eq2 + RHS" : [(xa, xb), (...)] 

https://digilent.com/reference/learn/programmable-logic/tutorials/nexys-video-basic-user-demo/start
https://digilent.com/reference/learn/programmable-logic/tutorials/nexys-video-basic-user-demo/start


54 

""" 

two_coeff_map = { 

    "0011000": [(0,0)], 

    "0011010": [(0,1)], 

    "0011001": [(1,0)], 

    "0011011": [(1,1)], 

    "0100100": [(0,0)], 

    "0100110": [(1,0)], 

    "0100101": [(0,1)], 

    "0100111": [(1,1)], 

    "0001100": [(1,1), (0,0)], 

    "0001101": [(0,1), (1,0)], 

    "0110000": [(1,1), (0,0)], 

    "0110010": [(0,1), (1,0)], 

    "1011000": [(1,1)], 

    "1011001": [(0,1)], 

    "1011010": [(1,0)], 

    "1011011": [(0,0)], 

    "1100100": [(1,1)], 

    "1100101": [(1,0)], 

    "1100110": [(0,1)], 

    "1100111": [(0,0)], 

    "1110001": [(0,1), (1,0)], 

    "1110011": [(1,1), (0,0)], 

    "1001110": [(0,1), (1,0)], 

    "1001111": [(1,1), (0,0)] 

} 

 

""" 

    Rest + xa + xbxc = RHS   

    "Rest + Coeffs of eq1 + Coeffs of eq2 + RHS" : [(xa, xbxc), (...)] 

""" 

two_linear_quad_independent = { 

    "0011000": [(0,Z)], 

    "0011010": [(0,1,1)], 

    "0011001": [(1,Z)], 

    "0011011": [(1,1,1)], 

    "0100100": [(0,Z)], 

    "0100110": [(1,Z)], 

    "0100101": [(0,1,1)], 



55 

    "0100111": [(1,1,1)], 

    "0001100": [(1,1,1), (0,Z)], 

    "0001101": [(0,1,1), (1,Z)], 

    "0110000": [(1,1,1), (0,Z)], 

    "0110010": [(0,1,1), (1,Z)], 

    "1011000": [(1,1,1)], 

    "1011001": [(0,1,1)], 

    "1011010": [(1,Z)], 

    "1011011": [(0,Z)], 

    "1100100": [(1,1,1)], 

    "1100101": [(1,Z)], 

    "1100110": [(0,1,1)], 

    "1100111": [(0,Z)], 

    "1110001": [(0,1,1), (1,Z)], 

    "1110011": [(1,1,1), (0,Z)], 

    "1001110": [(0,1,1), (1,Z)], 

    "1001111": [(1,1,1), (0,Z)] 

} 

 

""" 

    Rest + xaxb + xaxc = RHS 

    "Rest + Coeffs of eq1 + Coeffs of eq2 + RHS" : [(xa, xb, xc), (...)] 

""" 

two_quad_dependent = { 

    "0011000": [(0,P), (1,0,0)], 

    "0011010": [(1,0,1)], 

    "0011001": [(1,1,0)], 

    "0011011": [(1,1,1)], 

    "0100100": [(0,P,P), (1,0,0)], 

    "0100110": [(1,1,0)], 

    "0100101": [(1,0,1)], 

    "0100111": [(1,1,1)], 

    "0001100": [(0,P,P), (1,1,1)], 

    "0001101": [(1,0,1), (1,1,0)], 

    "0110000": [(0,P,P), (1,1,1)], 

    "0110010": [(1,0,1), (1,1,0)], 

    "1011000": [(1,1,1)], 

    "1011010": [(1,1,0)], 

    "1011001": [(1,0,1)], 

    "1011011": [(0,P,P), (1,0,0)], 



56 

    "1100100": [(1,1,1)], 

    "1100101": [(1,1,0)], 

    "1100110": [(1,0,1)], 

    "1100111": [(0,P,P), (1,0,0)], 

    "1110001": [(1,1,0), (1,0,1)], 

    "1110011": [(0,P,P), (1,0,0), (1,1,1)], 

    "1001110": [(1,1,0), (1,0,1)], 

    "1001111": [(0,P,P), (1,0,0), (1,1,1)] 

} 

 

""" 

    Rest + xa + xaxb = RHS 

    "Rest + Coeffs of eq1 + Coeffs of eq2 + RHS" : [(xa, xb), (...)] 

""" 

two_linear_quad_dependent = { 

    "0011000": [(0,P)], 

    "0011010": [], 

    "0011001": [(1,P)], 

    "0011011": [(1,1)], 

    "0100100": [(0,P)], 

    "0100110": [(1,P)], 

    "0100101": [], 

    "0100111": [(1,1)], 

    "0001100": [(1,1), (0,P)], 

    "0001101": [(1,0)], 

    "0110000": [(1,1),(0,P)], 

    "0110010": [(1,0)], 

    "1011000": [(1,1)], 

    "1011001": [], 

    "1011010": [(1,0)], 

    "1011011": [(0,P)], 

    "1100100": [(1,1)], 

    "1100101": [(1,0)], 

    "1100110": [], 

    "1100111": [(0,P)], 

    "1110001": [(1,1), (0,P)], 

    "1110011": [(1,0), (0,P)], 

    "1001110": [(1,1), (0,P)], 

    "1001111": [(1,0), (0,P)] 

} 



57 

 

""" 

    Rest + xaxb + xcxe= RHS 

    "Rest + Coeffs of eq1 + Coeffs of eq2 + RHS" : [(xaxb, xcxe), (...)] 

""" 

two_quad_independent = { 

    "0011000": [(Z,Z)], 

    "0011010": [(Z,1,1)], 

    "0011001": [(1,1,Z)], 

    "0011011": [(1,1,1,1)], 

    "0100100": [(Z,Z)], 

    "0100110": [(1,1,Z)], 

    "0100101": [(Z,1,1)], 

    "0100111": [(1,1,1,1)], 

    "0001100": [(1,1,1,1),(Z,Z)], 

    "0001101": [(Z,1,1),(1,1,Z)], 

    "0110000": [(1,1,1,1),(Z,Z)], 

    "0110010": [(Z,1,1),(1,1,Z)], 

    "1011000": [(1,1,1,1)], 

    "1011001": [(Z,1,1)], 

    "1011010": [(1,1,Z)], 

    "1011011": [(Z,Z)], 

    "1100100": [(1,1,1,1)], 

    "1100101": [(1,1,Z)], 

    "1100110": [(Z,1,1)], 

    "1100111": [(Z,Z)], 

    "1110001": [(Z,1,1),(1,1,Z)], 

    "1110011": [(1,1,1,1),(Z,Z)], 

    "1001110": [(Z,1,1),(1,1,Z)], 

    "1001111": [(1,1,1,1),(Z,Z)] 

} 

 

""" 

    Look Up Tables for Case 3 

 

    case_diff_ID 

    EX: case_3_1 will be the first case of three different variables 

 

""" 

 



58 

# the code cant run without you 

# pair_1 = [(0,0,0),(1,1,1)] 

# pair_2 = [(0,0,1),(1,1,0)] 

# pair_3 = [(0,1,0),(1,0,1)] 

# pair_4 = [(0,1,1),(1,0,0)] 

season_of_two = { 

    "111000":"000111", 

    "110001":"001110", 

    "101010":"010101", 

    "100011":"011100" 

} 

 

#3 independent 

""" xa + xb + xc  

    Example:  

        Rest + xa + xb + xc, xa = 1, Rest = 0 

        0 + 0*1 + 0*xb + 0*xc = 0 -> 0 + 0*xb + 0*xc = 0  

        0 + 1*1 + 1*xb + 1*xc = 0 -> 1*1 + 1*xb + 1*xc = 0 

    "Rest + Coeff1 + Coeff2" 

    Solution is [(new equation, xa=?),(...)]: [("R1 R2 Coeff1(2) Coeff2(2)", xa), (...)] 

""" 

case_3_1= { 

    "0000111":[("010011",1),("00011",0)], 

    "0001110":[("010110",1),("00110",0)], 

    "0010101":[("011001",1),("01001",0)], 

    "0011100":[("011100",1),("01100",0)], 

    "1000111":[("100011",1),("10011",0)], 

    "1001110":[("100110",1),("10110",0)], 

    "1010101":[("101001",1),("11001",0)], 

    "1011100":[("101100",1),("11100",0)], 

} 

 

#2 independent + 1 quad doubly dependent 

""" xa + xb + xaxb 

    Example:  

        Rest + xa + xb + xaxb, xa = 1, Rest = 0 

        0 + 0*1 + 0*xb + 0*1*xb = 0 -> 0 + 0*xb + 0*xb = 0  

        0 + 1*1 + 1*xb + 1*1*xb = 0 -> 1*1 + 1*xb + 1*xb = 0 

    "Rest + Coeff1 + Coeff2" 



59 

    Solution is [(new eq1, eq2, xa=?),(...)]: [("R1 Coeff1" "R2 Coeff2", xa), ("R1 Coeff1 Coeff2", 

xa)] 

        "Rest xb xaxb(1*xb)", xa=1 

        "2 xb", xa = 1  

        "Rest xb", xa=0 

""" 

case_3_2= { 

    "0000111":[("00","10",1),("001",0)], 

    "0001110":[("01","11",1),("001",0)], 

    "0010101":[("01","11",1),("010",0)], 

    "0011100":[("00","10",1),("010",0)], 

    "1000111":[("10","00",1),("101",0)], 

    "1001110":[("11","01",1),("101",0)], 

    "1010101":[("11","01",1),("110",0)], 

    "1011100":[("10","00",1),("110",0)] 

} 

 

#2 independent + 1 quad dependent 

""" xa + xb + xaxc 

    Example:  

        Rest + xa + xb + xaxc, xa = 1, Rest = 0 

        0 + 0*1 + 0*xb + 0*1*xc = 0 -> 0 + 0*xb + 0*xc = 0  

        0 + 1*1 + 1*xb + 1*1*xc = 0 -> 1*1 + 1*xb + 1*xc = 0 

    "Rest + Coeff1 + Coeff2" 

    Solution is [(new eq1, eq2, xa=?),(...)]: [("R1 Coeff1" "R2 Coeff2", xa), (...)] 

        "Rest xb xaxc(1*xc)", xa=1 

        "Rest xb", xa=0 "R1 Coeff1 Coeff2" 

""" 

case_3_3= { 

    "0000111":[("000","111",1),("001",0)], 

    "0001110":[("001","110",1),("001",0)], 

    "0010101":[("010","101",1),("010",0)], 

    "0011100":[("011","100",1),("010",0)], 

    "1000111":[("100","011",1),("101",0)], 

    "1001110":[("101","010",1),("101",0)], 

    "1010101":[("110","001",1),("110",0)], 

    "1011100":[("111","000",1),("110",0)] 

} 

 

#should be the same as case 1 



60 

#2 independent + 1 quad independent 

""" xa + xb + xcxd 

    Example:  

        Rest + xa + xb + xcxd, xa = 1, Rest = 0 

        0 + 0*1 + 0*xb + 0*xcxd = 0 -> 0 + 0*xb + 0*xcxd = 0  

        0 + 1*1 + 1*xb + 1*xcxd = 0 -> 1*1 + 1*xb + 1*xcxd = 0 

    "Rest + Coeff1 + Coeff2" 

    Solution is [(new eq1, eq2, xa=?),(...)]: [("R1 R2 Coeff1(2) Coeff2(2)", xa), (...)] 

""" 

case_3_4= { 

    "0000111":[("010011",1),("00011",0)], 

    "0001110":[("010110",1),("00110",0)], 

    "0010101":[("011001",1),("01001",0)], 

    "0011100":[("011100",1),("01100",0)], 

    "1000111":[("100011",1),("10011",0)], 

    "1001110":[("100110",1),("10110",0)], 

    "1010101":[("101001",1),("11001",0)], 

    "1011100":[("101100",1),("11100",0)], 

} 

 

#TODO what do we do about the 0 case since it just eliminates everything 

#1 dependent + 2 mutually dependent quads 

""" xa + xaxb + xaxc  

    Example:  

        Rest + xa + xaxb + xaxc, xa = 1, Rest = 0 

        0 + 0*1 + 0*1*xb + 0*1*xc = 0 -> 0 + 0*xb + 0*xc = 0  

        0 + 1*1 + 1*1*xb + 1*1*xc = 0 -> 1*1 + 1*xb + 1*xc = 0 

    "Rest + Coeff1 + Coeff2" 

    Solution is [(new eq1, eq2, xa=?),(...)]: [("R1 R2 Coeff1(2) Coeff2(2)", xa), (...)] 

""" 

case_3_5= { 

# pair_1 = [(0,0,0),(1,1,1)] 

# pair_2 = [(0,0,1),(1,1,0)] 

# pair_3 = [(0,1,0),(1,0,1)] 

# pair_4 = [(0,1,1),(1,0,0)] 

    "0000111":[("000","111",1),("","",0)], 

    "0001110":[("001","110",1),("","",0)], 

    "0010101":[("010","101",1),("","",0)], 

    "0011100":[("011","100",1),("","",0)], 

    "1000111":[("100","011",1),("","",0)], 



61 

    "1001110":[("101","010",1),("","",0)], 

    "1010101":[("110","001",1),("","",0)], 

    "1011100":[("111","000",1),("","",0)] 

} 

 

# xa + xaxb + xcxd 

# 1 dependent + 1 quad dependent + 1 quad independent 

""" xa + xaxb + xcxd 

    Example:  

        Rest + xa + xaxb + xcxd, xa = 1, Rest = 0 

        0 + 0*1 + 0*1*xb + 0*xcxd = 0 -> 0 + 0*xb + 0*xcxd = 0  

        0 + 1*1 + 1*1*xb + 1*xcxd = 0 -> 1*1 + 1*xb + 1*xcxd = 0 

    "Rest + Coeff1 + Coeff2" 

    Solution is [(new eq1, eq2, xa=?),(...)]: [("R1 R2 Coeff1(2) Coeff2(2)", xa), (...)] 

""" 

case_3_6= { 

# pair_1 = [(0,0,0),(1,1,1)] 

# pair_2 = [(0,0,1),(1,1,0)] 

# pair_3 = [(0,1,0),(1,0,1)] 

# pair_4 = [(0,1,1),(1,0,0)] 

    "0000111":[("000","111",1),("001",0)], 

    "0001110":[("001","110",1),("010",0)], 

    "0010101":[("010","101",1),("001",0)], 

    "0011100":[("011","100",1),("010",0)], 

    "1000111":[("100","011",1),("100","011",0)], 

    "1001110":[("101","010",1),("101","010",0)], 

    "1010101":[("110","001",1),("110","001",0)], 

    "1011100":[("111","000",1),("111","000",0)] 

} 

 

# xa + xbxc + xdxe 

# 1 independent + 2 independent quads 

case_3_7= { 

    "0000111":[("000","111",1),("00011",0)], 

    "0001110":[("001","110",1),("00110",0)], 

    "0010101":[("010","101",1),("01001",0)], 

    "0011100":[("011","100",1),("01100",0)], 

    "1000111":[("100","011",1),("10011",0)], 

    "1001110":[("101","010",1),("10110",0)], 

    "1010101":[("110","001",1),("11001",0)], 



62 

    "1011100":[("111","000",1),("11100",0)] 

} 

 

# xaxb + xaxc + xaxd 

# 3 mutually dependent quads 

case_3_8= { 

# pair_1 = [(0,0,0),(1,1,1)] 

# pair_2 = [(0,0,1),(1,1,0)] 

# pair_3 = [(0,1,0),(1,0,1)] 

# pair_4 = [(0,1,1),(1,0,0)] 

    "0000111":[("0000111",1),("","",0)], 

    "0001110":[("0001110",1),("","",0)], 

    "0010101":[("0010101",1),("","",0)], 

    "0011100":[("0011100",1),("","",0)], 

    "1000111":[("1000111",1),("","",0)], 

    "1001110":[("1001110",1),("","",0)], 

    "1010101":[("1010101",1),("","",0)], 

    "1011100":[("1011100",1),("","",0)] 

} 

 

# xaxb + xaxc + xdxe 

# 2 dependent quads + 1 indep quad 

case_3_9= { 

# pair_1 = [(0,0,0),(1,1,1)] 

# pair_2 = [(0,0,1),(1,1,0)] 

# pair_3 = [(0,1,0),(1,0,1)] 

# pair_4 = [(0,1,1),(1,0,0)] 

    "0000111":[("0000111",1),("001",0)], 

    "0001110":[("0001110",1),("010",0)], 

    "0010101":[("0010101",1),("001",0)], 

    "0011100":[("0011100",1),("010",0)], 

    "1000111":[("1000111",1),("101",0)], 

    "1001110":[("1001110",1),("110",0)], 

    "1010101":[("1010101",1),("101",0)], 

    "1011100":[("1011100",1),("110",0)] 

} 

 

# xaxb + xcxd + xexf 

# 3 independent quads 

case_3_10= { 



63 

# pair_1 = [(0,0,0),(1,1,1)] 

# pair_2 = [(0,0,1),(1,1,0)] 

# pair_3 = [(0,1,0),(1,0,1)] 

# pair_4 = [(0,1,1),(1,0,0)] 

    "0000111":[("0000111",1),("00011",0)], 

    "0001110":[("0001110",1),("00110",0)], 

    "0010101":[("0010101",1),("01001",0)], 

    "0011100":[("0011100",1),("01100",0)], 

    "1000111":[("1000111",1),("10011",0)], 

    "1001110":[("1001110",1),("10110",0)], 

    "1010101":[("1010101",1),("11001",0)], 

    "1011100":[("1011100",1),("11100",0)] 

} 

 

# xaxb + xbxc + xcxa 

# triangle 

case_3_11= { 

# pair_1 = [(0,0,0),(1,1,1)] 

# pair_2 = [(0,0,1),(1,1,0)] 

# pair_3 = [(0,1,0),(1,0,1)] 

# pair_4 = [(0,1,1),(1,0,0)] 

    "0000111":[("0000111",1),("001",0)], 

    "0001110":[("0001110",1),("001",0)], 

    "0010101":[("0010101",1),("010",0)], 

    "0011100":[("0011100",1),("010",0)], 

    "1000111":[("1000111",1),("101",0)], 

    "1001110":[("1001110",1),("101",0)], 

    "1010101":[("1010101",1),("110",0)], 

    "1011100":[("1011100",1),("110",0)] 

} 

 

 

#xaxb + xaxc + xbxd 

#2 groups of quads dependent 

case_3_12 = { 

# pair_1 = [(0,0,0),(1,1,1)] 

# pair_2 = [(0,0,1),(1,1,0)] 

# pair_3 = [(0,1,0),(1,0,1)] 

# pair_4 = [(0,1,1),(1,0,0)] 

    "0000111":[("0000111",1),("001",0)], 



64 

    "0001110":[("0001110",1),("010",0)], 

    "0010101":[("0010101",1),("001",0)], 

    "0011100":[("0011100",1),("010",0)], 

    "1000111":[("1000111",1),("101",0)], 

    "1001110":[("1001110",1),("110",0)], 

    "1010101":[("1010101",1),("101",0)], 

    "1011100":[("1011100",1),("110",0)] 

} 

 

# xa + xbxc + xbxd 

case_3_13 = { 

    "0000111":[("000","111",1),("00011",0)], 

    "0001110":[("001","110",1),("00110",0)], 

    "0010101":[("010","101",1),("01001",0)], 

    "0011100":[("011","100",1),("01100",0)], 

    "1000111":[("100","011",1),("10011",0)], 

    "1001110":[("101","010",1),("10110",0)], 

    "1010101":[("110","001",1),("11001",0)], 

    "1011100":[("111","000",1),("11100",0)] 

} 



65 

Appendix M: CDCL History 

 

 



66 

 

 



67 

 

 



68 

 

 



69 

 

 



70 

 

 



71 

 


