
i

II

FEATURE DETECTION IN AN INDOOR ENVIRONMENT USING HARDWARE ACCELERATORS FOR

TIME-EFFICIENT MONOCULAR SLAM

By

Shivang Vyas

A Thesis

Submitted to the Faculty

Of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Master of Science

In

Electrical and Computer Engineering

By

OCTOBER 2015

 APPROVED:

 --

 Professor William Michalson

 --

 Professor Michael Gennert

 --

 Professor Fred Looft

III

Abstract

 In the field of Robotics, Monocular Simultaneous Localization and Mapping (Monocular SLAM)

has gained immense popularity, as it replaces large and costly sensors such as laser range

finders with a single cheap camera. Additionally, the well-developed area of Computer Vision

provides robust image processing algorithms which aid in developing feature detection

technique for the implementation of Monocular SLAM. Similarly, in the field of digital

electronics and embedded systems, hardware acceleration using FPGAs, has become quite

popular. Hardware acceleration is based upon the idea of offloading certain iterative algorithms

from the processor and implementing them on a dedicated piece of hardware such as an ASIC

or FPGA, to speed up performance in terms of timing and to possibly reduce the net power

consumption of the system. Good strides have been taken in developing massively pipelined

and resource efficient hardware implementations of several image processing algorithms on

FPGAs, which achieve fairly decent speed-up of the processing time. In this thesis, we have

developed a very simple algorithm for feature detection in an indoor environment by means of

a single camera, based on Canny Edge Detection and Hough Transform algorithms using

OpenCV library, and proposed its integration with existing feature initialization technique for a

complete Monocular SLAM implementation. Following this, we have developed hardware

accelerators for Canny Edge Detection & Hough Transform and we have compared the timing

performance of implementation in hardware (using FPGAs) with an implementation in software

(using C++ and OpenCV).

IV

Acknowledgements

 I would like to express my sincere gratitude towards Professor William Michalson for giving

me opportunity to explore the exciting field of Monocular SLAM of which I was previously

oblivious and for his invaluable support and directions while I was learning about concepts

which were completely alien to me. I would also like to thank him for guiding me in my desire

to integrate my area of specialization in FPGA design with Monocular SLAM. I thank my friends

from Robotics Engineering: Supreeth Rao, Benzun Wisely and Vinayak Jagtap, for helping me

understand Computer Vision concepts. I extend my thanks to my friend Mihir Vaidya for

providing his insights in RTL design. Finally, I would like to thank my parents for providing me

constant support from the other side of Earth.

V

Contents

List of Figures ..VII

1. Introduction to SLAM ..1

1.1 Bearing-Only SLAM ..4

1.2 Extended Kalman Filter ...5

1.3 Inverse Depth Parameterization ...8

1.4 Feature Initialization ..10

1.5 Hough Transform based Feature Detection ..17

2. Feature Detection Algorithms ...21

2.1 Introduction to pillar detection ...23

2.2 OpenCV Functions ...23

2.3 Pillar detection with stationary Camera ..28

2.4 Detection of Pillars with known shades ..30

 2.5 Pillar detection for Bearing-only SLAM ..33

2.6 Detection of Floor Edges ...47

2.7 Synchronization with delayed initialization and EKF update ..51

 2.8 Initial experiment in map building with one known feature ...55

3. Feature Detection Using FPGAs ...65

3.1 Hardware Acceleration Using FPGAs ...65

3.2 Image Processing for Feature Detection on FPGAs ...67

VI

3.3 Canny Edge detection using FPGAs ...68

3.4 Hough Transform using FPGAs ..84

3.5 Timing Results ..99

4. Conclusion ..101

Bibliography ...104

VII

List of Figures

Figure 1: Kalman Filter Equations [9] ... 7

Figure 2: Inverse Parameterization [5] ... 9

Figure 3: Creation of Parallax ... 11

Figure 4: Intersection of two bearing measurements [12] .. 12

Figure 5: geometric series of Gaussian distribution [A] ... 14

Figure 6: Ray update on four consecutive poses [11] ... 16

Figure 7: Projection of a line as a point on the plane for inverse parametrization [15]................ 19

Figure 8: depth-range parameterization for floor line [15] ... 20

Figure 9: Feature in Hallway characterized by vertical lines ... 22

Figure 10: Floor edges of Hallway characterized by inclined lines.. 22

Figure 11: A line with rho-theta parameters ... 25

Figure 12: False edge removal from Hough transform output ... 30

Figure 13: Pillar detection using a shade threshold .. 31

Figure 14: Pillar detection using a shade threshold and false edge removal 32

Figure 15: Two pillars far apart .. 34

Figure 16: A door frame and a Pillar far apart .. 35

Figure 17: Multiple pillars cluttered together ... 35

Figure 18: Possible path traced by a robotic platform in a hallway.. 36

Figure 19: Pillar detection algorithm for bearing-only SLAM ... 38

VIII

Figure 20: Pillar detection result1 ... 40

Figure 21: Pillar detection result 2 .. 41

Figure 22: Pillar detection result 3 .. 42

Figure 23: Pillar detection result 4 .. 43

Figure 24: Pillar detection result 5 .. 44

Figure 25: Pillar detection result 6 .. 45

Figure 26: Pillar detection result 7 .. 46

Figure 27: Inclined floor edge detection ... 47

Figure 28: Original scene that mimics a hallway .. 48

Figure 29: Floor edge detection .. 48

Figure 30: Corner feature .. 49

Figure 31: Floor edge detection algorithm.. 50

Figure 32: Delayed Initialization .. 52

Figure 33: Synchronization with EKF .. 53

Figure 34: Example case for synchronized feature detection and EKF update 54

Figure 35: distance-delta rho observation ... 57

Figure 36: distance calibration .. 58

Figure 37: lateral shift-leftmost rho observation .. 60

Figure 38: lateral shift calibration ... 61

Figure 39: sketch for map display ... 63

Figure 40: Initial feature position ... 64

Figure 41: display of first shift in camera with respect to known pillar 64

Figure 42: Image processing for Canny edge detection and Hough Transform 67

IX

Figure 43: Smoothed edge [1]... 69

Figure 44: gradient of the curve [1] .. 70

Figure 45: edge location [24] .. 70

Figure 46: Gaussian stage and the next stages .. 74

Figure 47: Inner hierarchy of next stages ... 74

Figure 48: Gaussian stage ... 75

Figure 49: Gradient calculation stage ... 76

Figure 50: Direction encoder .. 77

Figure 51: NMS and double thresholding stage ... 77

Figure 52: NMS calculation .. 78

Figure 53: Resource utilization for Canny edge detection .. 80

Figure 54: Input gray scale image ... 81

Figure 55: edge detected image .. 82

Figure 56: Edge detection result 1.1 ... 83

Figure 57: Edge detection result 1.2 ... 83

Figure 58: Edge detection result 1.3 ... 83

Figure 59: Mapping in parameter space [22] .. 85

Figure 60: Complete Hough Transform Block Diagram [23] .. 88

Figure 61: Resource Utilization for generic Hough Transform .. 88

Figure 62: Inclined floor lines... 89

Figure 63: detailed block diagram for Hough Transform ... 90

Figure 64: quadrant shifter block .. 91

Figure 65: calculation using DSP slices.. 92

X

Figure 66: Special unit of shift chain .. 94

Figure 67: Resource utilization for Customized Hough Transform ... 96

Figure 68: Original image before edge detection is performed .. 96

Figure 69: Edge detection performed on the original image .. 97

Figure 70: Input text file ... 98

Figure 71: Output waveform ... 98

Figure 72: timing performance of software implementation .. 99

Figure 73: timing performance of hardware implementation ... 100

xi

1

Chapter 1

Introduction to SLAM

The SLAM concept is combination of two individual concepts: Localization and mapping.

Localization is the deduction of the location of the autonomous vehicle if a map is previously

known. Mapping, exactly opposite to the concept of localization means, with location known,

developing a map with help of environmental features. The SLAM involves creating a map and

locating the robot simultaneously, with neither the map nor the location known beforehand. One

purpose of SLAM is to build a map of an unknown environment by a mobile robot while at the

same time navigating the environment using that same map. It is for this reason that SLAM

problem is very commonly referred to as chicken and the egg problem. SLAM works using

probability models and makes use of the Extended Kalman filter which constantly updates the

location of the robot relative to the features in the environment with best possible estimate of

their location. The setting for the SLAM problem is that of a vehicle with a known kinematic

model, starting at an unknown location, moving through an environment containing a population

of features or landmarks [4].

 The entire process of SLAM consists of multiple parts such as landmark extraction, data

association, state estimation, state update and landmark update. The whole system is based upon

a state vector and its iterative update. The state vector accounts for two factors: the original robot

motion and the state of each feature that the robot detects in the environment. There is a

continuous stacking of new features into the state vector as they are discovered, which is called

feature initialization. This state vector is to be updated iteratively. The best estimate of the

2

update is provided by the Extended Kalman filter. The EKF maintains continuous tracking of an

estimate of robot’s probable position and also an estimate of uncertainty in the landmarks that it

has seen in the environment.

The EKF is the heart of the SLAM process and its functionality is based upon two very

important matrices; one of which is the mean state vector and another is a co-variance matrix. As

mentioned earlier, the state vector defines the robot motion or robot position. Very simply we

can say that it contains robot position in terms of x, y and theta. However its complexity may

increase depending upon the situation. This will be described in detail in the next section. The

state vector also contains another group of parameters that represent each detected feature. The

most basic parameters for this would be the x and y coordinates of the feature, it’s elevation from

the plane in which robot moves and the azimuth angle. The state vector represented in terms of

the mean of its parameters forms the mean state vector. The second most important factor for the

SLAM process would be the covariance matrix. The localization and mapping both can be

mathematically described in terms of these two matrices. The co-variance matrix is nothing but a

matrix containing the calculated individual co-variances of each parameter of state vector with

each other parameter of the state vector. This state vector is generally represented as the single

column matrix. Hence, a state vector containing 3 parameters (like x, y and theta) will have a 3x3

co-variance matrix. However, once the features are detected and their parameters are also added

to the state vector, the elements of the state vector begin to grow, and consequently, the co-

variance matrix increases in size accordingly. These two matrices are then updated every

iteration using an Extended Kalman filter. The EKF is nothing but set of equations containing

various matrices. It involves calculation of another parameter called as the Kalman gain and then

based on it, calculates the estimated updates for the state vector matrix and co-variance matrix in

3

each iteration. Propagation of the full map covariance matrix is essential to the solution of the

SLAM problem. It is the cross-correlations in this map covariance matrix which maintain

knowledge of the relative relationships between landmark location estimates and which in turn

underpin the exhibited convergence properties [4].

The SLAM process begins with map initialization. In any SLAM algorithm the number

and location of landmarks is not known a priori [4]. Landmark locations must be initialized or

inferred from observations alone. We detect a feature and initialize it, by adding it to the state

vector. This is followed by the feature association. This is actually detecting whether the

currently detected feature is same as an old feature or is a new one. After the map is initialized

we begin the iterative steps. The whole iteration can be explained in the following steps: We

predict the next state mean and co-variance matrices from the current state. Then, based on an

observation model, we calculate the observed state values. The Kalman gain is calculated in this

step and then, based on the updated gain, a new, corrected, state vector and co-variance matrix

are calculated. In the third step, we add new feature parameters to the state vector, which adds an

extra row and column to the co-variance matrix. The addition of new feature parameters is

reserved for the third step because adding it in the second step would increase the required

number of computations.

The mapping process ends, when a map closure (or loop closure) is achieved. Detecting

closure is effectively recognizing a previously mapped path. It is similar to data association, but

in this case the estimated uncertainty reduces to a great extent. Map closure generally occurs

after a mapped path is traced back to its starting point.

Now, following this basic knowledge of the SLAM process, we can give an overview of

our research and describe the structure of this thesis. The research pertaining to this theses

4

focused on developing efficient hardware implementations of algorithms for feature detection in

an indoor environment, and for Monocular SLAM. This thesis does not intend to develop

techniques for implementing a full-fledged SLAM, but it presents efficient algorithms for

extracting features from the environment for the purpose of a monocular SLAM implementation.

This chapter begins with basics of monocular SLAM and will go into the details of its three

important components: the Extended Kalman Filter, Inverse Parameterization and Feature

Initialization. We present work done in these specific areas of monocular SLAM. Finally, we

explain line-based SLAM using Hough transform, which is our primary vision algorithm for

feature detection. In the next chapter we describe our own feature detection algorithm and

present its experimental results. We also go into the details of how our feature detection

algorithm can be fused with feature initialization techniques of the first chapter to implement

monocular SLAM. The last chapter deals with design and implementation of hardware

accelerators for image processing, which can be used to execute our developed feature detection

techniques in a more time-efficient manner.

1.1 Bearing-only SLAM

 When camera is used as a sensor rather than a sensor like a laser scanner, then we call it

as visual SLAM [7]. In general, feature detection for visual SLAM can be done either by using

stereo vision (two camera) or mono vision (single camera). Extensive work has been done in the

field of range-bearing SLAM and range-only SLAM. However, the ranging sensors used by

these systems (laser rangefinder, SONAR etc.) are unreliable, large and may be expensive. Using

a single camera makes the sensor hardware on robotic platform inexpensive. This leads to the

concept of monocular vision based SLAM called the bearing-only SLAM. Using a camera as a

5

sensor has added advantages, since they are well suited for embedded systems and work on low

power. However, there is a huge drawback in using monocular vision since we use lose a

dimension (i.e. range or depth). Using single camera or monocular vision based SLAM is

difficult to implement because as compared to stereo vision since monocular vision cannot

comprehend a 3-D world directly. That is because a single camera captures a single image at a

time which is obviously only 2-D. The parameter ‘depth’ that is the third axis of any object in the

environment is difficult to determine in a single frame. All calculations for monocular SLAM are

done over a period of time by capturing multiple frames and comparing each of them.

Further, the EKF requires Gaussian representations for all the variables that are involved

in the map, which include the robot pose and the landmark locations. However, landmark

locations cannot be known from a single observation and special initialization techniques and

two observations of the same feature from at least two separate robot poses are required. Thus,

we can see there are two aspects of this problem: one is being able to recognize landmarks in an

environment and track it consistently over number of frames (to ensure it’s the same landmark);

the second is to estimate the landmark parameters from multiple frames (including depth) and

initialize them in the map. The second problem is the most crucial task in the monocular SLAM

and we have done extensive literature review on this aspect. We will describe various

initialization techniques later in the chapter.

1.2 Extended Kalman Filter

State space is the representation of a system in terms of a group of scalar parameters,

defined by a state vector x =[x1,...,xn]
T. These parameters are called state variables. The true

accuracy of the state vector is never known, there is always some amount of uncertainty

6

associated with it. Assuming that the uncertainty associated with it is Gaussian in nature, we can

represent each scalar parameter with its mean and deviation (or variance). This would then

generate a mean state vector and co-variance matrix.

A Kalman filter is nothing but set of equations that helps us obtain the best estimated

update for the mean state vector and co-variance matrix. These equations are based on a linear

transformation of the co-variance matrix. That is, when state vector x, is transformed to y, by a

system described by linear functions, its co-variance matrix is also transformed by: Py=FPxF
T,

where F is a linear function and Px is the original co-variance matrix. However, this is only valid

if the system is linear.

 An Extended Kalman filter, or EKF, gives a solution for a non-linear system, hence it is

used instead of the basic Kalman Filter. The EKF is a Kalman filter that is linearized around

work point. That is, the EKF implements a Kalman filter for the system dynamics that result

from the linearization of the original nonlinear filter dynamics around the previous state

estimates [8]. This linearization is achieved by taking the Jacobian matrix, instead of the original

system function while performing transformation of the co-variance matrix. Just as in the earlier

case, let us assume F to be the system function that transforms state vector x to y. However, in

this case F is non-linear. The Jacobian of F is its partial derivative with respect to the state vector

x, about its mean. It is represented by, say FJ. Now, the co-variance matrix is transformed by:

Py=FJPxFJ
T .

The Kalman filter and The EKF are very similar in terms of their equations except for the

change in equations for the co-variance transformation as explained above. But this has a greater

implication: In a Kalman filter the transformation of the co-variance matrix and the mean matrix

are independent and hence, these operations can be performed offline. However, in the EKF we

7

are taking Jacobian of the functions which are partial derivatives of the system with respect to

state vector computed at its mean, for the co-variance computation; thus, in an EKF, the mean

calculations and co-variance calculations are coupled and cannot be performed offline. Like a

Kalman filter, the EKF is an iterative process containing two steps: predict and update. We will

not describe the derivation of these equations, but we have listed the standard equations for the

Kalman filter, and thus the EKF, in the following Figure1:

 Figure 1: Kalman Filter Equations [9]

In applying these equations to the EKF, HT, is the Jacobian matrix and Kk is the Kalman

gain. In the equation to compute the Kalman gain, the part in parentheses is the observation

model. It changes according to the available sensor for performing SLAM. We are performing

the bearing-only SLAM, with a monocular camera. The observation model for monocular SLAM

and the specific observation model that we will be using is described later in this chapter.

As we described earlier, calculating the Kalman gain and then updating the state vector

and co-variance matrix form the second step of the SLAM iteration. The predict and update are a

part of the Extended Kalman filtering operation, however in SLAM we also have to include the

additional steps of feature association and the final steps of adding new feature parameters in the

state equations.

8

1.3 Inverse Depth Parameterization

As compared to the generalized SLAM explained earlier, monocular SLAM will have

some variations in its state vector. In the earlier section it was mentioned that the state vector is a

combination of two groups of parameters: one is the motion model of the robot carrying the

camera, the other is the group of parameters that represent the features of the environment. Let us

first understand the motion model used in the state vector. We do not have odometry, hence we

do not know the speed and distance, so we use motion models that estimate the linear and

angular speed of the camera [5]. This is a constant velocity model with unknown acceleration

inputs. These linear and angular accelerations are represented by zero mean Gaussian noise with

known standard deviations (σa and σα) [6]. Equation (1) provides the equation of motion and its

update equation for the camera.

 𝑓𝑣 =

(

𝑟𝑘+1
𝑊𝐶

𝑞𝑘+1
𝑊𝐶

𝑣𝑘+1
𝑊𝐶

𝑤𝑘+1
𝐶
)

=

(

𝑟𝑘
𝑊𝐶 + (𝑣𝑘

𝑊 + 𝑉𝑘
𝑊)𝛥𝑡

𝑞𝑘
𝑊𝐶 × 𝑞((𝑤𝑘

𝐶 + 𝛺𝐶)𝛥𝑡)

𝑣𝑘
𝑊 + 𝑉𝑊

𝑤𝑘
𝐶 + 𝛺𝐶)

 (1)[6]

The camera’s state vector fv comprises a metric 3D position vector rW, orientation

quaternion qRW, velocity vector vW, and angular velocity vector R relative to a fixed world frame

W and robot frame R carried by the camera1 [7]. Now, this forms one section of the state vector.

Another, section is formed by the parameters of the features of the environment that are

calculated by technique called ‘inverse depth parameterization’. In this technique, when a feature

is newly initialized from a monocular camera, only information about the ray from the camera

1 In case of Monocular SLAM, the frame of reference of the robotic platform can be represented as either

robot frame ‘R’ or camera frame ‘C’; both mean the same and is carried by the camera.

9

can be retrieved [6]. Equation (2) equation from [5] shows, the parameter yi that represents the

feature.

 𝑦𝑖 = (𝑥𝑖 𝑦𝑖 𝑧𝑖 𝜃𝑖 𝜙𝑖 𝜌𝑖) (2)

 In order to understand above equation we have to consider Figure 2:

 Figure 2: Inverse Parameterization [5]

As illustrated in Figure 2, the vector yi encodes the ray from the first camera position

from which the feature was observed by xi, yi, zi (the camera optical center), and θi, φi (elevation

and azimuth) defining unit directional vector m(θi, φi). The point’s depth along the ray di is

encoded by its inverse ρi =1 /di [5]. In the Figure 2, α is parallax and the line connecting the two

camera positions is called the baseline. The baseline can be represented as a vector that

represents translation motion of the camera. This baseline vector has been used in [13] as a

criteria for feature initialization. The ray vectors created from two different camera positions are

crucial to predicting the point location (feature position). Each ray vector can be expressed in the

camera frame as

 ℎ𝐶 = 𝑅𝐶𝑊[𝑋𝑖 𝑌𝑖 𝑍𝑖]
𝑇 (3)

10

In equation (3), hC is actually the camera observation through image projection. On

applying the normalized retina model and hence the radial distortion model we get the feature

position in terms of the camera center in pixels, focal length and pixel size.

These ray vectors, along with the baseline vector, can be used to calculate any of the

angles (including the parallax) of the ‘triangle of vectors’ in Figure 2. Consequently, we can

obtain the inverse depth (and hence depth) using the sine law. The 3-D point (Xi, Yi, Zi) can be

represented in terms of its inverse depth as shown in equation (4):

𝑥𝑖 = [

𝑋𝑖
𝑌𝑖
𝑍𝑖

] = [

𝑥𝑖
𝑦𝑖
𝑧𝑖
] +

1

𝜌𝑖
𝑚(𝜃𝑖, 𝜙𝑖)

 𝑚 = (𝑐𝑜𝑠𝜙𝑖 𝑠𝑖𝑛𝜃𝑖 , −𝑠𝑖𝑛𝜙𝑖, 𝑐𝑜𝑠𝜙𝑖 𝑐𝑜𝑠𝜃𝑖)
T (4) [5]

Now, these two groups of parameters; the camera motion model and the matrix yi calculated

through inverse depth parameterization together form the state vector as in (5).

 𝑋 = (𝑥𝑦
𝑇 , 𝑦1

𝑇 , 𝑦2
𝑇 , … , 𝑦𝑛

𝑇)T (5) [5]

1.4 Feature Initialization

 Feature initialization is the tricky part in Monocular SLAM and as explained earlier, it

requires at least two observations from two different robot poses (two different images) for the

same feature or landmark. We know that, baseline and parallax, as shown in Figure 3, are the

key to computing the depth of the feature. Generally, it is easier to create parallax for nearby

features (as in the indoor environments) as compared to the objects that are far away since, when

objects are close, even small camera translations are sufficient to create large parallax. In this

sub-section we will go into details of the previous work done in initialization methodologies.

11

 Figure 3: Creation of Parallax

 References [13] and [14] describe the complete working of bearing-only SLAM based

on concept of delayed initialization. Reference [13] uses a threshold for the parallax and the

minimum baseline as a criterion for feature initialization. In [14] the initial PDF of a discovered

landmark is approximated with a weighted sum of Gaussians and the initial state is de-correlated

from a stochastic map, until it is confirmed as a landmark. The feature initialization is done by

assuming a priori uniform distribution in the range [ρmin ρmax] for the depth ρ (assumed to be the

surrounding environment for the robotic platform) and this a priori knowledge is approximated

using the sum of Gaussians. Each Gaussian is then converted to Cartesian coordinates in the

robot frame. Now, the likelihood of each Gaussian is computed based on further observations.

Accordingly, bad hypotheses are pruned and when a single Gaussian remains, the feature can

now be considered as a possible addition to the map.

Reference [12] presents a constrained initialization technique where the past poses of the

robotic platform are retained in the SLAM state and feature initialization is deferred until their

estimates become well-conditioned. In this subsection we will describe, under what conditions

can the feature estimates be considered well-conditioned and how the feature will be initialized.

Consider the two bearing measurements and the vehicle poses as shown in Figure 4.

12

 Figure 4: Intersection of two bearing measurements [12]

We know that a minimum of two bearing measurements are required to determine a

landmark in using bearing-only SLAM. The location of the feature is calculated at the

intersection of two lines. Now, according to [12] a pair of measurements can be considered well-

conditioned if the true uncertainty distribution for feature location is well approximated by a

Gaussian. If the pair of measurements is found to be well conditioned, the feature is added to the

state vector. However, initially the feature location would obviously be ill-conditioned owing to

various uncertainties in pose estimates, bearing measurements and the sufficiency of baseline

created. The author’s principle idea is this: the pdf of the new feature location should closely

resemble Gaussian approximation obtained from a Jacobian-based linearized transform. This

comparison between the joint pdf of the vehicle states, the initial Cartesian feature location, and

the linearized Gaussian approximation is done through the calculation of sample relative entropy.

Sample relative entropy is the statistic used to compare the two distributions: the true PDF of

feature location and its Gaussian approximation obtained from Jacobian based linear transform.

If f(x) is true distribution and g(x) is its Gaussian approximation then the relative entropy is

defined as

 𝐷(𝑓||𝑔) = ∫ 𝑓(𝑥)𝑙𝑛
𝑓(𝑥)

𝑔(𝑥)
𝑑𝑥

∞

−∞
 (6a)

13

However, the closed-form solution is not known for the above equation, hence, relative

entropy cannot be calculated and instead sample relative entropy is calculated, which is obtained

by sampling from true distribution f(x). If f(x) is sampled as {x1, …, xn} then, approximate relative

entropy is calculated as

 𝐷(𝑓||𝑔) ≈
1

𝑛
∑ [𝑙𝑛𝑓(𝑥𝑘) − 𝑙𝑛𝑓(𝑥𝑘)]𝑛
𝑘=1 (6b)

The authors claim that computing sample relative entropy is an adequate measure to

determine whether the measurements are well conditioned for feature initializations.

Now, we have seen that delayed and constrained feature initializations for the bearing-

only SLAM problem can be effective, however these techniques require defining a criteria for

deciding the sufficiency of the baseline and, consequently, there is a delay in landmark

initialization until that criteria is fulfilled. As we know, the success of Monocular SLAM

depends on the creation of parallax and a sufficient baseline. If the camera motion is too close to

the direction of the landmark then, in order to create a sufficient baseline, the entire process of

landmark initialization suffers a considerable delay. This is because, creation of acceptable

baseline requires creation of adequately large parallax angle, and creation of such a parallax

angle will take time if the direction of landmark is too close to the camera motion. The baseline

sufficiency criteria requires vector calculations and calculations involving sine law to determine

the generated baseline, and then binary decision has to be made depending on whether or not the

generated baseline meets the pre-determined criteria and this makes it computationally expensive.

Undelayed initialization is advantageous because it allows the use of landmarks that lie close to

the direction of motion of the robot, for which the baseline would take too long to grow. This is

crucial in outdoor navigation where straight trajectories are common and vision sensors will

naturally look forward, resulting in baselines that grow very slowly [11].

14

The general mechanism for undelayed initialization is as follows: a set of hypotheses for

the position of a particular landmark is included in the map. As the process moves forward, and

more observations are made then, based on certain criteria bad hypotheses are purged and the

ones with the highest possible likelihood are used to update the map. Reference [11] suggests a

robust method for undelayed initialization. It uses an approximation of the Gaussian Sum Filter

[GSF]. We will describe their method in brief to get a general idea. Consider the Figure 5:

 Figure 5: geometric series of Gaussian distribution [A]

When a landmark is first observed, the optical ray (along which that landmark is located)

and its associated co-variances, define a conic probability distribution function as shown in the

above diagram. The new landmark position that is to be stacked in the map, defined by xp, is

given by the function: Xp = g(Xv,bp,s)

Where bp is the bearing information and s is the range (i.e. depth) which is unknown.

Now, as shown in the above diagram, if s ∈ [Smin, Smax], then p(s) is the Gaussian sum

approximation defined as (7).

s
1

s
min

 = α
1

σ s
1

s
1

s
3

= β
2

s
2 = β s

1

= α
2

σ s
2

= α
3

σ s
3

s
max

0

s

15

𝑝(𝑠) ≈∑𝑐𝑗. Г(𝑠 − 𝑠𝑗; 𝜎𝑗
2)

𝑁𝑔

𝑗=1

 Г(𝑠 − 𝑠𝑗; 𝜎𝑗
2) = exp (

(𝑠−𝑠𝑗)
2

2(𝜎𝑗)
2)/√2𝜋𝜎𝑗 (7)

Using this, we can create a hypothesis for a map with hypothetic landmark xj
p

 at range sj.

However, this is only one hypothetic map. The pdf of the actual map state is the weighted sum of

all the Gaussian maps given by (8).

 𝑝(𝑋+|𝑦𝑝) = ∑ 𝑐𝑗
′. Г(𝑋+ − 𝑋𝑗

ˆ; 𝑃𝑗)
𝑁𝑔
𝑗=1

 (8)

Now, we will have, say Ng maps for every landmark identified and, in case where m

concurrent landmarks are identified and are to be initialized, we will have Ng
m maps. This

multiplicative increase makes the solution untenable and hence, [11] proposes a minimal

implementation of (7).

 With reference to Figure 5 (refer page 14), assuming that the ratio αj = σj/sj is small

enough we take αj = α = constant. Now, the minimal representation of (7) is:

 𝑝(𝑠) = ∑ 𝑐𝑗
′. Г(𝑠 − 𝛽𝑗−1𝑠1, (𝛽

𝑗−1𝜎1)
2)

𝑁𝑔
𝑗=1

 (9)

In order to determine the first term (s1, σ1) and the number of terms, Ng, the authors have

imposed the conditions s1 − σ1 = smin and sNg + σNg ≥ smax . With the help of this minimal

implementation, the conic shape ray along which the landmark lies can be filled with a minimum

number of Gaussian shape distributions. Also, if each hypothesis is assumed to be a separate

landmark, then all of them can be initialized in a single Gaussian map and then the standard

EKF-SLAM procedure can be applied to it. Thus, the multiplicative growth we saw earlier can

be avoided. The actual undelayed initialization takes place through simultaneous multiple

stacking of all members of the conic ray each of which is assumed to be a feature. Finally, on

16

several iterations all but one members are purged based on the process described as follows (This

eliminates the need for calculation of any initialization conditions and hence avoids delay):

All Gaussian shape members of the conic ray are stacked in the state vector assuming

them to be different landmarks. Each hypothesis is stacked one by one iteratively by a standard

EKF procedure, with each hypothesis having equal weight. This is depicted by a uniform

Aggregated Likelihood vector as follows:

 Λ = [Λ1 … ΛNg]

 Λj = 1/Ng (10)

The fully correlated map is then updated by federated information sharing. This works on

the principle described in detail in [11]. Finally each hypothesis is successively updated with its

measure of likelihood (11).

 Λ+j = Λj · λj. (11)

The Aggregated Likelihood (AL) vector Λ is then normalized so that ΣjΛj = 1. A simple

threshold on the AL which is dependent on the actual number N, of remaining members. Ray

member j is deleted if Λj < τ/N where τ is in the range [0.0001 0.01] [11]. When N = 1, the ray

has collapsed to a single Gaussian and now just a standard EKF SLAM. The diagram 6

represents the undelayed initialization process:

 Figure 6: Ray update on four consecutive poses [11]

4 3 2 1

17

1.5 Hough Transform based feature detection

Performing Hough transform on an input image forms an essential component of this

thesis. In our implementation of Monocular SLAM, we will be using Canny edge detection

followed by Hough transform, to detect the landmarks and extract their parameters. We will be

performing Hough transform on an input image in software followed by an hardware FPGA

implementation and will analyze performance in each case. However, it is important to

understand the role Hough transform plays in our SLAM implementation. In this section we will

explain, how Hough transform based extraction of lines can be used to implement monocular

SLAM.

Feature detection is a primary step in a SLAM implementation. In order to build a map of

the environment, it is essential to be able to detect certain distinct landmarks and features that

characterize that particular environment. The next step in SLAM is to be able to extract

parameters of the detected landmark. It is very common to use Harris corner detection for this

purpose. In this thesis, we have made effective use of Hough transform to detect features and

extract their parameters in an indoor environment. Most of the SLAM implementations for

indoor environments are based on corner point detection like in [10]. Although not very common,

Hough transform has been used previously for SLAM implementation, especially in detecting

indoor environments such as a hallway. This is obviously because the structural properties of a

hallway or a corridor are explicitly based on vertical and horizontal lines. One can easily

characterize the floor, pillars and beams, door edges etc. in terms of parallel lines of particular

orientation in a 2-D plane. In [15] the authors have presented the lines representing floor edges

and vertical edges as sensory inputs for the monocular SLAM, something very similar to what

we have tried to implement. In [16] they have used Hough transform for SLAM in a very

18

specific type of indoor environment. They have considered a plane environment having lines on

the floor such as those in many universities, malls, museums, hospitals, houses, and airports.

Their idea is to make effective use of Homography. The lines on the floor are identified by the

Hough transform, and the parameters of the normal representation of the straight line returned by

the Hough transform are mapped to the world using a pre-calculated homography matrix, which

are then plugged into updating phase of the EKF. However, this kind of implementation would

be highly non-generic. Another related work can be found in [17] which presents a mapping

algorithm for bearing only sensors, based on the Fast Hough Transform. In [18] a geometrically

constrained EKF framework for a line feature based SLAM has been implemented, which is

applicable to a rectangular indoor environment. It makes use of a constrained Hough voting

space, which they have developed in accordance with their constrained EKF framework

mentioned earlier, as opposed to a conventional voting space. Reference [19] describes in detail a

scan matching algorithm using Hough transform, which can be used for SLAM implementation.

In our thesis we depend heavily on the technique used by [15] to implement feature

detection algorithm for bearing-only SLAM. As we will explain in the later chapters, the feature

that we try detect in the environment is a pillar (or all pillar-like features) and the floor edges,

which are characterized by a straight line. Hence, the observation model used by [15] is effective.

We will go through their line-based SLAM technique in brief.

A detected line is projected to the ground as a point. In our case it will be a pillar which

will be projected on the ground plane and that projection would determine the pillar position

with respect to the moving robotic platform. The point on the 2-D plane is as shown in Figure 7.

19

 Figure 7: Projection of a line as a point on the plane for inverse parametrization [15]

We have seen, in Section 1.3, the inverse parameterization technique for a 3-D point in

space however, in this case, it is a point which lies on the same plane and hence, it does not have

the elevation angle. The inverse parameter equations (4) are adjusted for this point as (12):

𝑋𝑖 = [
𝑥𝑖
𝑦𝑖
] +

1

𝜌𝑖
𝑚𝑖

 𝑚𝑖 = [
cos 𝛼𝑖
sin 𝛼𝑖

] (12)

Now the observation model, similar to equation (3), adjusted for the projected point is as

(13):

 𝑔𝑖
𝑐 = 𝑅𝐶𝑊 (𝑋𝑖 − [

𝑥𝑘
𝑦𝑘
])

 ℎ𝑖 = 𝑐𝑥 − 𝑓𝑥
𝑔𝑦
~

𝑔𝑥
~ (13)[15]

As seen earlier, the projected feature point is then coded by its inverse depth as yi = (xk, yk,

αk, ρk). However, unlike equation (2), there is no elevation angle. Rather, the angle αk defines an

angle made by the observation ray with X-axis. Thus, xk, yk and αk, describes the robot pose and

ρk = 1/dk describes the inverse depth.

Another feature of interest to us is a floor edge. In [15] they have encoded the floor edge

with its depth (instead of inverse depth) as yi = (xk, yk, αk, dk). The observation model for edge, as

given in equation (14) is:

20

 Figure 8: depth-range parameterization for floor line [15]

𝑥𝑖𝑥𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗ = 𝑚𝑖(𝑚𝑖. 𝑥𝑖𝑥𝑟⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗)

𝑥𝑗𝑥𝐿⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 𝑥𝑖𝑥𝐿⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ − 𝑥𝑖𝑥𝑗⃗⃗ ⃗⃗ ⃗⃗ ⃗ = [
𝑥𝑗𝐿
𝑦𝑗𝐿
]

 ℎ𝑖 = [
𝜃𝑖
𝑑𝑖
] = [

𝛼𝑖 −𝜙𝑘

√𝑥𝑗𝐿
2 + 𝑦𝑗𝐿

2] (14)[15]

21

Chapter 2

Feature Detection Algorithms

We have seen various feature initialization methods for bearing-only SLAM in Chapter 1.

In a SLAM implementation, the task that precedes feature initialization is feature detection. Only

once the identifiable feature is confirmed as detected, we can begin with the initialization process.

Harris corner detection is the most commonly used image processing algorithm for the purpose

of feature detection in SLAM. The 3-D corner point detected can be coded using its inverse

distance as we have seen in Section 1.4. However, for our implementation, we will draw heavily

from the concept of line based SLAM described in Section 1.5, and we will be using Hough

Transform as our primary vision algorithm.

The initial goal of our research was to design an efficient algorithm for feature detection

in an indoor environment for the purpose of Monocular SLAM. An ideal indoor environment

would be a hallway. Generally, Hallways are characterized by several features with vertical

edges like beams, pillars, doors etc., as in Figure 9; also, a hallway can be traced by its parallel

floor lines, as in Figure 10. The Hough transform is a line detection algorithm, and hence is

perfect for such conditions. Also, as described in Section 1.5, a detected pillar can be projected to

the floor as point on the floor plane and can be coded using inverse parameter as described in

[15].

 In this chapter we will present our pillar and floor detection algorithm and its variations.

We will also present our results for feature detection experiments. Further we will talk about,

22

how we can implement a complete bearing-only SLAM system using our feature detection

algorithm.

 Figure 9:

The hallway is characterized by features that

can be represented by parallel vertical lines.

These features can be described as being

pillar-like and can be detected using Hough

Transform.

 Figure 10:

The floor edges of the hallway are

characterized by inclined lines. The Hough

transform algorithm can effectively detect

lines at specific orientation such as these

yellow lines.

23

2.1 Introduction to Pillar Detection

A pillar is easily identifiable because it is characterized by the two parallel lines which

form its edges. In this thesis, we use “pillar” as a generic term for any pillar-like features like

doors, beams, protruding wall edges, window frames, etc. Basically, any feature of acceptable

width which can be identified by its two parallel edges, is considered a pillar in our feature

detection implementation. The two parallel edges are extracted by a combination of two image

processing algorithms: Canny edge detection and the Hough Transform. We will go into the

intricate details for each algorithm later in the thesis, for now, it is sufficient to know, that Hough

transform detects lines from a Canny edge detected image and returns its coordinates in the

parameter space (i.e. rho and theta). This information extracted by the Hough transform

algorithm can be used for computing virtual widths of the detected possible pillars and will be

instrumental in confirming the existence of a pillar and tracking it over successive frames.

When a robotic platform moves in an indoor environment it has to map all possible

identifiable features (in our case all pillar-like features). However, as we move towards

designing an algorithm to do so, first we need to develop a basic code that can identify a

stationary pillar with a stationary camera. We have developed the code in C++ and we have used

OpenCV functions. Hence, it is necessary to go into a little detail of these functions and OpenCV

in general.

2.2 OpenCV Functions

Our objective is to design a SLAM application using no other sensor or data acquisition

sensor except the monocular camera. The feature detection and calculation of parameters for the

Kalman filter will be based upon a series of images captured over a period of time. In order to

extract data from a captured image, we will require understanding of various image processing

24

techniques. OpenCV is going to be of utmost importance in this case. The basic description and

key points regarding OpenCV are described in [2]. OpenCV is an open source computer vision

library which is written in C/C++ and runs under Linux, Windows and Mac OS X. OpenCV was

designed for computational efficiency, with a strong focus on real-time applications. It is written

in optimized C which can take advantage of multicore processors and it is intended to provide a

simple-to-use computer vision infrastructure that helps people build fairly sophisticated vision

applications quickly. The OpenCV library contains over 500 functions that span many areas in

computer vision. In our code we will be making extensive use of OpenCV functions which

enable us to perform various image processing task without the need for understanding the

intrinsic details of image processing algorithms. Out of all the functions tried and tested, the

functions that have been finally used in the code are listed in this section.

Canny edge detection:

The basic concept of edge detection is based upon the fact that an edge is characterized

by a sudden change in intensity between two consecutive locations (in same orientation) in the

image. Mathematically, amount of change in intensity with respect to spatial distance (called the

first derivative) is the basis to create edge detection operators. While checking for the edges in

the image on multidimensional basis, we take partial derivative along each axis each of which is

called a gradient. The edge operators function on the principle of approximating the local

gradient of the image function. The Canny function also, at core, works on this gradient principle

when used in basic (single scale) form [1]. The Canny operator is considered to be superior to

other edge detection algorithms in its single scale form [1]. In our application we will be using

the OpenCV function for Canny edge detection. The function is of the form [3]. We will be using

this function before performing a Hough transform on the image.

25

Void Canny(InputArray image, OutputArray edges, double threshold1, double

threshold2, int apertureSize=3, bool L2gradient=false)

Hough transform:

Once edge detection is performed on an image, the Hough transform function looks for a

large set of consecutive points along the same orientation and assumes that to be a line. It then

calculates the perpendicular distance from an imaginary origin to that point and the inclination of

that perpendicular line (angle with respect to the imaginary x-axis). Basically, it returns the

details of all lines it can find in the image and returns the polar coordinates of that line as the

values rho and theta. These parameters will be used extensively in our code for extracting

various feature parameters. Theta is measured in radians2. The Hough transform detects all

possible lines in the edge detected image. In our code we detect lines having a specific range of

orientations and eliminate all other lines. Hence, we use conditions for lines having a theta value

within a desired range of radians. We will detect vertical lines measuring approximately 0

radians (0 degrees) for the detection of pillar and lines of approximately 0.78 radians (45

degrees) for the detection of the floor edges. The rough sketch shown in Figure 11 describes the

measurements for the Hough transform:

 Figure 11: A line with rho-theta parameters

2 The units of ρ is the units of the graph system in which the line is plotted. The resolution of ρ is 1 pixel in

OpenCV. For our implementation on FPGA, ρ-θ space is an abstract mathematical construct where ρ value ranges

from –n/√2 to +n/√2 for n X n sized image

26

The OpenCV format for the Hough transform function is [3]:

Void HoughLines(InputArray image, OutputArray lines, double rho, double theta, int

threshold, double srn=0, double stn=0)

In our code, departing from the general convention of using feature key point detection as

the main means of detecting a feature in the environment, we have used Hough transform as the

primary feature detection tool. However, it has been found that Hough transform is sensitive and

prone to error and as will be explained later, has a good detection range of only around 70-80

inches (177.8 cm – 203.2 cm). In future work we will may reconsider the use of feature key point

detection, however, as of now we will continue to rely on the Hough transform method.

Line function:

The line function is a basic line drawing tool provided by OpenCV. For display of lines

detected by the Hough transform we will require this function. The Hough transform does not

display lines, it just detects them and returns the polar coordinates. Hence, in order to display the

lines in a separate window to check its correctness, we have to call the line function. The line

function requires two points with their respective x and y coordinates. The Hough transform

however returns the polar coordinates. Hence, always after Hough transform is called, before we

call the line function, we have to write a small routine to convert the polar coordinates of each

line detected into the Cartesian coordinates to enable the line function to draw those lines. Now,

another function called lines.Size() will be required in this routine. This function returns the

number of lines that are detected by the Hough transform in that particular image. It is at this

step that we can use our angle filter and eliminate the remaining lines while retaining those at our

desired orientation. The line function will also be used by us in displaying the path traced by the

camera in the two dimensional map. The OpenCV syntax for the line function is as follows [3]:

27

Void line(Mat& img, Point pt1, Point pt2, const Scalar& color, int thickness=1, int lineType=8,

int shift=0)

Circle function:

Similar to the line function, this is another basic drawing function of OpenCV. We will

be using this function to draw the points of very low radiuses to display a point that indicates the

location of the feature. This requires x and y coordinate of a point and the value of the radius to

draw the circle. The OpenCV syntax of this function is [3]:

Void circle(Mat& img, Point center, int radius, const Scalar& color, int thickness=1,

int lineType=8, int shift=0)

Besides these important functions of OpenCV, we will be using some basic functions

such as imshow, which displays an image in the window titled by the name passed within the

colons, in the function. We will be using the standard functions for capturing the image and

storing the image or other functions that retrieve the image from memory which are not

mentioned in detail here.

It is important to note that the x and y coordinates of the points which we will supply to

all the functions are denoted in our code in the form of an object of the class point. If pt is an

object of the class point, then pt.x and pt.y values determine the x and y axis of a particular point.

Also, all images are represented in form of a matrix defined by the data type Mat. The variables

of this data type are passed to the functions such as imshow. Also, all the image processing tasks

are performed on the variables of this data type. Basic operations such as addition can be formed

on them (and we will be performing on them for the two dimensional map display).

28

2.3 Pillar Detection with Stationary Camera

The map will be built based upon a set of features and the position of the camera with

respect to the feature locations. In an environment like a hallway or a corridor pillars are the

most easily identifiable features and hence, we begin with code that identifies a pillar. Our

ultimate aim is to find the position of the camera with respect to the location of the pillar. This

will be our first step towards being able to create a full-fledged map.

The pillar is easy to identify because it is characterized by two parallel lines which

constitute its edges. We have seen the advantages of using the Hough transform for accurate

edge detection and we can put it to use in our case. The Hough transform function returns the

value of rho and theta of each line. If the lines are parallel, the theta for both the lines has to be

same. In such a case, the difference between the rho values of both the lines would be the width

of the pillar in the image.

However, the Hough transform will detect, not only the edges of the pillar but also all the

possible edges in the image. That would include all the vertical, horizontal and the edges

oriented at an angle. The pair of parallel lines detected in such a case would not necessarily mean

a pillar. It could be anything present in the environment. Thus, a series of operations would have

to be done on the image in order to filter the unnecessary data and detect the pillar.

Now, we begin with performing Canny edge detection over the captured image followed

by the Hough transform. The necessary angle adjustments must be done in the code such that out

of all the lines detected by the Hough transform, only, the lines which are vertical or close to

being vertical will be retained and rest will be eliminated. This would provide us with the pillar

edges that we require. This adjustment would form a crucial part of the code and would be

29

critical when we are simultaneously detecting the floor edges also along with the pillar edges in

the later part. The angle adjustment condition used in the code is as follows:

(theta>CV_PI / 180 * 170 || theta<CV_PI / 180 * 10)

This condition is based upon the theta values that Hough transform function recognizes

as explained in the earlier section.

The final image with the detected pillar edges would, however, not be devoid of noise.

Canny edge detection is based upon the pixel intensities. Thus, the edges or the features of the

detected objects would not be sharp, obviously because the intensities are not uniformly

distributed over the objects and depend on the light or shadow falling on them. The final image

would end up detecting number of false edges. It is necessary to develop a logic that would

eliminate the false edges and retain the required ones.

The algorithm we have devised to eliminate noise works in the following way: The

number of lines detected by the Hough transform is returned by the function lines.Size(). We

create two arrays that stores all the rho and theta values that Hough transform detects. Then

using the lines.Size() function we parse through these arrays. If the theta of the two lines is same

(indicating that they are parallel) we calculate the difference in their rho values (The difference

in the rho values of the parallel lines representing the edges of the pillar is actually the abstract

image width of the pillar) and store it in a third array. This would eliminate all the non-parallel

false edges as shown in Figure 12. Third array now contains all possible image widths. Now, it is

obvious that distance between an actual edge and the false edge will always be less than the

distance between two actual edges. Thus, we take the largest value from the third array and that

30

would be the image width of the pillar that we call delta rho (Δρ). The parallel lines with a valid

value of Δρ would indicate the detection of the pillar.

 Figure 12: False edge removal from Hough transform output

2.4 Detection of pillars with known shades

As part of initial trials, we had used bright colored pillars. We have been able to

successfully do the error free and accurate pillar detection for these pillars with known shades.

Its error-free nature is obvious, because we apply threshold to the image and remove all the other

colored objects from the image, which do not lie within are color intensity range that we pre-

decide. This detection range is adjustable. In this section we have given details of this technique

and presented the experimental results. The question would be, however, is detection of pillars

with known shades of any use in real-world applications? In general, SLAM is used to map an

unknown environment, however, some detail of the environment may always be available. We

may know, whether it is an indoor or an outdoor environment. This would change the parallax

requirement as explained in Section 1.4. If it is an indoor environment we must have some basic

knowledge, like the presence of hallways (as in our case). If the environment is partially known,

31

for example a robot which performs tasks such as intra-office package delivery may have the

knowledge of the kind of pillar shades present in the office space. In such cases this technique

may be useful. However, moving forward with our thesis we will present an efficient generic

algorithm for any pillar of unknown shade and width.

For now, since we are beginning with the basic steps, we will rely on the assumption that

the pillar we wish to detect has a bright color such as red or orange. We will work with two

pillars of different widths one red in color and other orange in color. Thus, our first stage of

filtration would be detecting all the objects present in the environment that would have the

intensity values corresponding red or orange colors. This, would eliminate most of the

unnecessary objects in the image. When we implement object detection using its color, the

resultant image would be a threshold image. In the Figure 13 we have a red pillar. The next

image is the threshold image. Now, we can see that the threshold image does not give a sharp

detection of the red pillar. Thus a number of false edges would be detected.

 Figure 13: Pillar detection using a shade threshold

32

Once we eliminate the noise and calculate a valid Δρ, our function successfully returns

affirmative message detecting the pillar. In order to understand the intricate details of the logic,

we will see the internal values of the arrays that we have used in our code and also see the

process of noise elimination (removal of false edge as in Section 2.3 and Figure 12) and

successful detection of the orange pillar with its width in the image (see Figure 14).

 Figure 14: Pillar detection using a shade threshold and false edge removal

We have two arrays: arrr[] and arrt[] which store the rho and theta values respectively

of each line. Now in the above image we see that the threshold image of the orange pillar is not

sharp. The right edge contains certain distortions. Hence, the Hough transform will detect three

edges (one of them being false). In the image we can clearly see that the red colored line on the

right edge is thicker than that on the left edge. This is because it detects three lines instead of two.

This can be seen on the command prompt output. The number of lines being detected is 3. The

two arrays contain three theta and rho values of each line. We see that theta values of all three

line is same i.e. 0. Which means all three are parallel. However, looking at their theta values we

see that rho values of two edges are very close to each other (i.e. 349 and 351) while the third

edge has rho value 309. In this case we can have three values of delta rho:

351-309=42

33

349-309=40

351-349=2

The highest of these three values that is 42, is taken as the valid value of delta rho and

hence, the pillar detection is successful.

2.5 Pillar Detection for Bearing-only SLAM

The pillar detection methods discussed in the earlier sections are highly non-generic. We

began with detecting a single pillar with a stationary camera and then we went ahead to

accurately detect pillars with known color shades. The code can be adjusted to include various

intensity levels and color combinations and can be used if the environment conditions are

previously known. However, this adjustment cannot be done in real-time obviously and it is

highly unlikely that we will know the environment conditions previously in real world

applications. Also, we cannot directly detect a pillar by identifying two parallel lines because, in

general, there will be multiple pillars in the environment and thus, the image captured will detect

multiple parallel lines. In this situation, it is impractical to detect a pillar simply by selecting

largest virtual width, as we have done in Section 2.4. It is also important to note that unlike the

stationary camera in the earlier case, we have a moving robotic platform with a mounted camera

and hence, the image is prone to be noisier. This is where we need a well-defined algorithm to

detect a pillar. Also, there other necessities which will be required by any bearing-only SLAM

implementation that is, motion of camera to generate sufficient base-line and parallax for inverse

depth parameterization. The pillar detection algorithm should conform to all such necessities.

34

Before designing the algorithm we consider various possible cases that we may encounter

while moving a camera through the hallway. Consider the sketch shown in Figure 15. In the

sketch we see that frame 1 captures multiple lines from both the pillars that it can observe. When

we perform camera translation to create a parallax, the second pillar goes out of view. Now

edges of only one pillar remains in the frame and we can use the same detection techniques that

we described in Section 2.3. However, there is another issue here: there is no way of telling

which pillar we are actually tracking, because depending upon the angle of the camera, the pillar

remaining in the frame can be either of the two pillars.

 Figure 15: Two pillars far apart

Consider another possibility (Figure 16), there is a door closer to the camera and a pillar

somewhere in the rear. Now, the door is characterized by two parallel pillar-like frames. Besides

having the same issues as those in the earlier case, in this case we have the additional problem

that two parallel frames of the door will never go out of view and there is no way of knowing

whether it is a door or two parallel pillars.

35

 Figure 16: A door frame and a Pillar far apart

In the next case (Figure 17) there too many pillars in the environment and it is difficult to

extract one of them for feature initialization because some of them will always remain in the

frame.

 Figure 17: Multiple pillars cluttered together

An ideal case would is shown in Figure 18. The robotic platform would be able to isolate

and extract each pillar with subsequent camera translation and be able to map the whole

environment, but this will not always be the case, so our pillar detection algorithm must be able

to cover all the earlier described cases.

36

 Figure 18: Possible path traced by a robotic platform in a hallway

Considering all these scenarios, we have designed the pillar detection algorithm which is

described in the flow chart shown in Figure 19. The entire process of pillar detection works in

synchrony with the feature initialization and the EKF update. It runs in an infinite loop, however,

the process consists finite iterations of detection cycles. That is, it runs for a finite number of

loops to detect and confirm a pillar and after that many loops it clears all its parameters and then

restarts. The pillar has to be detected and confirmed in this duration if it is to be initialized in the

map, else it is simply missed. The iteration duration has to be carefully selected, keeping in mind

the frame rate and the velocity of robotic platform, if the pillar is to be detected and initialized

correctly.

The algorithm begins with image capture, the image is then processed using the image

processing algorithms which include Canny edge detection and the Hough transform. The Hough

transform will then give all possible lines detected within the image and its parameter space

coordinates. We filter out non-vertical lines, just as we had done earlier in Section 2.3. Now, the

vertical lines obtained may or may not be exactly vertical, as described in Section 2.3. The

detected vertical lines will lie within a range of angles that define the near-vertical orientations.

37

This will account for all the noise in pillar detection. Two arrays are then created (or a single 2-D

array) to store rho and theta for each line. All parallel lines (identified by same theta) are then

taken together. This is performed by double loop iterations within the code. The difference in rho

of each pair parallel lines defines the virtual width of a possible pillar. All the possible pillars

with their virtual widths are then enumerated. Most of the tasks described above are similar to

what we have done in the earlier sections. However, it is important to note few things: lines with

same theta in earlier section arose out of presence of noise, however, in this case it may be due to

presence of other pillar-like features within the environment (as we have seen in the sketches) or,

as in the earlier case, may be due to presence of noise. We have no way of distinguishing them.

Here we propose a two-fold procedure: the first is to simply apply threshold, that is, all virtual

widths above a particular upper threshold and those below a particular lower threshold are

eliminated. This would remove some of the very large widths which cannot possibly be pillars

and would also eliminate noise caused due to false widths.

This however, would be a very crude method and not very accurate. It would eliminate

widths of interest and end up retaining some large unviable widths which lie near the threshold

margin. Now, once we have a list of all possible pillars, we have to select one of them as our

current feature. Obviously we will select the pillar nearest to the camera, the ones that are away

will eventually get detected as the robot moves towards them. The pillar with largest virtual

width will be assumed to be the nearest. It is this hypothesis, although logical,, will encounter

several problems. As we have shown in the sketches earlier, there is no way of proving that there

is a single pillar. It may be multiple pillars, or a doorway or edges of wall (although edges of the

wall may be eliminated while applying a threshold).

38

 Figure 19: Pillar detection algorithm for bearing-only SLAM

This is where the second part of the algorithm comes into the picture. The second part of

the procedure is to implement a ‘learning-checking’ routine. This is a very basic routine; it

divides the detection cycle into two parts: a learning phase and a checking phase. The division of

the total number of iterations of the detection cycle between the learning phase and checking

Image

processing

Pair of parallel lines

Compute virtual

width in parameter

space

Apply threshold

Begin pillar

detection

Capture

image
Eliminate noise

A

A

Take largest virtual

width

End of learning

phase?

Compute statistics

Check range

condition

B

B

End of detection

cycle?

Clear parameters
Store virtual

widths

Pillar confirmed/

Not confirmed

yi

?

39

phase has to be carefully decided beforehand. During the learning phase, the virtual widths of

each possible pillar are stored and, at the end of the phase, the average is calculated. A suitable

range can be set deviating from this average. In the next phase, which is the checking phase, each

detected virtual width is checked to determine if it lies within this range. This check is performed

for all the image frames that are captured in the checking phase. If the number of hits is greater

than number of misses, the pillar is confirmed as detected. Remember, during the entire detection

cycle, the camera is continuously moving, the deviation range selected is extremely important,

because if the camera moves too fast too close to the pillar, its virtual width may fall out of range

even though it is the same pillar that we have been tracking throughout the cycle. Hence, all

three parameters – detection cycle iterations, number of frames in the learning phase and number

of frames in the checking frames – have to be decided according to the velocity of the robotic

platform. Once, a pillar is confirmed, both its edges (two parallel lines) are projected to the

ground plane as a point and coded using the inverse parameterization for a straight line as

described in Section 1.5.

We have experimentally observed the working of our algorithm. In each case we have

manually moved the platform towards the scene. Our detection cycle is 10 iterations long divided

5 and 5 between the learning and checking phases. The number of possible pillars detected in

each iteration is printed and if the pillar is confirmed it prints so, otherwise it moves to the next

detection phase.

40

 Figure 20: Pillar detection result1

In this case there are two pillars and some other features also that can be characterized by

vertical edges. All vertical lines are detected but only those that are parallel are taken into

consideration and based on that algorithm eliminates the false edges and determines the number

of possible pillars. The number of detected possible pillars varies between 1 and 2. As we move

the platform closer to the pillars, the parallel lines with the larger difference in rho values is

consistently detected and hence, the message ‘pillar confirmed’ is given as the output. The white

pillar which is the closer one is the detected pillar.

41

 Figure 21: Pillar detection result 2

The number of detected possible pillars varies between 2 and 3. As we move the platform

closer to the pillars, the parallel lines with the larger difference in rho values is consistently

detected and hence, the message ‘pillar confirmed’ is given as the output. The white pillar which

is the closer one is the detected pillar.

42

 Figure 22: Pillar detection result 3

In this case there are two pillars. Consistently two possible pillars are detected and the

larger one is confirmed. The number of detected possible pillars remains almost constant at 2. As

we move the platform closer to the pillars, the parallel lines with the larger difference in rho

values is consistently detected and hence, the message ‘pillar confirmed’ is given as the output.

The orange pillar which is the closer one is the detected pillar.

43

 Figure 23: Pillar detection result 4

Again, in this case there are two pillars and consistently both are detected and tracked.

Finally, the nearer one is confirmed. The number of detected possible pillars remains fully

constant at 2. However, there is an issue here: Both pillars have same width in the real world.

They are also at almost same distance from the camera. This is similar to the case described

earlier by Figure 16 in Section 2.5. Pillar is detected, but we are not sure which one of them, and

one of them is missed by our algorithm.

44

 Figure 24: Pillar detection result 5

In this case there are two pillars. Only one pillar is detected and confirmed, due to

inadequate lighting an edge of another pillar is not detected. The number of detected possible

pillars remains almost constant at 1. As we move the platform closer to the pillars, only one is

consistently detected and hence, the message ‘pillar confirmed’ is given as the output. The white

pillar which is farther away from the camera is the detected pillar.

45

 Figure 25: Pillar detection result 6

In this case there are three pillars. All vertical lines are detected and there are three pairs

of parallel lines and all are taken into consideration by the algorithm. The number of detected

possible pillars varies between 3 and 2. As we move the platform closer to the pillars, the parallel

lines with the larger difference in rho values is consistently detected and hence, the message

‘pillar confirmed’ is given as the output. The orange pillar which is the closer one is the detected

pillar.

46

 Figure 26: Pillar detection result 7

In this case there are three pillars and some other features also that can be characterized

by vertical edges. All vertical lines are detected but only those that are parallel are taken into

consideration. However, there is an issue here: There is a clutter of multiple edges. This is

similar to the case described earlier by Figure 17 in Section 2.5. The number of detected possible

pillars varies between 3 and 7. However, the Pillar is detected, message ‘pillar confirmed’ is

given as the output. The threshold works correctly in this case and parallel lines wide apart are

neglected and correctly, the orange pillar which is the closer one is detected.

47

2.6 Detection of Floor Edges

Since we are primarily building SLAM for indoor environments another prominent

feature (besides a pillar) would be the floor edges. The hallway or a corridor are characterized by

continuous parallel edges. However, unlike a pillar which are also characterized by two vertical

parallel edges, the edges of the hallway do not appear parallel in the image. We have taken an

image of one of the floor edges and performed Hough transform operation on it. We see that the

edge detected is inclined at an angle which approximates to 45 degrees.

 Figure 27: Inclined floor edge detection

 Thus in order to use the Hough transform mechanism for detecting the floor edges, we

again need to make the angle adjustments in the code. We had mentioned this earlier, that this

angle adjustment would be the key to simultaneous detection of the pillar and the floor. The

angle adjustment equation to be used in the code is as follows:

(((theta < 0.785398) && (theta<0.800)) || ((theta >2.420) && (theta<2.4300)))

This equation is developed on the basis discussed in the earlier Section 2.3. It sets a range

for the allowed line inclination for the floor edge line. This condition will allow the detection of

hallways of different widths. In order to build a complete map of the hallway, detecting the floor

edges would prove to be highly advantageous. The floor is the ultimate reference for the location

of other features like the pillars, door edges, window sills etc. Knowing the location of these

48

features with respect to the floor edges would provide us with a robust map of the indoor

environment. In the Figure 28, we see the original image containing pillar and a simulated

hallway:

 Figure 28: Original scene that mimics a hallway

The wooden bars in the image are arranged in a way similar to the actual edges of the

hallway. The function returns the detected edges of these wooden bars. We get the image shown

in Figure 29 as the output:

 Figure 29: Floor edge detection

49

The change in line inclinations would mean a detected change in the hall way (assuming

two hallways of different widths). If a feature location known with respect to one particular

hallway is detected in another hallway, then that would constitute a corner location (intersection)

of two different hallways. This is an important part required for determining map closure. When

we move around an indoor environment and return to the original location (as detected by the

presence of similar features that were detected earlier) we can achieve map closure, following

which all features detected during the process are connected using their relative locations to each

other. The corner features would help in connecting two hallways in the map. The following

rough sketch shown in Figure 30 illustrates this situation.

 Figure 30: Corner feature

Now, in order to calculate the relative location of the feature with respect to the hallway,

we begin with tagging the first set of inclined lines as hallway 1. All the features detected with

these constant set of lines are assumed to belong to this hallway. The floor edges are

parameterized using their depth from the camera as described in Section 1.5. As we calculate the

distances of these features from the camera, as well as their lateral shifts, it signifies the feature

location within that hallway.

50

 Figure 31: Floor edge detection algorithm

Now, with this background we can discuss the entire algorithm for floor edge detection.

As shown in Figure 31, the algorithm is similar to the pillar detection algorithm in some aspects.

However, the line orientation range has been changed to detect inclined lines and we don’t have

Image

processing

Begin floor edge

detection

Capture

image

Inclined lines

detected?

EKF

Store a

And its range and

set initialization

parameters

same a ?

Compare a

Before

initialization

Clear initialization

parameters

Compare a

same a ?

Record a corner

point

Before

initialization

After

initialization

After

initialization

Y Y

Y

N
N

N

51

a learning-checking phase here. Instead, we continue the detection iteration until a break in the

inclined lines is detected. Whenever the break is detected the robot pose α is checked. If this

angle is almost similar (within the range) of the previous angle when the lines were first detected,

then it implies change in the hallway direction. With the first detection of inclined lines, the

feature (the floor edge) is initialized (as described in Section 1.5) and the break would determine

change in hallway and hence would call for a new feature initialization. The feature initialization

(following feature detection) for both pillar and the floor edge was discussed in Section 1.5.

2.7 Synchronization with delayed initialization and EKF update

Our primary research goal was to develop feature detection algorithms in software for

monocular SLAM and then to create hardware implementations of portions of those algorithms

in order to improve overall system performance. In developing such algorithms however, it is

essential that they work in synchronization with the overall EKF-SLAM system, to build an

environment map. That means, recognized features have to be initialized and added to the map

(state vector and its co-variance matrix) and they must be updated subsequently in accordance

with the predict-correct model of the EKF. We are proposing monocular SLAM based on the

concept of delayed initialization. We know that in delayed initialization, candidate features are

initialized based on certain constraints such as sufficient baseline generation and creation of

adequate parallax. This delayed initialization model works in synchronization with our feature

detection algorithm as shown in the flow chart presented below in Figure 32.

When the detection cycle begins, a feature is taken to be a candidate for initialization. We

have not confirmed it to be a pillar that we are consistently tracking, but we assume it to be one.

The parameter extraction for the feature begins based on the combination of the observation

52

model explained in Section 1.5 and the delayed feature initialization explained in Section 1.4.

When the detection cycle ends and we have confirmed it to be a consistently tracked pillar, then

the feature is accepted for further processing, else it is purged. Once, it is accepted for further

processing, based on the conditions explained in [13], it is initialized and added to the map. Once

the feature is added to the map, the EKF is updated.

 Figure 32: Delayed Initialization

?i

Extract robot pose

Track the candidate

points

Keep tracking until

pillar is confirmedyi

Pillar

confirmed?

Check constraints Discard the feature

Discard the feature
Initialize feature in

the map

Constraints

fulfilled?

N

N

Y

Y

53

Similarly in case of floor edge detection, the initialization is done when the detection

cycle begins. In the case of floor detection there is no purging, the inclined lines are

unconditionally initialized, which is based on assumption that the only possible pair of lines

inclined simultaneously around 45o and 135o has to be the floor edges (or outer bounds for any

indoor environment).

The initialization takes place according to the delayed initialization process explained in

[13] & [15]. The next initialization takes place only when a break in the lines is detected at

which time a new detection cycle begins. The whole process is summarized in Figure 33.

 Figure 33: Synchronization with EKF

54

 Figure 34: Example case for synchronized feature detection and EKF update

In Figure 34 we have considered an example case for a bearing-only SLAM

implementation. A hallway-like environment is considered and we assume the robotic platform

to move through it. We have shown the X-Y plane and the orientation of the platform with

respect to the world coordinate system. Each position of the robot (robot pose) is described as (xk,

yk, αk). Events occurring at each point are described as:

1] The inclined lines are observed, which represent the floor edges. These floor edges are

initialized at this point. If in subsequent observations, there is no break in the inclination detected,

the floor line is encoded as yi = (xi, yi, αi, di).

2a] Number of vertical lines are detected. Amongst these lines all combinations of

parallel lines are possible pillars. All of them are taken as a candidate for initialization and the

55

procedure for delayed initialization is initiated, but pillar is not yet confirmed. The actual pillar

which is to be tracked is the nearer one (which is not yet known), however, Hough transform will

also detect the wall edge as shown (and this cause for detection multiple parallel lines). Applying

threshold will probably remove it. If not, the continuous frame capture from this position to the

last one in the detection cycle will eliminate it and the pillar will be confirmed by our algorithm.

2b] when the possibility of a pillar was identified in step 2a, we had immediately begun

the procedure for delayed initialization. Once the pillar is confirmed, the baseline and parallax

angle are checked (i.e. |b|>|bmin| and a>amin [refer 13]), and if the condition is satisfied the feature

is initialized into the map encoded with its inverse depth yi = (xi, yi, αi, ρi).

3] In this position a break in the inclined lines is detected with the same α and hence, a

new detection cycle has to begin for floor edges. However, this will not take place immediately;

over subsequent movement towards the new hallway, the inclined lines will be detected within

the specific angles and then the new feature will be initialized.

4] This is a very noisy case where threshold will likely fail. The pillar may be confirmed

if it fits within the range built in the learning phase, else it will be discarded altogether.

After each of the above cases, the EKF is updated and a new co-variance matrix is

calculated. This results in an incremental map building as robotic platform proceeds in the

environment.

2.8 Initial experiment in map building with one known feature

The feature detection experiment in this section is based on one known pillar (of known

width) and then mapping the rest of the landmarks (with unknown widths) with respect to this

known pillar. Also, all our parameters lie on single plane, which is the plane of the floor. We

assume a fixed camera pointing in a constant direction as our sole sensor. Our three parameters

56

are: distance from the pillar d, Horizontal shift from the pillar s and the angle theta. This is

where our first landmark in the map, i.e. a pillar with known width comes into picture. We have

pre-calibrated the distance and the lateral shift of the camera with respect to the pillar in terms of

changes in values of rho, which we call ‘delta rho’ as in the earlier sections.

This delta rho is a key parameter which will ultimately help us determine the location of

the feature with respect to the camera and that in turn will help us create the state vector for the

Extended Kalman filter. As the pillar moves away from the camera the width of the pillar in the

image will be decreasing. Similarly, as the pillar moves closer to the camera its width in the

image will be increasing. These trends will be reflected in the values of delta rho. Theoretically,

the value of delta rho should increase proportionally or decrease proportionally with an increase

or decrease in the image width of the pillar.

We now experimentally observe the values of the delta rho corresponding to the change

in distance of the pillar from the camera. We perform a calibration procedure for a known pillar.

In this case we calibrate from 30 inches (76.2 cm) till the distance at which the code stops

detecting the pillar. We find that until the distance reaches 100 inches the system is able to detect

the pillar. Beyond that range, the Hough transform approach becomes unreliable. The

consistency of detection is high only till 60 inches (152.4 cm) beyond which the detection

becomes erratic and in the range of 90 to 100 inches (228.6 cm to 254 cm) the detection is not

reliably consistent and will cause reduction in the accuracy of distance value calculated by the

function. The table of delta rho values calculated by the function corresponding to the distance is

provided in Figure 35:

57

 Figure 35: distance-delta rho observation3

From, the above observations we realize that the change in delta rho is not a linear

function of the change in distance. The curve plotted with distance on the X-axis and the delta

rho on the Y-axis reveals a curve that approximates an exponentially decaying function. In this

case we make use of the curve fitting tool of MATLAB. The two vectors ‘x’ and ‘y’ contain one

dimensional values that we have obtained in the table above. In the ‘cftool’ GUI we choose the

exponential function for our fitting and we get the following results shown in Figure 36.

 MATLAB was used to calculate the equation constants that will help us create the

calibration equation giving results that are very close to the original values. However, there will

be a margin of error for a certain range of values. As seen in the Figure 36, the range of 30 to 70

inches (76.2 to 177.8 cm) has the best possible match between the actual values and the fitted

values. The calibration equation thus derived is as follows:

𝑑 = [
−𝑙𝑜𝑔10 (

∆𝜌
151.8

)

0.0108
]

3 1 inch = 25.44 mm & 1 cm = 0.39370 inches

58

 Figure 36: distance calibration

In order to create a two dimensional map, we require at least two parameters: one is the

change in the perpendicular distance of the feature (in our case a pillar) with respect to the

camera and the other is the lateral shift of the pillar with respect to the camera. The equation

above gives the values of the first parameter. With help of that equation we can easily calculate

the change in distance over a period of time (or over a number of frames). As we will see in the

later sections, however, we also have to determine the lateral shift of the pillar. Knowing both,

would allow determining both the x and y co-ordinate of the feature with respect to camera and

enable a basic map building.

To determine the location of the pillar laterally, we note that as the pillar shifts leftwards,

the position of the pillar in the image moves towards the origin and this causes a decrease in

leftmost4 rho value. Similarly, if the pillar moves rightwards the value of leftmost rho increases.

This fact will help us calibrate the lateral shift of the pillar in terms of rho value.

4 OpenCV ‘HoughLines’ function assumes the origin to be at the top-left corner of the image.

59

As usual, Hough transform is used as a tool to detect vertical parallel lines which are

assumed to be a pillar in the beginning. The ‘rho’ values of these parallel vertical lines are used

to detect all possible widths (differences in rho values of all detected vertical lines), all of which

could be potential pillars. It is important to note that ‘rho’ and ‘theta’ are just parameters in the

Hough transform voting space and hence, the widths calculated through the difference in ‘rho’

values are all virtual widths. They have to be mapped to some reference to be considered as

useful parameters. We use the Hough transform mechanism for this purpose as well. As

described earlier Hough transform helps us detect edges of the pillar, however, the image

containing the detected edges is noisy. Each of these edges (along with the noisy false edges) of

the pillar has a value of rho associated with it. We use the same algorithm as used earlier and

eliminate non-parallel edges leaving us with only pairs of parallel edges and an array containing

the corresponding rho values of these remaining edges. We take the smallest of all the remaining

rho values as our calibration parameter. In the rough sketch shown earlier (refer to Figure 12),

we see that the Hough transform mechanism returns four rho values. Our algorithm will

eliminate rho1 and rho2 as they are non-parallel leaving the two values rho 4 and rho 3. Out of

these, rho 4 has the smallest value and thus becomes our calibration parameter.

We perform the calibration experiment that we have performed earlier. In this case

however, we mark the lateral distances such that the perpendicular distance from the camera is

marked as 0 which will be our reference center. As we move rightwards we increment the lateral

shift in steps positive of 3.5 inches (8.89 cm) and the leftwards shift would be in terms of

negative 3.5 inches (8.89 cm). The value of rho 4 (that is the leftmost valid rho) corresponding to

the lateral shift from the reference center is calculated as in table 37:

60

 Figure 37: lateral shift-leftmost rho observation5

Now, we use the curve fitting tool of the MATLAB to generate the equation for this set

of observations. The resultant curve fitted over our observations of lateral position is fairly linear

as shown in Figure 38:

5 1 inch = 25.44 mm & 1 cm = 0.39370 inches

61

 Figure 38: lateral shift calibration

The calibration equation for the lateral shift would be as follows:

𝑑 = −0.07737∆𝜌 + 24.93

Now, we have the two necessary parameters to create a two dimensional map: the

perpendicular distance from the camera and the lateral shift with respect to the reference center.

The next step towards a building comprehensive map would be being able to display a

basic two dimensional map of the feature (in our case pillar) and the path traced (movement of

camera with respect to the feature). At this stage we do not store the map since it requires a map

update by the Extended Kalman filter which we have not designed. However, we must be able to

trace a path with respect to the pillar that we have been able to detect earlier and display it in

form of two dimensional map.

Now, we have the two essential parameters for a two dimensional map: the perpendicular

distance of the pillar form the camera and the lateral shift of the pillar with respect to the

reference center. The update in the map is done in a period over 100 frames. That is we track the

changes on frame by frame basis based upon the changes taking place over a period of 100

frames and then we update the map. These 100 frame periods repeat continuously. In each case

the linear path travelled from the location at the end of earlier iteration to the end of current

iteration is updated and displayed on the map window along with the feature location with

respect to the travelled path. The 100 frame period was chosen by trial and error to accommodate

the considerable changes that can be detected and updated. Sporadic changes taking place during

this period are smoothed out. This obviously makes the map less sensitive to rapid and random

changes but allows it to respond well to slow changes. This assumption means that we are

62

presuming that any changes taking place are smooth, and slow enough to be accommodated in

the 100 frame duration.

The change in perpendicular distance is calculated based on the algorithm detailed in

Section 1.3. As described in Section 1.3, this algorithm also eliminates false distance readings

due to the noise incurred by the Hough transform. For the first frame, the distance calculated is

stored in a variable. From the second frame onwards the new distance is calculated from each

frame and is compared with the value of the stored variable. If the distance is within the error

range of ±1 inches (2.54 cm) then we store its value in a second variable. Each time this error

condition is true we keep on adding the new distance to this second variable. Finally, we

calculate the average of all such occurrences. A count is maintained every time the new distance

is added to the second variable which helps in the calculation of the average. Now, if the change

in distance is negligible, it will be interpreted as no change in distance, else the value of distance

in the final frame is compared with that stored in the first frame to give us the change in distance.

A negative value of distance change indicate that the new distance is less than the old distance in

which case it is a backward move (towards the camera) else if it is a positive value then it is

interpreted as the forward shift (away from the camera).

Now, the second parameter, lateral shift is calculated simply by subtracting the position

at the first frame and that at the last frame. It is not necessary to average out this parameter

because it has been observed that lateral shift calculation does not show considerable error. This

is because the calculation of lateral shift is based on detection of single, leftmost, edge as

compared to double edges as in case of perpendicular distance. Now, if the lateral location value

is less than the new location it means the pillar has shifted to the left else it has shifted to the

right.

63

Based on the above data we can display the map. The map display has to begin with the

initial positions. In our case the pillar is the feature whose initial position with respect to the

camera is to be determined before we can start tracing the path. This is done in the following

way: The distance d of the pillar from the camera calculated in the first frame is stored. Then

after iterating through the first 100 frames, we begin marking the initial position of the pillar and

the camera. The initial position of the detected feature (that is the pillar) is chosen arbitrarily on

the map as the location (100,100). The position of the camera is then calculated as (100,100+d).

This location of the camera is the starting point of the path. After the next 100 frame iteration,

the new camera location is calculated on the basis of the distance travelled and the lateral shift

incurred. The path is created connecting (100,100+d) and these new coordinates are recorded.

There are four possible cases as illustrated in Figure 39 below.

Let s be the shift and d be the initial distance traveled and d’ be the distance travelled in

during the next 100 frame iteration. Based on this the following rough sketch will explain the

four possible situations:

 Figure 39: sketch for map display

These calculated coordinates become the starting point for the following iterations and

the new coordinates calculated over that iteration become the end points for the next iteration.

64

The line connecting these two pairs of coordinates approximates the path travelled in the prior

iteration. The map is developed continuously, over several iterations. The circle and line

functions of OpenCV are used in the code to develop the map display. The initial location in the

output of the map is as shown in Figure 40:

 Figure 40: Initial feature position

In the map window illustrated in Figure 40, the red dot signifies the location of the pillar

and the white dot is the initial location of the camera. Now, when we move the camera, the path

traced with respect to the pillar is reflected in the following map window:

 Figure 41: display of first shift in camera with respect to known pillar

Now, once this first feature is mapped all other features can be mapped with this known

pillar as a reference.

65

Chapter 3

Feature Detection Using FPGAs

3.1 Hardware Acceleration Using FPGAs

 The field programmable gate arrays (FPGA) are widely used for the purpose of testing

the hardware designs. However these days they have gained popularity for commercial

applications and some products do exist in markets which combine a processing core with an

FPGA fabric. A recent example of this is Samsung Galaxy S4 smartphone which uses the Lattice

LP1K36 1K mobile FPGA.

 Understanding the properties and basic functioning of FPGAs is extremely crucial to this

thesis. These important properties make it an ideal choice for optimization of timing performance

of our SLAM application.

FPGAs are generally referred to as ‘soft hardware’ [26]. FPGAs are built from cells each

of which can be programmed to realize a logic function. They consist of generally three

components: reconfigurable circuit blocks which can be programmed for a particular logic

function, programmable interconnects, and I/O pins. Each logic block is a combination of a

combinational function and registers. The combinational function is implemented using a look-

up table which is implemented in SRAM. Using these logic blocks FPGAs can be used to create

customized logic for each algorithm or application. Each functional unit is optimized to perform

specific tasks. Also more than one unit can be executed concurrently. FPGAs also have an added

advantage of being reconfigurable. They can achieve parallelism to meet their design objectives

66

and their functionality can be changed to allow implementing algorithm changes. Further, since

algorithms can be implemented directly in hardware, FPGAs can be faster than equivalent

software executed on a microprocessor. This is in spite of the fact that FPGAs often have lower

clock frequency than microprocessors. This potential performance improvement occurs for three

reasons: FPGAs have no instruction processing overhead and allow bit level control of operation,

they can transfer data at high speed on-chip with negligible latency, and they allow parallel

hardware elements to exploit parallelism in an algorithm. These facts are expected to make

FPGA beneficial for our application. Being fast as compared to a microprocessor, and at the

same time having lower clock frequency, is exactly what one would desire if they were to design

a system with better time and power performance compared to a microprocessor-based system

The two major players in FPGA field are Altera and Xilinx [26]. They both have various

families of FPGAs and development boards that are available in the market, along with various

coding and simulation software. In our research we use the Xilinx Spartan 6 and Xilinx Spartan 3

as our target FPGAs.

An important architectural feature of embedded computer system is the usage of

hardware accelerators. Most of the functions in a computing systems are well known. Hence,

instead of using a general purpose processor, the system can be split between a processor

performing certain number of tasks, while exporting certain features to specialized hardware.

For example, many applications use a separate DSP for signal processing tasks along with a

traditional RISC based processor to do other general tasks. This is where FPGAs play an

important role. The features of FPGAs mentioned above, allow building special-purpose a

hardware accelerators on the FPGA fabric. Such hardware accelerators can increase the

efficiency and performance of an embedded system.

67

3.2 Image processing for feature detection on FPGAs

We have developed the feature detection algorithm and implemented it using C++ and

the OpenCV Library. Now, we move on to the second part of our research which is developing

Hardware accelerators for feature detection using FPGAs.

 Figure 42: Image processing for Canny edge detection and Hough Transform

Figure 42 contains a flowchart that illustrates the image processing sub-process within

the feature detection algorithms [refer to Figures 19 and 31]. The Canny edge detection and

Hough transform take place iteratively for almost infinite duration (as long as the system is

Image

processing for

pillar

Image

processing for

floor edges

Canny edge

detection

Canny edge

detection

Hough transform Hough transform

Filter near-vertical

lines
Filter inclined lines

68

running). Also, these operations are done for both pillar and floor edge detection. Therefore, it

makes sense to offload these algorithms from software and implement them using an FPGA-

based hardware accelerator. The possibility of designing a pipelined architecture on FPGA

makes it an attractive proposal, since our ultimate aim is to design a time–efficient algorithm.

This is made possible by exploiting parallelism within the FPGAs. In the next chapter we go into

the details of the Hough transform implementation on FPGAs, followed by the implementation

of Canny edge detection. We present the results of comparing the performance of the hardware-

accelerated and software-only system implementations in the final sections.

3.3 Canny edge detection using FPGA

 Although it isn’t necessary to perform edge detection before performing Hough

transform on the input image, it is highly advantageous to do so. This is because, the Hough

transform, is used to detect shapes such as lines and circles within an image and these shapes

generally describe edges of the objects within an image. Thus, we can eliminate pixels that

constitute the surface of the objects and focus completely on the edges, and this makes

performing Hough transform on the image easier. Therefore, Canny edge detection, by

convention, is performed prior to the Hough transform operation.

Canny Edge Detection Mechanism

Canny edge detection generates a binary image, which has intensity of 1 where it detects

an edge and the intensity of 0 elsewhere. Our Hough transform module has one bit input port, as

we have seen earlier, which represents the intensity of the corresponding input pixel coordinates.

As we have seen in Section 2.2, there is a function for Canny edge detection in the OpenCV

library and that allows performing edge detection without going into the details of its mechanism.

69

However, in order to implement the algorithm in hardware, we have to understand its details. In

the following sections we will begin with the concept of edge detection in image processing, and

then move towards the actual Canny edge detection algorithm, and finally explain the

assumptions and the approximations within the algorithm to make it hardware implementable.

Edge detection refers to the process of identifying and locating sharp discontinuities in an

image, which actually represent abrupt changes in pixel intensity. The change in intensity

characterizes boundaries of objects in an image. Ideally, a change in intensity is assumed to be a

very sharp change and it is called a step edge. However, step edges are rare in real images.

Because of low-frequency components or the smoothing introduced by most sensing devices,

sharp discontinuities rarely exist in real signals [1]. For the sake of modeling an edge detector,

we consider an ideal step edge corrupted by a Gaussian noise process. In practice this is not an

exact model but it represents an approximation to the effects of sensor noise, sampling and

quantization. Let us consider an ideal step edge, and its convolution with a Gaussian function.

The result is a smoothed edge which is represented as shown in Figure 43.

 Figure 43: Smoothed edge [1]

We can see, there is now a gradual change in intensity. Now, we can detect edges in two

ways: First is, we calculate the gradient of this smoothed curve, which is its first order derivative.

The edge is then the maxima of the curve as shown in Figure 44:

70

 Figure 44: gradient of the curve [1]

A pixel location is declared an edge location if the value of the gradient exceeds some

threshold. Edges will have higher pixel intensity values than those surrounding it. So once a

threshold is set, we can compare the gradient value to the threshold value and detect an edge

whenever the threshold is exceeded [1].

Second way is to find the second order derivative of the smoothed curve. The edge

location is at the zero crossing point of the curve as shown in Figure 45:

 Figure 45: edge location [24]

The first type of detector is called a Gradient based edge detector, and the second type is

called a Laplacian based edge detector.

71

 Now, we can use these two types of edge detection operators that are sensitive to this

gradual change. The gradual change in intensity causes problems of false edge detection, missing

true edges, edge localization, high computational time, problems due to noise etc. [27]. Hence,

Canny proposed a new approach to edge detection that is optimal for step edges contaminated by

white nose. The optimality of the detector is related to three criteria [25]:

1) The detection criterion should be such that important edges should not be missed and

that there should be no spurious responses.

2) The localization criterion should be such that the distance between the actual and

located position of the edge should be minimal.

3) The multiple responses to a single edge should be minimized, through the one

response criterion.

Thus, convolving an image with a symmetric 2D Gaussian and then differentiating in the

direction of the gradient forms a simple and effective directional operator, which meets the three

criteria mentioned above [25]. If we define direction n as perpendicular to the edge direction, the

edge location is then at the local maximum of first derivative of f(x,y) in the direction n, where

f(x,y) is the Gaussian smoothed image (refer figure 43). Mathematically, the edge location is the

zero-crossing point of second derivative of f(x,y) (i.e. f”(x,y); refer to Figure 45). Canny edge

detection is performed in four stages:

1) Gaussian smoothing: The first step is to filter out any noise in the original image

before trying to locate and detect any edges. In this stage, the input image is convolved with a

symmetric Gaussian mask. The larger the width of the Gaussian mask, the lower is the detector's

sensitivity to noise. We will be using a standard 5 X 5 Gaussian mask.

72

2) Gradient detection: After smoothing the image and eliminating the noise, the next step

is to find the edge strength by taking the gradient of the image. The Sobel operator performs a 2-

D spatial gradient measurement on an image. The Sobel operator uses a pair of 3x3 convolution

masks, one estimating the gradient in the x-direction (columns) and the other estimating the

gradient in the y-direction (rows). We can also use two pairs of Prewitt operators, rather than

using the Sobel operators. This has an advantage as it causes reduction in required hardware for

implementing them. The following are Sobel operators:

𝐺𝑦 = [
−1 −2 −1
0 0 0
+1 +2 +1

] 𝐺𝑥 = [
−1 0 +1
−2 0 +2
−1 0 +1

]

The following are Prewitt operators:

𝐺𝑦 = [
−1 0 +1
−1 0 +1
−1 0 +1

] 𝐺𝑥 = [
−1 −1 −1
0 0 0
+1 +1 +1

]

The magnitude of the gradient is then:

|G| = |Gx| + |Gy|

If we use Sobel operators, we will have to provide multipliers within our hardware to

calculate the product of the pixel value times 2,an extra adder to add twice, or a shifter to

perform a binary multiply. Also, we require the direction of the gradient for the next step. This is

calculated as

 𝜃 = tan−1
𝐺𝑦

𝐺𝑥

These calculations make Sobel operator difficult to implement it on hardware and costly

in terms of resource usage. Hence we use the following operator pairs:

𝐸𝑣 = [
−1 −1 −1
0 0 0
+1 +1 +1

] 𝐸𝐻 = [
−1 0 +1
−1 0 +1
−1 0 +1

] 𝐸𝐷𝑅 = [
0 +1 +1
−1 0 +1
−1 −1 0

] 𝐸𝐷𝐿 = [
−1 −1 0
−1 0 +1
0 +1 +1

]

73

We, can see the convolution will not involve any multiplication, only subtraction and

addition operations. Also, the direction need not be calculated, as the direction of the gradient is

assumed to be the direction of the maximum value of the all four calculated magnitudes.

3) Non Maximum Suppression (NMS): This stage involves finding the local maxima in

the direction perpendicular to the edge. That is retaining the pixel that has maximum value

among its neighbors along the direction of its gradient.

4) Hysteresis: The ‘streaking’ caused in the image from the NMS stage is eliminated

using a threshold in this stage. Streaking is the breaking up of an edge contour caused by the

operator output fluctuating above and below the threshold [27 & 24]. This stage involves double

thresholding. We use 2 thresholds, a high and a low. Any pixel in the image that has a value

greater than T1 is presumed to be an edge pixel, and is marked as such immediately. Then, any

pixels that are connected to this edge pixel and that have a value greater than T2 are also selected

as edge pixels. We have, however, modified the double thresholding stage in our implementation.

This step makes, Canny edge detection, a very efficient edge detection algorithm. The selection

of threshold values, is a major issue. Reference [25] proposes, a self-adjusting threshold

algorithm and describes its hardware implementation. However, we will work only with a single

threshold value. This is simply to reduce, one stage in the hardware implementation. Thus, our

edge detection implementation will not provide true Canny edge detection, however, our

simulation results have given decent accuracy. Ultimately, our aim is to feed the edge detected

image to our Hough transform module and by adjusting threshold values of the Hough transform

voting process, we can easily detect the pillar and the floor edges, even if the edge detection is

suboptimal.

74

Now, we can go into the details of our hardware implementation. Our Canny edge

detection module contains hierarchical blocks as shown in Figure 46:

 Figure 46: Gaussian stage and the next stages

The first stage performs the Gaussian smoothing and its output is fed to the next stages

which contains hierarchical blocks as shown in Figure 47:

 Figure 47: Inner hierarchy of next stages

75

Now we go into the details of the Gaussian smoothing module. Its block diagram is as

shown in Figure 48:

 Figure 48: Gaussian stage

The hardware consists of 5 FIFO pipelines. The length of each pipeline is n-5, for an n x

n sized image. There is a 25-register block, which is connected to the FIFO as shown in the block

diagram of Figure 48. This register block contains the pixels which are to be convolved with the

5x5, Gaussian mask. As pixels shift every clock cycle, it emulates the sliding of the mask over

the image. This implementation will give distorted output on the edges of the input image,

however, we can eliminate this by padding the image with 0 valued pixels before putting it in the

pipeline. The entire 25-register block is connected to the multiply and accumulate block which

performs the convolution, and the resultant smoothed pixels are fed to the next stages. The

controller, is basically a counter that ensures that the output feeding begins only when the first

76

pixel reaches center register of the 25-register block. Since the pipeline registers must be filled,

for the first output we must wait for [(n*3)-2] clock cycles, after which one pixel exits the

pipeline every clock cycle. Also, the controller ensures, that after the entire n x n image has been

processed, to the counter is reset for the next image. The controller, also, enables and disables

reading and writing to the FIFO, which does not have any purpose in real-time but is used for

off-line validation. The hardware implementation of the gradient calculation stage is as shown in

the block diagram shown in Figure 49. The pipelined implementation is similar, the primary

difference being a 9-register block instead of 25-register block. However, the details of the

combinational block will greatly differ from the earlier stage. The 9 register values entering the

block have to be convoluted with four operators as described earlier and we have a dedicated

sub-block for each of them. Each block represents a direction, Vertical, Horizontal, Left diagonal,

Right diagonal. As described earlier, we have only addition and subtraction operations and no

multiplications within it.

 Figure 49: Gradient calculation stage

The combinational block is as shown in Figure 50:

77

 Figure 50: Direction encoder

The absolute values calculated by each of the four blocks are then compared, and the

largest value is taken as the gradient value of that particular pixel. The direction of the gradient is

the direction of block with the largest magnitude. This direction is encoded as four possible

values, 00, 01, 10, 11. These two bits are concatenated to the magnitude value and are fed to the

next stage. Thus, next stage which requires the direction values for its operation, will extract the

trailing two bits to decode the direction.

 Figure 51: NMS and double thresholding stage

78

The hardware architecture for the Non-Maximum Supression (NMS) stage is as shown in

Figure 51. Again in this case, we have a 9-register block and a pipelining mechanism that is

same as the earlier stages. However, there are significant changes in the combinational block.

The combinational block for this stage performs thresholding and NMS. As mentioned earlier,

the last two bits of the input values represent the direction of the gradient of that pixel.

 Figure 52: NMS calculation

The mechanism for performing NMS is as follows: The center pixel gradient is compared

with the neighboring two pixel gradient values, in the direction represented by the two trailing

bits, and if the center pixel gradient value is the highest (i.e. it is a local maxima), then that pixel

is retained (i.e. it is assigned value 1), else it is eliminated (i.e. assigned value 0).

79

The center pixel value is first checked for its threshold value and if it is greater than the

threshold, it is forwarded to the NMS blocks, else it is ignored. Then, depending on the two

direction bits, the pixel is de-multiplexed to the correct comparator block, where it is compared

with its neighboring two pixels. The binary value 1/0 is the final output, which is taken from the

selected line by a multiplexer which has the two direction bits as its select lines.

All the stages are connected in the top module. Another important thing is the

synchronization between each of the stages. The second stage cannot begin filling its FIFO, until

the correct output is available from the earlier stage. Thus, the controllers of each stage

communicate with each other through the start signal.

The start signal is issued by the first stage’s controller when the first valid output is

calculated. In response to this, the next stage begins its counting, and at the same time issues

read enable to its FIFO. Similar synchronization takes place between the second and third stages.

When, the counter overflows, the internal signals of each controller reset the counter, and de-

assert the start signal. This de-assertion takes place out of sync.

Thus, each counter for the three stages counts independently and also resets

independently, but the counting begins only at the assertion of ‘start’ signal by the previous

blocks.

We have synthesized the design. The resource utilization report is as shown in Figure 53.

80

 Figure 53: Resource utilization for Canny edge detection

Next we have performed post-synthesis simulation to verify the functionality of the

design. We begin with generating input file Using MATLAB. The code for it is as follows:

I=imread('peppers.png');
B = imresize(I, [133 133]);
BW=rgb2gray(B);
fid=fopen('C:\Users\srvyas\Desktop\pics\smooth4.txt','w');
for x=1:133
for y=1:133
i= BW(x,y);
i1=dec2bin(i,8);
fprintf(fid, '%s \r\n', i1);
count=count+1;
end
end
fclose(fid);
imshow(BW);

81

The input gray scale image is as shown in figure 54:

 Figure 54: Input gray scale image

The original design has a start signal which, when issued, begins the operation of the

Canny edge detection module. However, we will be using Verilog task ‘$readmemb’ to

synthesize on-chip RAM, in which we will load our input file and the first block (i.e. Gaussian

block) will begin reading this memory as soon as clocking begins. The clock ticking is set from

the test bench and the test bench also collects the output binary values using File I/O tasks.

We read the output file using MATLAB code and display the edge detected image. We

cannot perform conditional File I/O in Xilinx ISE, hence, we will get unwanted pixels from the

simulation and the image will be out of order. Hence, we ‘circshift’ function in MATLAB to fit

the binary values in the matrix accurately. The code for it is as shown below:

fileID = fopen('C:\Users\srvyas\Desktop\pics\pepppers_out1.txt','r');
A = fscanf(fileID,'%d');
[matp10] = vec2mat(A,133);
myfilter = fspecial('gaussian',[5 5], 1.5);
I=imread('peppers.png');
B = imresize(I, [133 133]);
BW=rgb2gray(B);
imshow(BW);
myfilteredimage = imfilter(BW, myfilter);
Y = circshift(matp10,[0 -30]);
figure();
imshow(Y);

The resultant edge detected image is as shown in Figure 55:

82

 Figure 55: edge detected image

We have taken some more results for further validation of the design as shown in Figures 56-58.

Compared to the earlier case we have narrowed the two threshold limits (upper and lower

threshold): Accordingly we require a higher level of contrast between the two surfaces, for the

edge to be detected. As it can be seen from the Figure 56, edge detection is very accurate,

because in the gray scale image contrast at the edges is too high. However, in the Figure 57, the

part of the V-shaped truss on the right has its gray scale intensity close to that of its background,

hence the edge has not been fully detected. Similarly, in the Figure 58, the bright white part at

the center has been detected accurately. We must keep in mind that, our second stage is the

Hough Transform which has its own threshold value for line detection. Thus, we have to fine

tune the two threshold values for accurate feature detection.

83

 Figure 56: Edge detection result 1.1

 Figure 57: Edge detection result 1.2

 Figure 58: Edge detection result 1.3

 In the next section we describe the Hough Transform algorithm in detail and its

implementation on an FPGA.

84

3.4 Hough Transform on FPGA

This Hough transform-based feature detection has been performed earlier by us, using

C++ code which utilizes the OpenCV Library, which gives the convenience of performing

Hough transform on the input image without really going into the details of the Hough transform

mechanism. However, it is an objective of this thesis is to implement Hough transform on an

FPGA. Hence, in the following subsection we go into the details of how Hough transform

actually works, so that we can implement it on an FPGA.

Hough Transform Mechanism

 The aim of the Hough Transform is to represent regular geometric forms in a parameter

space defined by ρ and θ. If a straight line is considered, ρ represents the normal distance from

the origin to the straight-line and θ represents the angle between the normal and the X-axis. A

straight line, is therefore, represented by the equation:

𝜌 = 𝑥 cos 𝜃 + 𝑦 sin 𝜃

In the parameter space ρ-θ, each straight line is represented by a single point as A(ρ, θ).

Accordingly, each point that belongs to a straight line has a corresponding sinusoidal curve in the

parameter space. That is we can map a line in the X-Y plane to a point in the ρ-θ plane (parameter

space) and each point on that line can be mapped to a sinusoid in the parameter space (refer to

Figure 59). Similarly, every point in the X-Y plane will correspond to a sinusoid in the parameter

space, that is, if we take a point and plug it into the equation for the parametric form of straight

line, and then plot that curve in the parameter space we will obtain a sinusoid. Now, according to

the principle of the Hough Transform, all sinusoidal curves each of which corresponds to a point

on a straight line, will cross through a single point in the parameter space.

85

In other words, the input object for the parameter space computation is a contour image.

For each feature point in the contour image, the corresponding sinusoidal curve is computed

using the relation mentioned above. If a set of feature points in the contour image belongs to the

same straight line, their corresponding sinusoidal curves will have a common point in the

parameter space. This point is found using a voting process and will comprise the straight line

parameters ρ and θ. Using the Hough Transform principle, the task of detecting straight lines in

the (x, y) space, is reduced to determining the intersection points of the sinusoidal curves in the

parameter space. These crossing points are simply parameter memory space positions having

sufficient votes.

 Figure 59: Mapping in parameter space [22]

θi

ρi

Y

 Y1

 X1
X2

X

Image space

Ρi

θi

A(θi, ρi)

ρ

θ

 Y2

86

Hough Transform Implementation

There have been many efficient Hough transform implementations on FPGAs. In [20]

they used a resource efficient implementation based on the concept of incremental Hough

transform. The incremental Hough transform algorithm is described in [21]. In [22] they have

used the CORDIC algorithm to calculate sin and cos values. We will be using the

implementation described in [23]. This is because, our aim is to beat the software in terms of

timing. Hence, we will sacrifice some resource utilization in favor of optimizing timing.

Reference [23] describes a pipelined implementation, which is not resource efficient strictly

speaking. We have an option of using the pipelined implementation of CORDIC algorithm as

described in [22], but the pipelined implementation based on DSP slices described in [23] will be

more suited to our case because we are not interested in performing a generic Hough transform

on the entire image. We are using Hough transform to detect specific features in our environment

such as pillars and floor edges. These features will exist only at specific angles and orientations

as we have seen in Sections 2.3 and 2.6. Therefore, we can pre-calculate values of sin and cos at

these specific angles and store them on the FPGA, rather than needing to calculate them in real-

time.

The Hough transform is usually calculated with ρ values positive, and θ values ranging

from 0 to 360 degrees. Now, if we implement a complete Hough transform (i.e. detecting lines at

all angles and orientations) then we would have to calculate cos and sin from 0 to 360. This

would mean having 360 x 2 DSP slices. The Virtex 6 FPGA, which is ideal for Hough transform

implementation cannot accommodate this many DSP slices. Hence, a modification for the

algorithm is proposed in [23]. The idea is to let the ρ values be negative and take angles from 0

to 180 degrees. That is, if we have an image of size n×n. We assume that n×n pixels are

87

arranged in two dimensional xy-space such that the origin is in the center of the image. Hence,

both coordinates x and y take integers in the range [−n/2 + 1, n/2]. The ρ values would now

range from –n/√2 to +n/√2. The negative ρ values would suggest that line is passing above the

origin and positive ρ would suggest that the line is passing below the origin. This would now

reduce the DSP slices from 360x2 to 180x2. However, this is still too much. Thus, further

reduction in DSP slice requirement can be done using the following algorithm [23]:

 for i ← 0 to k − 1 do

 begin

 for θ ← 0 to 89 do

 begin

ρ ← xk cosθ + yk sinθ

v[θ][ρ] ← v[θ][ρ] + 1

output (θ,ρ) if v[θ][ρ] = threshold

end

 for θ ← 1 to 90 do

 begin

ρ ←−xcos(θ) + y sin(θ)

v[180-θ][ρ] =v[180-θ][ρ] + 1

output (θ,ρ) if v[θ][ρ] = threshold

end

end

We have to calculate the value of ρ, for every pixel value (xk, yk), for θ ranging from 0 to 180

degrees. Now, “cos(180-θ)=-cosθ” and “sin(180-θ)=sinθ”. Consider the equation

𝜌 = 𝑥 cos 𝜃 + 𝑦 sin 𝜃, and say for θ=1, cos(179) = -cos1 and sin(179)= sin1; we get the equation

𝜌 = 𝑥 cos 1 + 𝑦 sin 1 for θ=1 and ρ = - x cos1 + y sin1 for θ=179. Thus, we need not calculate

value for both θ=1 and θ=179. We calculate trigonometric ratios only for angles 0o to 90o, the

values of ρ for this range is obtained by adding the values of sine and cosine, and the values ρ for

the angles 91o to 180o can be obtained by subtracting the previously calculated values of sine and

cosine. This reduces the hardware requirement (specifically the number of DSP slices) and

allows us to perform calculation of two sets of ρ values in parallel. Thus, we can exploit

parallelism in this algorithm and also simultaneously pipeline the entire design to give very high

88

throughput. Also our DSP slice requirement goes down to 90x2. We first develop a generic

Hough transform as implemented in [23]. We will then start making modifications and optimize

our hardware design. Also, it is important to note that our target FPGA is a Spartan 6 FPGA and

not Virtex 6 (reference [23] uses Virtex 6). The overall design is described in Figure 60:

 Figure 60: Complete Hough Transform Block Diagram [23]

We will not go into the details of the implementation in [23]. We will directly list the

resources utilization for the design in Figure 61:

 Figure 61: Resource Utilization for generic Hough Transform

89

Now, we will customize this optimized version of Hough transform implementation

specifically for the purpose of Pillar detection and Floor edge detection. The first step is to

include a quadrant changer module. We will be interfacing the Hough transform module with the

Canny edge detection module. The output image from the Canny edge detection will be in a

general form where the origin of the image (i.e. pixel (0,0)) is at the top left corner of the image.

Hence, we need to change the quadrant system and bring the (0,0) pixel to the center of the

image. This has been implemented by passing the incoming pixel’s X and Y coordinates through

a module which calculates new coordinate values using the mapping equations. The

implementation of the DSP slices and adder/subtractor system is same as that in [23], however,

we have selected only specific angles. The angles selected are on the basis of Hough transform

outputs observed in the software implementation for detecting pillar and floor edges. The vertical

pillars would always be oriented at an angle of 0 to 3 degrees or 178 to 180 degrees. Also, the

floor edges would always exist at angles 43-45 degrees and 133-135 degrees as seen in Figure

62:

 Figure 62: Inclined floor lines

90

 This significantly reduces our DSP slice requirements enabling us to synthesize the

design on a Spartan 6 FPGA.

We have implemented the accumulator matrix by synthesizing memory from clocked

registers and interfacing it with comparators, as opposed to ROM addressing and the comparator

system implemented in [23]. This change is a result of the observation that a ROM-based

implementation has timing issues (due to port contention) and therefore is not advisable for the

pipelined design.

Our last modification is the parallel shift register system which would provides parallel

output values for both pillar and floor edges. That is, we have a four port output, a rho and theta

for pillar and a rho and theta for floor edge. Thus, one advantage of implementing the Hough

transform in hardware, is that we can get parallel output for both floor edges and the pillar, as

opposed to software which can only perform these operations sequentially.

In the following subsection we have given the details of each RTL block for the Hough

transform module. The black box of the hough module looks as shown in the following block

diagram shown in Figure 63:

 Figure 63: detailed block diagram for Hough Transform

91

There are three inputs, x, y and I. The x and y inputs are the pixel numbers entering the

block and the I is the intensity of that particular (x,y) pixel. Since, the input image is the edge

detected image, at a pixel that is part of the detected edge, the intensity will be 1 and the intensity

value at the remaining pixels will be 0. Now, the first block in the hierarchy is the

quadrant_changer block. The block is as shown in figure 64:

 Figure 64: quadrant shifter block

As described earlier we have to change the quadrant system, moving the (0,0) pixel at the

top left corner to the center of the image. Also we have to note, the general convention for

denoting a pixel is (row, column), however, we will be following a Cartesian co-ordinate system

where each pixel is denoted as a point (x,y) in the Cartesian plane with x representing the

columns and y representing the rows. Thus, our first block has two responsibilities: the first is to

eliminate the pixel values with 0 intensity and the second is to map the input image pixels to the

desired quadrant system. Thus, we have a comparator that checks the I value every clock cycle

and only allows x, y coordinates with intensity 1 to pass through and be stored in registers xreg

and yreg respectively. These x and y coordinates are then mapped to the desired quadrant system

using the mapping equations. The mapping equations are actually modeled using a sequential

block which is sensitive to the values of two registers xreg and yreg. The values on the output

92

port of this block represent the required values of the pixels as calculated by the mapping

equations.

Now, the subsequent blocks are designed to calculate xcosθ and ysinθ from θ: 1 to 89

degrees. These calculations are done in parallel and contain the DSP blocks. As mentioned

earlier, we have pre calculated the values of cosθ and sinθ and stored them in registers. Let us

look into the detail of one multiplication block using DSP slices (refer figure 65).

 Figure 65: calculation using DSP slices

As we can see the input value is an 8 bit value and the cos value we have stored is a 16

bit fixed point value. The DSP slice will perform the multiplication for these two values and give

the output as a 24 bit fixed point value. Now, this forms one multiplication block; we have to

cascade multiple such blocks to get a pipelined architecture for calculating xcosθ for all desired

values of θ. This pipelining is modeled as clock synchronized sequential block. The block to

calculate ysinθ is the exact clone of the block to calculate xcosθ with the obvious difference, that

we will be storing the pre-calculated 16 bit fixed point sin value. Also it is important to note that,

DSP slice also has inbuilt pipelined stages and it typically takes 3 clock cycles for the DSP slice

to multiply the two input values. Hence, the first output will start arriving from our blocks three

cycles after we provide it with inputs, but after the first output arrives, the consequent outputs

93

will start coming out every consequent clock cycle on account of the pipelined architecture of

DSP and our block.

Next we have the combinational adder and subtractors to calculate ρ. These are modeled

by the concurrent assign statements.

Now, the prime block of our Hough transform module is the accumulator matrix. This

can be modeled in several ways as described in [20], [22] and [23]. However, we will be

simplifying the design. We have the liberty to do so, because we are not designing a generic

Hough transform. We have chosen only a specific set of angles at which we will be calculating

the values of ρ. Also, in order to reduce the resource utilization, we will be making some

assumptions. Our rho values range from –n/√2 to +n/√2. The negative rho values indicate that

lines are passing above the origin. It can be seen in the picture 62, the lines for the pillar as well

as the floor edges, pass above the center of the image (above the origin). This is gives us an

added advantage of taking only the negative values of ρ. Thus, our accumulator matrix size is

drastically reduced. In terms of resource utilization, the reduction in the size of the accumulator

matrix has many implications. The accumulator matrix is modeled as multiple clocked registers,

with each register corresponding to the integer value of ρ ranging from 0 to –n/√2. The incoming

calculated fixed point rho values is first compared with the smallest integer ρ value, if it smaller

than the counter in that particular register corresponding to the smallest ρ value is incremented

by one. The counter value is compared with the threshold value. If the counter value is greater

than the threshold value, then the integer value of rho indicates a detected line, and that value is

given as output. If the incoming calculated fixed point ρ value is not smaller than the smallest

integer stored ρ value than the next higher stored value is compared and the operation is repeated.

This entire operation has to take place in a single clock cycle. This is why, reducing the hardware

94

utilization is of utmost importance, because with more hardware, the operating frequency of the

design would be hindered to great extent. Basically, each operation requires two comparators

(one for comparing the ρ values and another for comparing counter with threshold value), one

adder (to increment the counter value) and two clocked registers for storing integer ρ value and

the counter value.

The last block is the series of shift registers which will take the values of ρ and θ for each

detected line from the accumulator matrix block and shift them to output. There will be two pairs

of shift registers, one for detecting the pillar and other for detecting the floor edges. Each of the

shift register is actually a custom designed comparator-based-switch block. The design for it as

shown in the diagram of Figure 66.

We need to mention the fact in our design we cannot have multiple assignments to the

same wire. That is, an output port of a block cannot have multiple drivers. But, we have a block

that is supposed to be cascaded serially and also connected to the output of the accumulator

matrix. Our block has to take two inputs one from the accumulator matrix and other from the

block cascaded to its inputs.

 Figure 66: Special unit of shift chain

95

Now, we are not going to get a continuous output from the accumulator matrix because

accumulator matrix will give the output only when the counter value crosses the threshold and

that is not going to happen often. However, at the instant when we do get the output from the

accumulator matrix we have to make a decision to choose either to take the inputs from the

cascaded block or to take the input from the accumulator matrix. In this case the outputs on the

block cascaded to the current block’s inputs have to be held steady for one clock cycle, and in

this clock cycle our current block has to take the value from the accumulator matrix and push it

out to the next block. Then, in the next cycle it can take the value from the cascaded block. We

have to manipulate registers within the block such that we can give correct output at the required

instant. The only situation, in which the value from the cascaded block is lost, is when two

consecutive instances of the accumulator blocks (that is lines at two consecutive values of θ) are

detected simultaneously. However, this is a very rare and near impossible event (as we have

observed from experimental simulations).

The block functions in the following way: When there is a change in the input port

connected to the accumulator matrix, following series of events occur. The input value of ρ is

checked against the previously stored value in a temporary register. Obviously for the first time

this is going to be true, because the temporary register on a FPGA will be initialized to zero. If

the condition is true, which it will be the first time, the output port of this shift block will be

assigned the value coming from the accumulator register and also this value will be stored in the

temporary register for a future comparison. If the condition is not true then this implies that the ρ

value coming from the accumulator is a duplicate value, that is, a line with that particular ρ and θ

value has already been detected previously. Thus, the current value will be discarded and the

value from the cascaded shift register block will be assigned to the output ports. But, these events

96

happen only on change in value of the input ports connected to the accumulator matrix in

absence of which the value on the input ports connected to the cascaded block will be directly

assigned to the output. Next, we synthesize this design and check its resource utilization. This is

as in the table shown in Figure 67:

 Figure 67: Resource utilization for Customized Hough Transform

Also, the maximum operating frequency of our design is 103 MHZ. We performed a post

synthesis simulation using Xilinx ISM. First we take the image from the software

implementation, as shown in Figure 68:

 Figure 68: Original image before edge detection is performed

97

Then we wrote a script in MATLAB as shown below to generate the edge detected pixel

list for this image and stored it in a file.

I=imread('C:\Users\srvyas\Desktop\pics\pillar.gif');
 BW=edge(I);
 fid=fopen('C:\Users\srvyas\Desktop\pics\inp11.txt','w');
for x=1:519
 for y=1:654
 xval=x;
 x1=dec2bin(x,8);
 fprintf(fid, '%s \r\n', x1);
 count=count+1;
 yval=y;
 y1=dec2bin(y,8);
 fprintf(fid, '%s \r\n', y1);
 count=count+1;
 i=BW(xval,yval);
 i1=dec2bin(i,1);
 fprintf(fid, '%s \r\n', i1);
 if (i==0)
 count=count+1;
 end
 end
 count3=count3+1;
end
fclose(fid);
imshow(BW);

This would be the input file containing the pixel coordinates and the intensity value. The

edge detected image and the file are as shown in Figure 69 and Figure 70 respectively:

 Figure 69: Edge detection performed on the original image

98

 Figure 70: Input text file

The MATLAB also treats the image with pixel co-ordinate (0,0) at the top left corner and

hence, the file generated by MATLAB would be highly appropriate to test our design (i.e.

validate our quadrant changing mechanism). The Output waveform for the simulation is as in

Figure 71. xx and yy are 8-bit input ports that take pixel values from (0,0) to (120,120) in Raster

scanning order: 00, 01, 02…. In the output waveform below, (16,102) to (16,115) is the current

input. Port ii is a 1-bit input port that takes in value of the intensity level 1 or 0 at that pixel value

(the input image is the binary edge detected image). In the waveform for example at pixel value

(16,104) there is an edge pixel and hence the intensity is 1. rho_out1 and theta_out1 output ports

take the rho-theta value of detected pillar edges and rho_out2 and theta_out2 take it for detected

floor edges.

 Figure 71: Output waveform

99

We get two output files containing the output ρ and θ values for pillar and for the floor

edges. We note down the simulation timing for 512 X 512 image. It takes 3.33ns at 100MHZ to

calculate ρ and θ values.

Now we use timestamps in our software to calculate the time taken by the software to

process the Hough transform function. The stamps observed in various iterations give the values

ranging from 5ms to as high as 17 ms. We can observe that our hardware implementation beats

the software even at much lower operating frequency of 100MHZ.

3.5 Timing Results

 We will compare the timing results in software (MS visual studio) with that in

hardware (Xilinx ISIM simulation software) for a 120 X 120 image. The C++ code is run at the

local processor speed somewhere at 1GHZ. The simulations in ISM are done at the frequency of

100 MHZ (maximum operating frequency: 103.916 MHZ, clock period of 9.623ns). The results

are as shown in Figure 72:

Performance in Software

 Function timing

Canny edge detection
1-3
ms

Hough Transform
7-8
ms

 Figure 72: timing performance of software implementation6

6 The input image for Canny edge detection OpenCV function is a 8-bit single channel Gray scale image, which is

same as that used for FPGA implementation. Also, the OpenCV implementation uses an approximate gradient calculation method

rather than high precision calculation to have a fair comparison with the FPGA implementation.

100

On the FPGAs, computation of timing only for the first frame matters, as this is the time

required to fill all the buffers in Canny module and ripple through the DSP slices in Hough

transform module. The remaining frames will processed immediately following the first frame as

the buffers are already filled and DSP slices have all three pipeline stages filled.

 Figure 73: timing performance of hardware implementation7

The total time taken by Canny edge detection function and the Hough Transform function

in Visual studio, after resizing operation is 11 to 14 ms for the first frame. The same operations

take a total of 0.50767 ms in the FPGA implementation, excluding the time taken for storing the

output from Canny edge detection and subsequent extraction by the Hough Transform module.

7 The ρ value obtained from the DSP slice is 25 bit (11bit.14bit) fixed point, giving a good output precision. The output

from OpenCV is not fixed point but of double value, hence, it is capable of producing much higher precision output. Thus, timing

comparison for ρ value calculations may not be entirely fair, however, remaining algorithm is just counter incrementing and

Threshold comparison. Hence, this comparison positively gives us a decent idea of overall speed-up that is achieved through

FPGAs.

Performance in Hardware

 Function timing

Canny edge detection 0.36ms

Hough Transform 0.144ms

101

Chapter 4

Conclusion

It is a fact that, a direct implementation of an algorithm in hardware can achieve higher

levels of parallelism than a microprocessor based design and are several magnitude faster, use

less area and have lower power consumption [28]. We have proved this fact to some extent: Our

implementation of Hough Transform and Canny Edge detection algorithms on FPGA runs many

times faster as compared to the software based approach. Also, theory of FPGAs consuming

lower power as compared to the microprocessors is based on the concept of dynamic power

dissipation within the silicon fabric, which is directly proportional to the operating frequency.

That is, higher switching rate of transistor on a semiconductor fabric (therefore higher clock

frequency of the device) higher is the power dissipation (therefore higher power consumption of

the device). This is mathematically represented by the formula:

𝑝 = 𝑐𝑣2𝑓

Where p is dynamic power dissipation, c is the load capacitance and f is the clock

frequency. The maximum operating frequency of our FPGA implementation was 100MHZ,

which is much lower as compared to any sophisticated processor which runs in the GHZ range.

The lower operating frequency for FPGA corresponds to much lower power dissipation

(assuming the FPGA and microprocessors both operate at almost same voltage of 5V).

Thus FPGAs are well suited to applications in the field of robotics and automation. It

provides optimization in terms of timing performance, which facilitates robust implementations

102

of complicated algorithms and at the same time provides optimization in terms of power

consumption which is crucial to mobile robotic platforms.

Our Canny edge detection implementation gives decent results but still consumes a lot

hardware resources. An interesting technique of array computing may help address this issue.

This technique works on a unique architecture, where the entire algorithm is decomposed into

smaller sub-algorithms, each of which actually generates a partial result and finally the

combining all the partial results, the solution to the main problem is achieved. Basically, the

architecture consists several hardware units, each capable of communicating with its immediate

neighbors and each of which processes and generates a partial results based upon the input

received from one of its neighbors and the result generated is passed on to another neighbor.

We used Hough transform (and line based SLAM) in this thesis, because the objects

found in the indoor environment can be characterized by line-based edges like pillars. However,

there are several possible features found in the indoor environment which can be characterized

by shorter line segments like legs of chairs and tables. In such a case, we can use incremental

Hough Transform for detection of shorter segments as described in [21]. This incremental Hough

Transform can be implemented on FPGA, in resource efficient manner as described in [20].

We have restricted the implementation of Monocular SLAM to indoor environment.

However, as we proceed towards developing a non-generic SLAM, capable of operating in all

possible environments we have to avoid using line based SLAM. Line-based edges are the

primary characteristic only of the man-made objects found in an indoor environment, but this is

not the case in natural world. Features such as trees, rocks, mounds are not characterized by

straight lines. In such a case we have to rely on corner point detection. As we have mentioned

several times earlier, majority of the SLAM implementations are based on Harris corner

103

detection. During our literature review, we have come across several such papers, one of which

is [29].

We have also described the camera model in our thesis, as a constant velocity model.

This model assumes a constant linear and angular velocity of the camera corrupted by noise. This

noise is the product of unknown linear and angular acceleration (represented by zero mean

Gaussian process) and time impulse (Δt). This model prevents the use of High speed camera

because sudden jerk motions that complement a fast moving robotic platform cannot be modeled

by our current camera model. [30] Gives a higher order extension to the constant velocity model.

In this new model velocity is no more constant (it was not really constant, there was always an

addition of noise) but can vary over a time impulse and is represented by kinematic equation: u =

v + at. Also, in this model, linear and angular acceleration is constant but corrupted with noise.

This noise is the product of unknown linear and angular jitter (represented by zero mean

Gaussian process) and time impulse (Δt). Such a model can now be used in Monocular SLAM

implementations which makes use of fast moving robotic platforms.

Finally, we conclude with an assertion that combination of Microprocessors and ASICs

interfaced with FPGA fabric, forms the best computing unit that can be a part of an ideal

embedded system for implementation of complex systems having wide range of application in

the contemporary world.

104

BIBLIOGRAPHY

[1] Digital Image Processing by Gonzalez, Rafael C./ Woods, Richard E

[2] OReilly-LearningOpenCV

[3] OpenCV official online tutorial

[4] A Solution to the Simultaneous Localisation and Map Building (SLAM) Problem,

M.W.M.G. Dissanayake, P.Newman, S. Clark, H.F. Durrant-Whyte and M. Csorba.

[5] Monocular Visual SLAM based on Inverse Depth Parametrization, Mälardalen Univeristy

School of Inovation, Design and Engineering Author: Víctor Rivero

[6] Dimensionless Monocular SLAM, Javier Civera1, Andrew J. Davison, and J. M. M.

Montiel1

[7] MonoSLAM: Real-Time Single Camera SLAM, Andrew J. Davison, Ian D. Reid, Member,

IEEE, Nicholas D. Molton, and Olivier Stasse, Member, IEEE

[8] Kalman and Extended Kalman Filters: Concept, Derivation and Properties, Maria Isabel

Ribeiro Institute for Systems and Robotics Instituto Superior T´ecnico

[9] An Introduction to the Kalman Filter by Greg Welch and Gary Bishop

[10] SLAM with Corner Features Based on a Relative Map, Manuel Altermatt, Agostino

Martinelli, Nicola Tomatis and Roland Siegwart

[11] Undelayed Initialization in Bearing Only SLAM, Joan Sola, Andre Monin, Michel Devy and

Thomas Lemaire

[12] Constrained Initialization for Bearing-Only SLAM, Tim Bailey

[13] Delayed Feature Initialization for Inverse Depth Monocular SLAM, Rodrigo Munguia and

Antoni Grau

105

[14] A practical 3D Bearing-Only SLAM algorithm, Thomas Lemaire, Simon Lacroix and Joan

Sola

[15] Building a Partial 3D Line-based Map using a Monocular SLAM, Guoxuan Zhang and I1

Hong Suh, senior member, IEEE.

[16] Straight–lines modelling using planar information for monocular slam, Andr´ e m. Santana,

Adelardo a.d. Medeiros

[17] Monocular visual mapping with the Fast Hough Transform, Nicolau Leal, Werneck and

Anna Helena Reali Costa

[18] A line feature based SLAM with low grade range sensors using geometric constraints and

active exploration for mobile robot, Young-Ho Choi·Tae-Kyeong Lee·Se-Young Oh

[19] Scan Matching in the Hough Domain, Andrea Censi, Luca Iocchi and Giorgio Grisetti

[20] Implementation of Hough Transform Using Resource Efficient FPGA Architecture,

S.Subbiah, A.Rega

[21] Incremental local Hough Transform for line segment extraction, Rui F. C. Guerreiro, Pedro

M. Q. Aguiar

[22] Real-time FPGA implementation of Hough Transform using gradient and CORDIC

algorithm, Si Mahmoud Karabernou, Faycal Terranti

[23] Efficient Hough transform on the FPGA using DSP slices and block RAMs, Xin Zhou,

Norihiro Tomagou, Yasuaki Ito, and Koji Nakano

[24] http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/MARBLE/low/edges/canny.h

tm

[25] An Improved Canny Edge Detector and its Realization on FPGA, Wenhao He and Kui

Yuan

http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/MARBLE/low/edges/canny.htm
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/MARBLE/low/edges/canny.htm

106

[26] Embedded Systems Computer Architecture (extended abstract) Jakob Engblom

[27] Study and Comparison of Various Image Edge Detection Techniques, Raman Maini, Dr.

Himanshu Aggarwal

[28] Field Programmable Gate Array technologies for robotics application, P.H.W. Leong and

K.H. Tsoi.

[29] SLAM with Corner Features Based on a Relative Map, Manuel Altermatt, Agostino

Martinelli, Nicola Tomatis and Ronald Siegwart

[30] Improving Localization Robustness in monocular SLAM using a High-Speed Camera, Peter

Gemeiner, Andrew J. Davison, Markus Vincze.

