
Simulation and Testing of Stabilization and Assisted

Walking in a 3D-Printed Humanoid Robot

IN PARTIAL FULFILLMENT OF A MAJOR QUALIFYING PROJECT

WORCESTER POLYTECHNIC INSTITUTE

Submitted by:

Joshua Fernandez (RBE)

Erin Lee (RBE/ME)

Tessa Lytle (ME)

Finbar O’Sullivan (ME)

Casey Snow (CS)

Project Advisors:

Kaveh Pahlavan (ECE/CS)

Pradeep Radhakrishnan (ME/RBE)

This report represents the work of WPI undergraduate students submitted to the faculty as

evidence of completion of a degree requirement. WPI routinely publishes these reports on its

website without editorial or peer review. For more information about the projects program at

WPI, please see http://www.wpi.edu/academics/ugradstudies/project-learning.html

1

http://www.wpi.edu/academics/ugradstudies/project-learning.html

Abstract

Koalby and Ava are two toddler-sized 3D Printed humanoid robots intended for human

interaction and lab assistance. The capabilities planned for integration during this year’s project

include standing without support, walking while pushing a cart and lifting objects. The first task

involved updating the wiring of motors and electronics to improve performance and ensure

consistent functionality. Kinematics and trajectory planning were implemented to replicate

human movements and simplify motion control. This was followed by the integration of sensors

such as TF Luna LiDAR, Husky Lens, and IMUs to provide data required for walking

trajectories and feedback control. Additional batteries and power circuits were incorporated to

account for new motors and sensors. In order to test all of these aspects, a simulation model was

also developed in CoppeliaSim. Finally, a user-friendly interface was created to view all the

sensor data and control the humanoid robots.

2

Acknowledgments

This project would not have been possible without the help of the following people:

Dr. Pradeep Radhakrishnan

Dr. Kaveh Pahlavan

Barbara Furhman

Peter Hefti

Cam Tu Lee

The 2021-2022 3D Printed Humanoid Robot MQP Team

The 2022-2023 3D Printed Humanoid Robot MQP Design Team

3

Table Of Contents

Abstract 2
Acknowledgments 3
Table Of Contents 4
Nomenclature 8
Abbreviations 11
Authorship Table 12
List of Figures 14
List of Tables 17
1. Introduction 18

1.1 Report Organization 19
2. 2021-2022 MQP 20

2.1 General Overview of Koalby 20
2.2 Motors 21
2.3 Electronics: Batteries and Control 23

2.3.1 Batteries 23
2.3.2 Controls 25

2.5 Software 26
2.6 Key Differences Between Koalby and Poppy 29
2.7 Capabilities 30
2.8 Testing 31

2.8.1 Arm Tests 31
2.8.2 Routine Tests 32
2.8.3 Battery Endurance Tests 32

2.9 Recommendations for Future Work 32
3. Objectives 34

3.1 Goals 34
4 Literature review 36

4.1 Humanoid Applications 36
4.2 Kinematics 38

4.2.1 Foundations 38
4.2.2 Forward Kinematics 39
4.2.3 Inverse Kinematics 41

4.3 Trajectory Planning 42
4.3.1 Polynomial Generation 42
4.3.2 Calculation of Intermediate Points 43

4

4.3.3 Trajectory Execution 44
4.4 Sensors 44

4.4.1 IMU 44
4.4.2 Camera 46
4.4.3 LiDAR 46
4.4.4 Ultrasonic Sensor 47

4.5 Filter Methods 47
4.5.1 Complementary Filter 48
4.5.2 Kalman Filter 49

4.6 Stabilization 51
4.7 Cart-Pushing Studies 53

4.7.1 Stabilization Overview 53
4.7.2 Stabilization System and Calculations 54
4.7.3 Cart-Pushing Results 59

4.8 UI Prototyping 60
4.9 Simulation 62

5. Methodology 64
5.1 A Term 64

5.1.1 Understanding Koalby’s Initial Status 64
5.1.2 Code Refactoring 65

5.2 B Term 65
5.2.1 Forward and Inverse Kinematics 65
5.2.2 Simulation Software 65
5.2.3 Building Koalby in Simulation 66
5.2.4 Motors 66
5.2.5 Sensors 66
5.2.6 Code Architecture Evaluation 67

5.3 C Term 67
5.3.1 Trajectory Planning 67
5.3.2 Determine the Position and Motor Angles 67
5.3.3 Gather IMU Readings and Stabilized Controls 67
5.3.4 Choose a Filter 68
5.3.5 UI Prototyping 68

5.4 D Term 68
5.4.1 Testing Stability 68
5.4.2 UI Testing 69

6. Evaluating Koalby 70
6.1 Testing Electronics 70

5

6.2 Testing Software 73
7. Kinematics 75
8. Trajectory Planning 83
9. Electronics and Control 88

9.1 Zeroing Motors 88
9.2 Dynamixel Versus Herkulex Motors 89
9.3 Sensors 91

9.3.1 LiDAR (TF Luna) 92
9.3.2 IMU (BNO055) 94
9.3.3 AI Camera (Huskylens) 98

9.4 Electrical Integration 101
10. Simulation Software 102

10.1 Building Koalby in Simulation 103
11. Stabilization 104

11.1 Determine Position and Motor Angles 104
11.2 Gathering IMU Readings and Stabilized Controls 106
11.3 Choosing a Filter 109
11.4 Testing Stability 109

12. Koalby’s Software 113
12.1 Code Refactoring 113

12.1.1 Incorporating the Simulation 113
12.1.2 Improving Usability and Readability 113
12.1.3 Testing 114

12.2 Project Architecture 114
13. UI Prototyping 119

13.1 Pre-Recorded Movements 119
13.2 Recording New Movements 120
13.3 Evaluating Prototypes 120
13.4 More Iterations 121
13.5 Final UI Design 122

14. Discussion 126
14.1 Goals 126
14.2 Assess and Repair the Physical Robot 126
14.3 Calibrate and Integrate Motors and Sensors 127
14.4 Recreate the Robot and its Movements in Simulation 128
14.5 Develop Code for Stabilization and Movement 128
14.6 Develop a User-Friendly Interface 129
14.7 Demonstration at Undergraduate Research Projects Showcase 129

6

15. Conclusions 131
15.1 Broader Impacts 131

15.1.1 Engineering Ethics 131
15.1.2 Societal Impact 132

15.2 Recommendations for Future Work 132
15.2.1 Autonomy 132
15.2.2 Optimization 132
15.2.3 Increasing Capabilities 133

References 134
Appendices 141

Appendix A: Humanoid Applications 141
Appendix B: Kinematics and Trajectory Planning 142
Appendix C: Troubleshooting Document 143
Appendix D: GitHub and Simulation 144
Appendix E: Electrical Diagram 145

Reflections 146

7

Nomenclature

Symbol/Variable Meaning

𝑣, 𝑣
0
, 𝑣

𝑓
velocity, initial velocity, final velocity (for
PoE: linear velocity vector)

∆𝑥 displacement

𝑎 acceleration

𝑡, 𝑡
0
, 𝑡

𝑓
time, initial time, final time

θ joint rotation angle

ω angular velocity about each x, y, z axis

𝑆 PoE: skew vector

𝐼 identity matrix

𝑞, 𝑞' vector of joint angles, vector of angular
velocities

𝑞
0
, 𝑞

𝑓
initial joint positions, final joint positions

𝑇
𝑖
𝑖+1 transformation matrix from link to𝑖 𝑖 + 1

g gravitational acceleration

zc height of the CoM

x’’COM acceleration of the CoM

xZMP, xZMP,k the ZMP’s location in the x direction, the

current ZMP in k

Fcart force of the cart

Mc load mass on the cart

CPx,k the ongoing CP

8

Symbol/Variable Meaning

𝑣, 𝑣
0
, 𝑣

𝑓
velocity, initial velocity, final velocity (for
PoE: linear velocity vector)

∆𝑥 displacement

𝑎 acceleration

𝑡, 𝑡
0
, 𝑡

𝑓
time, initial time, final time

θ joint rotation angle

ω angular velocity about each x, y, z axis

𝑆 PoE: skew vector

𝐼 identity matrix

st time step

𝜏c torque constant

Ka amplitude gain

𝜇 coefficient of friction

𝑓
𝑐

arm moment of inertia

J wrist moment of inertia

γ IMU noise

β IMU bias

β/s calculated angle from gyroscope

Ts transfer function

s seconds

Pxyz positions in the x,y,and z

9

Symbol/Variable Meaning

𝑣, 𝑣
0
, 𝑣

𝑓
velocity, initial velocity, final velocity (for
PoE: linear velocity vector)

∆𝑥 displacement

𝑎 acceleration

𝑡, 𝑡
0
, 𝑡

𝑓
time, initial time, final time

θ joint rotation angle

ω angular velocity about each x, y, z axis

𝑆 PoE: skew vector

𝐼 identity matrix

Vxyz velocities in the x,y,z

P matrix covariance matrix

Kp PID proportional constant

Ki PID integral constant

Kd PID derivative constant

𝑢(𝑡) PID equation

10

Abbreviations

Abbreviation Meaning

IMU Inertial Measurement Unit

LiDAR Light Detection and Ranging

PTZ camera Pan-Tilt-Zoom camera

DOF Degrees of Freedom

CSV Comma-Separated Values

DH Denavit-Hartenberg

PoE Product of Exponentials

ZMP Zero-Moment Point

CoM Center of Mass

CP Capture Point

LIPM Linear-Inverted Pendulum Model

RMSE Root Mean Square Root Error

FT sensors Force-Torque sensors

UI User Interface

URDF Unified Robotics Description Format

MQP Major Qualifying Project

CS Computer Science

HCI Human Computer Interaction

11

Authorship Table

Section Author

Abstract Josh

Introduction Fin

Report Organization Erin

2021-2022 MQP

General Overview of Koalby Erin

Motors Tessa

Electronics Tessa

Software Casey

Key Differences Between Koalby and Poppy Tessa

Capabilities Tessa

Testing Erin

Recommendations for Future Work Erin

Objectives Fin

Literature Review

Humanoid Applications Tessa

Kinematics Josh

Trajectory Planning Josh

Sensors Erin

Filter Methods Erin

Stability Erin

Cart-Pushing Studies Tessa

UI Prototyping Casey

Simulation Fin

Methodology Josh, Erin, Tessa, Fin, Casey

Evaluating Koalby Fin, Casey

12

Kinematics Josh, Erin

Trajectory Planning Josh

Electronics and Control Erin, Tessa, Fin

Simulation Software Fin

Stabilization Erin, Casey

Koalby’s Software Casey

UI Prototyping Casey

Discussion Erin, Tessa, Casey

Conclusions Erin, Tessa, Casey

13

List of Figures

Figure 2.1: Poppy Humanoid 1.0 Reproduced as is from [9]... 20

Figure 2.2: 25 Motors in Koalby... 22

Figure 2.3: Two Horn Dynamixel MX-28 Motor reproduced as is from [10].............................. 23

Figure 2.4: HerkuleX DRS-0201 Motor CAD with the Motor Adapter Prints Attached

reproduced as is from [10].. 23

Figure 2.5: 7.4V Batteries in Koalby’s Legs... 24

Figure 2.6: 11.1V Battery in Koalby’s Head.. 25

Figure 2.7: Koalby Electronics Setup reproduced as if from [10].. 25

Figure 2.8: Serial Port Usage of Koalby reproduced as is from [10]... 26

Figure 2.9: Flowchart of Primitive Manager from Last Year... 28

Figure 2.10: Old UI... 28

Figure 2.11: UI Flowchart from Last Year.. 29

Figure 2.12: Key Redesign Locations on Koalby……………... 30

Figure 2.13: Recorded Wave Motion.. 31

Figure 4.1: Block Diagram of the Complementary Filter reproduced as is from [36]................. 47

Figure 4.2: Block Diagram of the Kalman Filter as reproduced as is from [36].......................... 49

Figure 4.3: Bipedal humanoid robot in inverted pendulum model reproduced as is from [40]... 52

Figure 4.4: ZMP Position Example reproduced as is from [39]... 53

Figure 4.5: ZMP Example on a Humanoid Robot reproduced as is from [39]............................. 54

Figure 4.6: DRC-Hubo Humanoid Platform reproduced as is from [38]..................................... 55

Figure 4.7: LIPM with Capture Point Dynamics for Cart Pushing reproduced as is from [38]... 56

Figure 4.9: System Integration reproduced as is from [38].. 57

Figure 4.10: Residual Squared Sum Over Time for Rolling Cart “C1”, and Utility Cart “C2” with

and Without Load reproduced as is from [38].. 57

Figure 6.1: Koalby’s Broken Pelvis.. 69

Figure 6.2: Electrical Short... 70

Figure 6.3: Restricted Wires... 71

Figure 6.4: Bolt-Mounted Arduino……………………………... 72

Figure 6.3: Koalby’s Motor IDs.. 73

14

Figure 7.1: The Open-Polygon Model of Koalby’s Leg... 75

Figure 7.2: Open-Polygon Model of Koalby’s Leg.. 76

Figure 7.3: Flowchart of Forward Kinematics Code Functionality in Koalby’s Software……... 78

Figure 7.4: Flowchart of Inverse Kinematics Code Functionality in Koalby’s Software………. 79

Figure 7.5: Koalby’s Arm Straight in Zero Position in Simulation…………………………….. 79

Figure 7.6: The open-polygon model of Koalby’s arm…………………………………………. 80

Figure 7.7: Flowchart of Arm MATLAB Code………………………………………………… 81

Figure 8.1: Flowchart of Trajectory Planning Code Functionality in Koalby’s Software……… 82

Figure 8.2: Example of Software-Generated Points Between a Beginning and Start Trajectory in

{motor id: motor position} Format to Be Fed Back to the Robot for Movement…….………... 83

Figure 8.3: Progression of Koalby’s Most Stable Step With Corresponding Joint Angle Values

for Each Stage... 85

Figure 9.1: Changes in Motor Values From Zeroing.. 86

Figure 9.2: Dynamixel MX-64AT Motor.. 87

Figure 9.3: HerkuleX DRS-0601 Motor... 87

Figure 9.4: HerkuleX DRS-0101 Motor... 88

Figure 9.5: Dynamixel AX-12 Motor... 88

Figure 9.6: TF Luna Sensor Testing Setup... 90

Figure 9.7: TF Luna Sensor Testing Graph.. 90

Figure 9.8: IMU Placed on CoM.. 91

Figure: 9.9: BNO055 IMU Testing Setup... 92

Figure 9.10: Acceleration of the IMU at rest in the X direction... 92

Figure 9.11: Acceleration of the IMU at rest in the Y direction……………………………...… 93

Figure 9.12: Acceleration of the IMU at rest in the Z direction…………………………………93

Figure 9.13: Acceleration of the IMU moving in the left direction slowly…………………….. 94

Figure 9.14: Acceleration of the IMU moving in the left direction fast…………………………94

Figure 9.15: IMU Coordinate system... 95

Figure 9.16: Paper with Color Tape for Training……….……………………………………… 96

Figure 9.17: Huskylens trained on two colors.. 96

Figure 9.18: Correct Classification of Object... 97

Figure 9.19: Blue Arrow Attempting to Follow Black Line... 97

15

Figure 10.1: Initial Koalby Model in CoppeliaSim………………….…………………………100

Figure 11.1: Koalby’s Most Stable Position……………………………………………………102

Figure 11.2: Koalby standing in simulation with a cart……………………………………….. 103

Figure 11.3: Gyroscope and Accelerometer Placed at Center of Mass……………………….. 104

Figure 11.4: Koalby stable in simulation with PI control………………………………………105

Figure 11.5: Koalby Standing with cart.. 105

Figure 11.6: Flowchart of the IMU Readings with the Kalman Filter………………………… 106

Figure 11.7: Flowchart of the IMU Readings with the PI Controller…………………………..106

Figure 11.8: Koalby Standing in the Real World.. 108

Figure 11.9: Koalby Standing with a Cart and Waving.. 109

Figure 11.10: Koalby Standing Assisted by Only One Finger.. 109

Figure 12.1: Code architecture...112

Figure 12.2: Koalby waving from the UI…………...112

Figure 12.3: Overall code design...114

Figure 13.1: First UI LoFi Prototype Mockup of Pre-Recorded Movements (left) and Queue

Editing Page (right)..115

Figure 13.2: Creating Movement Page..116

Figure 13.3: Second Iteration UI Prototype of Described Movements……………………..…..117

Figure 13.4: First Software UI Iteration………………..…………………………………….…118

Figure 13.5: Final UI Homepage Design...119

Figure 13.6: Pre Recorded Movements Page...120

Figure 13.7: Final UI Record New Movement Design..121

Figure 14.1: Mechanical and Materials Engineering Department Presentation………..………126

16

List of Tables

Table 2.1: Comparing Dynamixel MX-28 and HerkuleX DRS-0201 Motors……………..…….22

Table 2.2: Koalby Commands..27

Table 4.1: Humanoid Robot Application Examples……………………………………………..36

Table 4.2: Each DH Parameter and How to Calculate Them………………………………...….39

Table 4.3: RMSE of Experimental X-ZMP vs. Calculated X-ZMP reproduced as is [38]............59

Table 7.1: The DH Table for the Open-Polygon Configuration of Koalby’s Leg Shown in Figure

7.1...75

Table 11.1: Stability Trials With and Without PI Control..107

Table 12.1: Initialization Time Trials...113

17

1. Introduction

The first major wave of robotics development came in the post-war industrial boom of

the 1950s [1]. These simplistic machines were designed to accomplish a single, highly-specific

task using a combination of early computing methods and mechanical design. They quickly

revolutionized the assembly line manufacturing industry, adopted by the automotive giant, Ford

[1]. As time progressed and both software and hardware engineering improved, the tasks that

robots were capable of achieving grew more varied and complex, from welding to performing

surgery [1,2].

Since the 1970s, the challenge of building a human-like robot has held the attention of the

robotics industry [3]. From a mechanical perspective, the most unique aspect of this design is the

use of bipedal locomotion [4]. This requires more robust capabilities in self-balancing and

environmental response than a typical wheeled or stationary robot. As a result, humanoid robots

often make extensive use of advanced sensors, analysis software, and even in recent years,

learning AI [4]. These robots can serve a wide variety of functions, ranging from public relations

and human-facing services to working in hazardous environments [4,5].

In the 2021-2022 academic year, a team of WPI students worked to adapt the

open-source, 3D-printed Poppy robot into a more affordable version called Koalby [10]. The

Poppy project was created with the objective of creating a robot that could be replicated from

scratch by anyone with access to the design and the appropriate resources, i.e. a 3D Printer and

commercially-available motors [6]. While the Poppy team successfully achieved their goal and

had provided both open-source software and 3D hardware models, the Koalby team observed

that the construction costs of the robot were quite high. Thus, they set out to redesign the robot to

use less expensive options, both for printing materials and for the motors providing movement

[7].

For this year, the team aimed to increase Koalby’s capabilities to allow for the robot to

act as an assistant in a classroom or lab setting. This would entail increasing Koalby’s autonomy,

including self-balancing, walking, and real-time responses to its environment. In Chapter 3, we

outline a more detailed plan and decision making process that was followed throughout the year.

18

1.1 Report Organization

This report is organized as follows. Chapter 2 discusses the 2021-2022 MQP responsible

for building Koalby and laying the foundations for the 2022-2023 team. Chapter 3 describes the

objectives of the project. Chapter 4 discusses a review of literature and topics necessary to give

background on the project. Chapter 5 discusses a series of methods performed in order to achieve

the main project goals. Chapter 6 discusses the evaluation of Koalby from last year’s MQP

project. Chapter 7 discusses the inverse and forward kinematics calculated for the arm and the

leg chains. Chapter 8 discusses the trajectory planning for moving the cain and the end effector

in a controlled manner. Chapter 9 discusses the added electronics and sensors to the new circuit

design. Chapter 10 discusses the simulation software used to implement and test code throughout

the project. Chapter 11 discusses the steps taken in order to get a stabilized humanoid robot.

Chapter 12 discusses the overall design and organization of the humanoid code base. Chapter 13

discusses the design and testing of the UI for Koalby. Chapter 14 is the discussion for all the

results of the project testing. Chapter 15 is the conclusion to end the research paper.

19

2. 2021-2022 MQP

This chapter starts with understanding the current state of the project, as it is continued

from last year. Last year’s MQP team replicated the Poppy project, making adjustments to reduce

the cost and adding an internal power source. These adjustments increased the accessibility of

the robot, which could be used for educational purposes, mainly in the research and development

of bipedal humanoid robots.

2.1 General Overview of Koalby

This project is the second iteration of the 3D-Humanoid Robot MQP project. Last year,

an MQP team used the open-sourced Poppy Project created by the Flowers Laboratory as a guide

and aimed to build a more cost-effective version of the humanoid robot. The Poppy humanoid is

a 25-degrees-of-freedom (DOF) robot with a fully articulated vertebral column and comes with

an embedded board that controls the motors and the sensors [8]. Poppy uses Dynamixel motors,

a brand of smart actuator developed by ROBOTIS [8]. Figure 2.1 below shows the Poppy

Humanoid 1.0.

Figure 2.1: Poppy Humanoid 1.0 Reproduced as is from [9]

20

This project’s software is based on a Python library called pypot. The Poppy libraries

have been written in Python to allow for fast development and the ability to utilize other existing

scientific libraries [8]. The open-source nature of this project eases accessibility to the

construction and research of bipedal robots to a larger population. Poppy consists of 3D-printed

parts with a modular design in order to switch out or add components to the robot easily. Poppy’s

design team spent the longest time on the overall design of the legs as they are made up of the

hip, thigh, and feet [10]. Poppy was developed with similar proportions to a human, with a focus

on replicating the hip width and gait [10].

In addition to Poppy’s purpose of being an educational tool for the further development

of humanoid robots, there are different applications that Poppy has been deployed in. The first

one is in the School of Moon, a play where the stage is shared with children, two dancers, three

NAO robots, and two Poppy humanoids. This helps bridge the gap between humans and robots.

Another application of Poppy is in the Cherry Project, a community project to help reduce the

feeling of isolation of children in hospitals. The Poppy humanoid aids by acting as a companion

for hospitalized children in the primary school age group. This application helps mediate the

barriers between the child and their friends or family as Poppy can talk to or play games with the

child [8].

2.2 Motors

To reduce cost of Koalby, the Dynamixel MX-28 motors used in the Poppy project were

swapped for the cheaper HerkuleX DRS-0201. As of last year’s team’s work, the motors used in

Koalby are two Dynamixel AX-12 motors in the neck, four Dynamixel MX-64AT motors in the

abdomen and hips, and 19 HerkuleX DRS-0201 motors throughout the limbs which is shown in

Figure 2.2. This differs from the original Poppy project which had Dynamixel MX-28AT motors

throughout the body. All 19 of the Dynamixel MX-28 motors were replaced with the HerkuleX

DRS-0201 reducing the total cost by ~$2500. The motor comparison between Dynamixel

MX-28AT and HerkuleX DRS-0201 are shown in Table 2.1.

21

Table 2.1: Comparing Dynamixel MX-28 and HerkuleX DRS-0201 Motors

Motor Cost Stall Torque
(Nm)

No load speed
(RPM)

Form Factor
(mm)

Dynamixel MX-28 $260 2.5 55 32 x 50 x 40

HerkuleX DRS-0201 $132 2.35 68 24.0 x 45 x 31

Figure 2.2: 25 Motors in Koalby

22

The HerkuleX DRS-0201 motors (24.0 x 45 x 31 [mm]) are significantly thinner and

slightly smaller than the MX-28 motors (32 x 50 x 40 [mm]) in most other dimensions. This

meant they fit in the space previously filled by MX-28 motors, but their mounting holes do not

align with the existing mounting points. A motor adapter was designed and printed to realign the

mounting holes, and a spacer was designed to allow the HerkuleX motors to fit in the spaces

originally designed for Dynamixel motors. Figure 2.4 shows the original two horn Dynamixel

MX-28, and 2.4 shows the HerkuleX DRS-0201 motors with the motor adapter prints attached.

Figure 2.3: Two Horn Dynamixel MX-28

Motor reproduced as is from [10]

Figure 2.4: HerkuleX DRS-0201 Motor CAD

with the Motor Adapter Prints Attached

reproduced as is from [10]

2.3 Electronics: Batteries and Control

2.3.1 Batteries

Koalby differs from Poppy in that the power is supplied by onboard batteries rather than

being plugged into a wall outlet [10]. The control wiring runs signals to the Arduino from the

separate HerkuleX and Dynamixel bus systems. Koalby was powered with two 7.4V batteries

and one 11.1V lithium polymer battery. The two 7.4V batteries have a capacity of 5200mAh and

contain two cells. Figure 2.5 shows where the 7.4V batteries are stored in Koalby’s shins. The

third 11.1V battery has a capacity of 2200 mAh with three cells. Figure 2.6 shows where the

23

11.1V battery is stored in Koalby’s head. The two 7.4V batteries were placed in parallel to power

the Herkluex motors (which can run on anywhere from 6-9V), a Raspberry Pi 3 and an Arduino

Mega. The Arduino Mega has an integrated voltage regulator, so it can be powered directly from

the 7.4V batteries. The Raspberry Pi does not have a voltage regulator, so a LM7805CV linear

voltage regulator (which supplies up to 1.8A) was used to power the Raspberry Pi, which needs

1.6A to operate. The third 11.1V battery was used to power the Dynamixel motors and

Dynamixel Shield.

Figure 2.5: 7.4V Batteries in Koalby’s Legs

24

Figure 2.6: 11.1V Battery in Koalby’s Head

2.3.2 Controls

The Poppy robot connected the Dynamixel motors directly to the Raspberry Pi via a

custom built PCB; this custom PCB connected directly to the GPIO pins of the board [10]. This

board was not available in the US and the HerkuleX motors used a different four wire bus

standard than the three wire Dynamixel setup [10]. Therefore, an Arduino Mega was used in

Koalby to replace the smaller adapter board. The HerkuleX motors can be controlled directly by

the Arduino, while the Dynamixel motors require an additional shield, a Dynamixel Motor

Shield. Figure 2.7 shows the electronics setup of Koalby, as previously described.

Figure 2.7: Koalby Electronics Setup reproduced as if from [10]

25

Serial communication between the Arduino and Raspberry Pi was accomplished via a

USB-serial adapter. This was necessary because the Arduino uses the serial pins for the USB

port. The adapter connected pins from the Raspberry Pi’s USB port to the Serial2 pins of the

Arduino. Figure 2.8 shows Koalby’s serial port usage.

Figure 2.8: Serial Port Usage of Koalby reproduced as is from[10]

2.5 Software

The code structure of Koalby consists of Arduino code written in C++ and Python code.

The Arduino code is the direct controller for the robot, moving each individual motor to its

specified position. It consists of two main parts which are a setup section and a loop section. The

setup section initializes various different parts of the code for use throughout its execution. The

first is the serial communication port, opening the connection between the Arduino code and the

Python code. Second, a robot object used to control the robot is initialized. After the setup

function is complete, the loop section is continuously executed. The loop contains a switch case

statement used for interpreting signals from the Python code. When a signal is sent, it is parsed

and the switch case statement directs the Arduino code to a designated method within the robot

class. These designated methods are used to set and get motor positions as well as sensor data.

The communication between the Arduino and the Python is simple. If the Arduino is

connected to the processor running the Python code, all signals can be sent through that serial

port. The Python software sends a numerical code corresponding to what it wants the Arduino to

do. The Arduino then decodes the message it was sent and executes based on the switch-case

statement as mentioned above. This numerical code table can be seen in Table 2.2.

26

Table 2.2: Koalby Commands

Command Number Additional
Parameters

Description

Init 1 0 Initialize all motors, move them to home positions

GetPosition 5 1 Return position of the motor, normalize to 0-100
range

SetPosition 10 2 Set position of the motor to a given value,
normalize to 0-100 range

SetPositionT 11 3 Move the motor to a given value in 0-100 range,
take the specified amount of time to travel there

ArmMirror 15 1 Right arm is disabled, left arm moves to a position
based on where the user moves the robot’s right
arm. This is primarily a proof of concept and will
be housed on the Pi in the final version

SetTorque 20 2 Set the torque of a motor to either on or off

SetCompliant 21 2 Sets the motor to either normal or compliant mode

Shutdown 100 0 Disable all motors

The Python code contains a list of executable functions that allow the robot to move.

These functions all used a shared file called ReplayPrimitive that reads desired motor positions

and sets the robot’s motor angles. This can be seen in Figure 2.9. Once completed, the primitive

manager is updated. This is where the motor positions are given to the robot class and this robot

class sends information to the motor class for the motors. Then, the motor class communicates

with the Ardunio to send information to the actual motors.

27

Figure 2.9: Flowchart of Primitive Manager from Last Year

Lastly, Koalby’s user interface from last year, seen in Figure 2.10, was created

conceptually but did not have any functional impact on the robot’s operation. The idea was to

have it threaded so the UI could be running in one thread and when a button was clicked, the

robot’s movement could be executed in a separate thread. The flow chart of this can be seen in

Figure 2.11.

Figure 2.10: Old UI

28

Figure 2.11: UI Flowchart from Last Year

2.6 Key Differences Between Koalby and Poppy

As explained in Chapter 2.2, several Dynamixel motors were replaced by new HerkuleX

motors in Koalby. This motor change required various design modifications to fit the new

motors. In addition to the motor mount that was created to fit around the HerkuleX DRS-0201

(see Chapter 2.2), a middle linking piece was created to connect the HerkuleX DRS-0201 motors

to link to motors together in the abdomen to accomplish the original functionality allowing for

rotation on two separate axes. Also, the servo horn patterns were redesigned from an 8-hole

design to a 12-hole design to accommodate the motor change from Dynamixel to HerkuleX.

Additionally, minor changes were made to the chest and shins to fit the 3D printing beds

properly. Figure 2.12 shows the location of the major changes.

29

Figure 2.12: Key Redesign Locations on Koalby

2.7 Capabilities

The 2022 3D Printed Humanoid Robot MQP team successfully accomplished the goals

put forth by its team. Koalby demonstrated the ability to build an open source robot. Motor

changes were made to successfully decrease the cost by ~$2,500. These motor changes were

integrated into the previous design with the aid of a motor mount to fit the old style of motors.

With the addition of internal batteries, Koalby can operate untethered from an external power

source allowing for a wider range of functions. Primitive actions, like shaking hands and waving,

were successfully recorded with the ability to be replayed. Figure 2.13 shows Koalby performing

the recorded waving action. These actions were successfully demonstrated at the

TouchTomorrow and WPI Project Presentation Day events.

30

Figure 2.13: Recorded Wave Motion

2.8 Testing

Last year's team focused on three main areas of testing: arm, routine, and battery

endurance testing.

2.8.1 Arm Tests

After assembling the 3D printed arm, last year's team performed motion and load tests on

the right arm. The motion tests were to ensure the code was mapped to the correct motor

numbers and that the motion of the arm moved to the desired positions as expected. In order to

accomplish this, the team created a wave motion that the robotic arm would travel along. This

aided in the team’s endeavors to map motor values to desired movements[10].

The next set of testing was load bearing. This testing was performed to determine the

maximum weight and stall torque the HerkuleX motors could endure before failing. This test was

set up by attaching a small bottle to the hand using a rope and tested different weights by filling

the bottle to different volumes[10]. Through their testing, they found that Koalby could easily lift

a weight of ~175g without any issues but found a weight of 200g to create issues with torque in

the motors.

31

2.8.2 Routine Tests

The next set of testing was not in a formal setting as mentioned in Chapter 2.8.1, these

tests were done through frequent use of the robot. One of the biggest issues last year's team had

was the breakage of the printed parts and the hardware mounting point. They found that

unevenly distributed loads from the mounting point would cause the part to snap[10]. The way

they managed to reduce breakage was by distributing the loads by having four main points to

screw parts together.

In addition to redesigning parts of Koalby, last year's team found that wire management

was incredibly difficult and caused a routine issue when using Koalby. They found that the wires

would rub against the printed parts which would degrade the wire insulation and without the

insulation they were prone to shorting which causes major damage to the electrical system of the

robot. Then, in order to repair the damage caused, the wires would have to be replaced causing a

delay and increasing costs. The team resolved this issue by routing the wires away from the

rotating joints and by providing additional slack in the wire[10].

2.8.3 Battery Endurance Tests

The team wanted to test the endurance of the batteries and used the TouchTomorrow

event, hosted by WPI, to test the durability of the batteries in the head and legs. The event ran for

seven hours and the robot was running continuously as people would pass by and learn about the

project. Previous endurance testing had the batteries lasting for 2 hours, however, the

TouchTomorrow event was a success and Koalby was able to run continuously for the entire

event[10].

2.9 Recommendations for Future Work

Last year’s team was able to design and produce Koalby using the Poppy project as a

starting point. However, there were areas that they were not able to get to on the software side.

The first recommendation was integrating sensors, more specially IMUs, cameras, and pressure

sensors. These would allow Koalby to measure its orientation within the real world and help with

self-balancing. The pressure sensors would allow for precise grasping and detecting when a foot

was on the ground completely [10].

32

Next was implementing kinematics into the code. The movements created were not based

on kinematics so the robot could not see the positions in space [10]. By adding kinematics and

trajectory planning Koalby would have more precise and controlled movements without needing

to map predesigned movements to a specific motor angle.

The final recommendation for future work was to implement controls and algorithms for

self-balancing. Koalby was able to mostly stand upright with little assistance but in order to get

consistent balance and future walking, balancing algorithms coupled with sensor feedback for

success [10].

33

3. Objectives

The overall objective for the year was originally to allow the robot to walk with the

assistance of a cart and pick up and place objects. These two tasks combined would allow the

robot to act as an assistant in a classroom or laboratory setting. In order to accomplish this, the

team outlined a set of smaller goals that, if achieved, would allow for assisted walking. To start,

we wanted to familiarize ourselves with Koalby and understand what needed to be repaired in

order to get the robot in working condition. Once this was completed, we wanted to introduce

new motors and sensors into Koalby’s hardware to increase its capabilities. A crucial element

that our team wanted to focus on for this project was simulating Koalby in order to test and

develop different functionalities more safely and efficiently than testing only on hardware. With

regards to these functionalities, two high-level tasks we made for ourselves were to develop

methods to make Koalby stand unassisted in a stabilized position, walk while assisted with a

cart, and to improve the efficiency of the robot’s different limb movements. Finally, once all of

this was in place, the creation of a user interface (UI) would allow for the easy control of these

different motions through an outside user’s input.

3.1 Goals

Our first goal was assessing and improving the physical robot. The necessity of this task

was immediately apparent, as in the first weeks of the project the team struggled to have the

robot activate and move consistently. As adding and improving the robot’s functions would not

be feasible if it did not work on the most basic levels, general repair became first priority. We

determined that the metric for this goal’s success would be if the robot successfully turned on

and entered its initialization position every time we attempted to make it do so.

Next, we set out to incorporate more sensors into Koalby’s functionality. This was

determined to be an essential portion of making the robot into a functional lab assistant, as it

would need to be capable of accurately observing and responding to its environment. Sensors are

a necessity for allowing any system to operate without constant input from a human controller.

Additionally, we aimed to upgrade Koalby’s motors. The robot’s original design made use of two

brands of motors, and some motors proved incapable of obtaining the torque necessary to move

the limbs they were attached to. This posed another major obstacle to creating an autonomous

34

walking robot, as the increased software complexity associated with controlling different motor

types reduced the efficiency of the robot’s operation, and failing motors contributed to the

inconsistency that the first goal aimed to solve. We set this goal’s metric for success as

successfully identifying, acquiring, and controlling appropriate motors and sensors that would

allow for Koalby’s increased autonomy.

While the first two goals were in motion, we also aimed to recreate the robot in

simulation. This would allow us to test and develop new features while the physical problems

still existed, as well as increasing ease of testing in the future. The remote and infinitely

repeatable nature of simulation tests make them ideal for testing a robot that proved to be

unreliable in the real world. Achievement of this goal would mean creating an accurate

simulation of the robot, and transferring the success of a simulated feature test into an equally

successful implementation of that feature in the real robot.

In simulation, and therefore in reality, the primary goal was to get the robot to stand

stably. This acted as a goal that was both reasonable to achieve and acted as an indicator of

success in the previous goals. The integration of sensors would be essential for allowing the

robot to balance and remain standing in both reality and simulation. A high-quality and accurate

simulation would be necessary to develop a standing test that could translate to reality, and the

physical repairs and motor upgrades would be essential for the physical robot’s success in this

test. As we knew that the presentation of our project would take 15 minutes, we determined that

the robot standing independently in both simulation and reality for at least 15 minutes would

constitute success.

Finally, we wished to develop an interface that would allow users outside of the

development team to meaningfully interact with Koalby. This is essential for the robot’s

functionality as a lab assistant, as it must be intuitive enough to be useful to professors.

Additionally, as both Koalby and its predecessor, Poppy additionally served as educational and

outreach opportunities for robotics, allowing audiences to interact with the robot would greatly

increase the appeal of these sorts of demonstrations. We qualified success in this goal as being

able to activate the robot and execute movements entirely through the user interface.

35

4 Literature review

Then, the literature review was completed to determine the goals and applications of this

project based on previous humanoid robots. 4.1 describes humanoid applications in industry, 4.2

describes the kinematics, mainly inverse and forward, 4.3 describes trajectory planning, 4.4

describes the sensors, 4.5 describes filters, 4.6 describes stabilization, 4.7 describes cart-pushing

studies, 4.8 describes UI prototyping, and 4.9 describes simulation.

4.1 Humanoid Applications

In order to have a clear objective for this project, current humanoid robot applications

needed to be explored. Some of these applications include medicine, industry, service, space

exploration, and outreach. Various humanoid robots were examined to understand possible

applications within these industries (Table 4.1). Photos of each of the Humanoid Robots are in

Appendix A.

Table 4.1: Humanoid Robot Application Examples

Industrial Field Service / Medical Space Outreach/Interaction

Digit (Ford Agility

Robotics)

T-HR3 (Toyota) - mobility

service

Vyammitra Sophia (Hanson

Robotics) -

human/robot

interaction

Nextage (Kawada

Robotics)

Kime (Macco Robotics) -

bartender

Fedar Surena Robot (Iranian

U) - inspire students

Robothespian - actor Robonaut 2

(NASA)

Smart Field Hospital Valkyrie

(NASA)

36

In the industrial field, humanoid robots have been used to assist in warehouse

management and maintain production for manufacturing companies. For example, Digit, created

by Agility Robotics, was incorporated into a factory setting by Ford [12]. Digit is a headless

humanoid robot that can navigate stairs, obstacles, varied terrains, balance on one foot, pick up

and stack boxes weighing up to 40 pounds, and fold itself for compact storage. The future

application envisioned for Digit is to assist in package deliveries; Digit would ride in a driverless

car and deliver packages to customers, automating the entire delivery process. A second example

of humanoid robots used in industry is Nextage by Kawada Robotics [13]. Nextage was

developed to perform maintenance tasks alongside human workers in industrial settings. This

robot was designed as only a torso with two 6 DOF arms for high functionality in process

management and object manipulation [11].

Humanoid robots have also been designed for acts of service ranging from medical aid to

bartending and entertainment. In the medical field, humanoid robots have been used at the Smart

Field Hospital in Wuhan, China. This usage started in March 2020 during the COVID-19

pandemic [11]. During such times, humanoid robots could relieve overworked nurses to do basic

cleaning and delivery tasks. These robots are also being used as medical assistants to disinfect

surfaces, measure temperatures, deliver food and medicine, and entertain medical staff and

patients. Additionally, the T-HR3 by Toyota was designed to provide service and skills, such as

surgery, while operated by a person located elsewhere. This humanoid robot can mimic the

movements of its human operators and walk. [11].

Kime by Macco Robotics was designed to be a food and beverage serving robot with a

human-like head, torso, and arms. Kime was tested at gas stations throughout Europe and in a

Spanish brewery; this robot can serve up to 300 glasses per hour and has 14-20 degrees of

freedom, smart sensors, and uses machine learning to improve its skills [14]. For entertainment,

Robothespian is a robot actor that comes with a library of impressions, greetings, songs, and

gestures [11]. Multiple Robothespians can be incorporated to become a robotics theater with

movement tracks, animation software, touchscreen control, lighting, and sound.

Furthermore, several humanoid robots have been developed for space exploration

research, termed “robonauts”. Two key examples developed by NASA include Robonaut 2 and

Valkyrie. Robotnaut 2 successfully traveled to space and spent seven years on the International

Space Station [11]. Valkyrie is a more recent robonaut designed to withstand harsh environments

37

similar to those on the moon and Mars [11]. Developed by the Indian Space Research

Organization, Vyommitra, another humanoid robot, was intended to conduct microgravity

experiments to help prepare future crewed missions [11]. Lastly, Fedar by Final Experimental

Demonstration Object Research was a Russian remote-controlled humanoid that flew to the

International Space Station in 2019 [11]. Fedar simulated repairs during a spacewalk and later

returned to Earth.

Humanoid robots have also been developed for research and collaborative purposes.

Sophia, by Hanson Robotics, is a social humanoid robot who serves as a robotic ambassador to

advance research related to robotics and human-robot interactions [15]. Sophia can move, talk,

show some emotions, draw, and sing. Additionally, Surena Robot by Iranian University of

Tehran is an adult-sized humanoid robot capable of face and object detection, speech recognition

and generation, and can walk with a speed of 0.7 km/hr [16]. Surena has 43 DOF and hands that

can grip different shapes. It is currently being used to research bipedal locomotion, artificial

intelligence, and for outreach to attract students to careers in engineering.

Overall, this research shows the various humanoid robot applications that are currently

being explored including industry, service, and outreach. Based upon this, our team decided to

focus our application towards service as a lab assistant. This is because service applications have

positive broader and societal impacts and humanoid robots in lab settings are currently less

explored compared to factory and medical settings.

4.2 Kinematics

4.2.1 Foundations

The implementation of kinematic methods is paramount to moving a robot’s numerous

limbs. The correct use of kinematics allows the user to determine the specific motions that lead

to a certain position of a robotic body part. Implementing kinematic functionality gives the angle

values of the joints that lead to certain positions of the end effector of an arm or leg (known as a

kinematic chain with each section of the limb between joints referred to as a link), and vice-versa

[17]. In fundamental physics courses, students are taught kinematics and learn the four kinematic

equations (1) through (4). These equations are the foundations of the kinematic equations that

will be used in achieving bipedal locomotion.

38

(1)𝑣 = 𝑣
0
 + 𝑎𝑡

(2)∆𝑥 = (
𝑣 + 𝑣

0

2)𝑡

(3)∆𝑥 = 𝑣
0
𝑡 + 1

2 𝑎𝑡2

(4)𝑣2 = 𝑣
0

2 + 2𝑎∆𝑥

4.2.2 Forward Kinematics

Forward kinematics takes the angle positions of each joint (the joint space), and converts

those values to Cartesian coordinates representing the end-effector’s position (the task space).

Inverse kinematics is responsible for the opposite, as it takes values in the task space and

converts them to the corresponding joint space values [18]. Specifically for humanoid robots, the

use of inverse kinematics is especially important for its UI and ease of use, as a limb can be told

to move to a certain desired Cartesian location, and this location can be converted into the motor

positions needed to get to that location.

Forward kinematics is the less complicated of the two to calculate. To start, a

transformation matrix is found for each link that describes movement from one position to

another. The general form of this matrix can be seen in equation (5), and its calculation is done

by finding the Denavit-Hartenberg (DH) parameters of each link within the chain [17]. Each DH

parameter and how to find each are shown in Table 4.2.

(5)

39

Table 4.2: Each DH Parameter and How to Calculate Them.

Parameter Meaning/How to Calculate

𝑑 distance along the z-axis from the chosen link to the next

𝑎 distance along the x-axis from the chosen link to the next

θ the angle to rotate around the chosen link’s z-axis

α the angle to rotate around the chosen link’s x-axis

This process of calculating a transformation matrix is repeated for every link in the

kinematic chain [17]. Since the end goal of a forward kinematics problem is to determine the

location of the end effector, a transformation matrix that describes the motion of the end-effector

in relation to the base is found by iteratively multiplying the transformation matrices of each link

together from the base joint to the end-effector [18].

Another way to solve for the forward kinematics is through the product of exponentials

method (PoE). This method is more complex than the DH method but is more consistent with the

answer obtained, as with DH parameters there can be many different answers for the same

manipulator. Marking the different frames of the robot for PoE is very similar to the DH method,

but it focuses more on angular and linear velocities rather than different angle and displacement

parameters [19].

This process begins with finding the matrix that represents the home configuration

chosen for the manipulator. This is done by comparing the end effector frame with the base

frame and constructing a 4x4 transformation matrix representing any rotation or translation.

Then, twist vectors need to be calculated for each joint in the manipulator. These 6x1

vectors are made up of two 3x1 vectors, and . Vector is the vector that relates the angular𝑤 𝑣 𝑤

velocities of a joint to the base frame, and is a vector that does the same with linear velocities𝑣

[19]. Once these twist vectors are found, the intermediate transformation matrices for each link

of the manipulator are found using the equations (6) and (7) [19].

40

(6)

(7)

Finally, the matrix representing the transformation from the base frame to the end effector

frame is found similarly to the DH method as each intermediate transformation matrix is

multiplied iteratively from the base frame to the end effector frame [19].

4.2.3 Inverse Kinematics

Finding the inverse kinematics of a kinematic chain is more difficult, as there is no

simple method such as calculating DH parameters to solve for joint space values from task space

values. There are many ways to solve inverse kinematics, but there are two that are most

effective for humanoid robots’ arms and legs that are commonly used which involve the least

intensive hand calculations and, in the event that analysis cannot be done by hand, are easy to

input into a software such as MATLAB to solve. The first is through a geometric approach,

where the kinematic chain is modeled and the different angles are solved using geometry. The

second way is through an algebraic approach where different systems of equations are used to

solve for the angle values. It is difficult to determine which method is better for any given

application as it is very dependent on the complexity of the problem, but it is generally easier to

attempt to draw the kinematic chain and execute a geometric approach if possible, as algebraic

solutions can be more complex and challenging to understand [18]. Examples of full

calculations using each method on a spherical manipulator can be seen in Appendix B for

comparison. The equations gathered from inverse kinematics calculations as well as the

transformation matrices for forward kinematics can be hardcoded in the robot’s software to avoid

doing these calculations every time a limb needs to be moved, so only a single initial calculation

is necessary.

41

4.3 Trajectory Planning

For smoother movement of limbs and control of its walking motion, humanoid robots

need trajectory planning implemented into their software. The process of trajectory planning and

generation primarily involves taking two points, one at the beginning of the desired trajectory

and one at the end, and generating a series of intermediate points along a desired path that the

robotic limb will move through during its journey. Trajectory planning consists of three major

steps: generating the desired trajectory polynomial, using this polynomial to obtain the

intermediate points along the trajectory, then finally making the robot move to these points in

sequence [20].

4.3.1 Polynomial Generation

Firstly, there are three types of trajectory polynomials: linear, cubic, and quintic. Each of

these polynomials are defined based on different movement constraints, these being position,

velocity, and acceleration. Linear polynomials enable control over position only, and should

never be used as they can make movement unpredictable due to the absence of speed control.

Cubic polynomials expand functionality by allowing control of velocity and are most widely

used due to their simplicity and functionality in controlling how fast a robotic limb moves from

one point to another. The final type, quintic polynomials, further allow control of acceleration

but are only used for more complex functions due to the added calculations needed and are

generally not needed for the majority of applications [20].

Cubic polynomials are the most useful for operating a humanoid’s different limbs as they

avoid the complexity of quintic functions and are effective in applications where acceleration is

constant. The general form of a cubic polynomial is seen below, where is equal to time, each𝑡 𝑎

is a coefficient and is the angle position of a joint as a function of time [20].𝑞(𝑡)

(14)𝑞(𝑡) = 𝑎
0

+ 𝑎
1

* 𝑡 + 𝑎
2

* 𝑡2 + 𝑎
3

* 𝑡3

To successfully generate the trajectory and calculate the coefficients of each term, the

initial and final velocities and times of the trajectory must be known and substituted into

equations (15) through (18). These equations represent the initial and final velocities and

42

positions of the trajectory, where the velocity equations are obtained by taking the derivative of

the constraint equations for position [20].

(15)𝑞(𝑡
0
) = 𝑞

0
= 𝑎

0
+ 𝑎

1
* 𝑡

0
+ 𝑎

2
* 𝑡

0
2 + 𝑎

3
* 𝑡

0
3

(16)𝑞'(𝑡
0
) = 𝑞'

0
= 𝑎

1
+ 2 * 𝑎

2
* 𝑡

0
+ 3 * 𝑎

3
* 𝑡

0
2

(17)𝑞(𝑡
𝑓
) = 𝑞

𝑓
= 𝑎

0
+ 𝑎

1
* 𝑡

𝑓
+ 𝑎

2
* 𝑡

𝑓
2 + 𝑎

3
* 𝑡

𝑓
3

(18)𝑞'(𝑡
𝑓
) = 𝑞'

𝑓
= 𝑎

1
+ 2 * 𝑎

2
* 𝑡

𝑓
+ 3 * 𝑎

3
* 𝑡

𝑓
2

To solve these equations for the coefficients, they can be put into matrix form as seen in

equation (19), where the coefficients can be found by taking the inverse of the larger matrix and

finding the dot product of that and the vector of initial and final conditions [20].

(19)

4.3.2 Calculation of Intermediate Points

Once the trajectory polynomial is found, the second step is to generate the intermediate

points along the desired trajectory. As the initial and final times and velocities are known, all that

is needed is to substitute intermediate times between the desired initial time and the desired final

time. The user defines how often an intermediate position will be calculated, but generally, a

smaller time step is better as having more positions along a trajectory means that the movement

will be more predictable. Despite this, the time step should not be too small either as it could lead

to inconsistent and jittery movements as the robot goes from one position to the next [20]. The

optimal time step depends on the use desired, and can only be found through testing the system.

43

4.3.3 Trajectory Execution

Once this is done, the final step is to have the robotic limb iterate through the generated

trajectory points at the correct velocity. Movement is easily done by feeding the positions into

the robot, but this does not take into account the desired velocity. To account for this, the robot

can be given a delay time between moving through each position that is equal to the final time

for the entire trajectory divided by the number of points on the trajectory. With this, the robotic

limb will move along the desired path at the velocity/time specified by the user.

4.4 Sensors

For autonomy and increased stabilization, it is required to equip humanoid robots with a

series of sensors. These sensors will allow for the collection and analysis of quantitative data to

improve functionality such as walking, pushing a cart, and picking up objects. The main sensors

that are implemented into autonomous robotics [21, 25, 31, 35] fall under four main categories:

IMU, Camera, (LiDAR), and Ultrasonic.

4.4.1 IMU

An IMU is an electronic device that typically combines three sensors: an accelerometer,

gyroscope, and magnetometer. These three sensors relate to the dynamics and orientation of the

entire IMU system [22]. There are two types of IMUs, type I and type II. Type I consists of just

the accelerometer and gyroscope readings where type II includes the additional magnetometer

readings [21]. Type II IMUs will have 9 DOF while type I IMUs have 6 DOF. The accelerometer

measures the acceleration of the system. In order to determine which direction is downward, the

accelerometer also measures gravity. Furthermore, the gyroscope measures the angular rate of

rotation. Lastly, the magnetometer measures the magnetic field, similar to a compass [22].

The main purpose of using an IMU is to establish a coordinate system of the robot within

the world. To properly assess both translational and rotational changes in an IMU system, it is

necessary to establish a coordinate system with three axes: x, y, and z. In order to achieve this,

there are two coordinate frames that need to be taken into account: a local frame and the global

frame. The local frame is attached to the robot and the global frame is the robot’s pose with

44

respect to the real world [22]. The local acceleration is equal to the acceleration of the local

system plus gravity in the global system. This equation can be seen below:

(20)α = 𝑎 + 𝑔

True accelerations will typically mask gravity. They are prone to noise and bias, which is

accounted for by adding them to the accelerometer equation. Bias can be accounted for, but noise

is disruptive to the sensor readings and needs to be calibrated out [22]. These additions can be

seen in the equation below:

(21)α = 𝑎 + 𝑔 + γ + β

A common source of error prevalent in IMUs is the noise produced by the gyroscope.

There are three common attributes of the gyroscope that cause this error: inherent noise, response

to linear vibration, and misalignment errors [23]. The inherent sensor noise represents the

random variation seen in the gyroscope’s output during operation in static inertial and

environmental conditions [23]. Gyroscopes are used to measure the angular rate of rotation and

their response to linear motion introduces errors in their measurements [23]. In a perfect world or

in a simulation, each of the gyroscope's axis of rotation will be perfectly aligned 90° away from

one another. However, this is rarely the case in the real world and thus produces another source

of error [23]. These three sources of error contribute to sensor noise for the IMU and these errors

can introduce drift into the IMU readings.

When looking at IMU data there is an offset, typically a small value, on the average

signal output [24]. Even when there is no movement from the device, the offset can be seen. This

offset is defined as the sensor bias. Additionally, due to the physical properties of the sensors in

an IMU, more specifically of the accelerometer and gyroscope, the sensor readings change over

time depending on the length of usage [24]. This can result in the sensor bias increasing.

Other prevalent issues in an IMU stem from the two sensors that are providing the same

orientation readings. These are the accelerometer and the gyroscope, and they are usually not in

agreement. The accelerometer will provide readings on the orientation angle while the gyroscope

will provide readings on the change in orientation [22]. In order to overcome this problem,

45

sensor fusion needs to be implemented [22]. Sensor fusion is the process of taking conflicting

information from different sensors and making a reasonable estimate of the truth [22].

4.4.2 Camera

Cameras are an essential type of sensor in robotics that humanoids utilize to gather visual

information about their surroundings, detect and identify objects, and navigate their environment.

By using the data obtained from the camera, robots can perceive their surroundings visually,

recognize faces, detect motion, and navigate through their surroundings [25]. Additionally,

cameras can be used to monitor and control the robot's movements and provide feedback to the

operator. The types of cameras that are typically used in industry are PTZ cameras and stereo

cameras [26]. A PTZ camera is a regular vision camera that can be directed and zoomed towards

specific areas of interest using a structure attached to it. These types of cameras are useful as

they are able to move independently of the mount and allows the robot to look in different

directions. Stereo revision allows the robot to perceive depth, shape, and size of a robot by using

two cameras with a known distance between them, similar to human eyes [26].

However, there are some issues associated with the use of cameras in robotics. One major

challenge is the variability in lighting conditions, which can affect the camera's ability to capture

clear and accurate images [27]. Another challenge is the need for advanced algorithms to process

the vast amount of visual data generated by the camera.

4.4.3 LiDAR

A light detection and distance range sensor, more commonly known as LiDAR, is an

active remote sensing system. This device makes use of a continuous laser [28]. To measure

distance, A LiDAR device will emit infrared light pulses. Then, when the pulses reflect off of

surfaces and return to the LiDAR, the distance is recorded [28]. There are two main types of

sensors, a 2D and a 3D LiDAR [29]. The 2D sensor can measure the distance by bouncing off

one light whereas the 3D sensor emits multiple beams at once to gather a 3D image of the object

[29]. A significant advantage of using LiDAR sensors is that they are able to capture precise

distance measurements and are able to capture the object’s position and shape. This sensor also

offers reliable detection ranging from short to long distances with high accuracy [30].

46

Some disadvantages of using LiDAR are that the sensor can have limitations depending

on the lighting and if the environment is too dark then it will affect the level of refraction,

therefore affecting the amount of pulses. On the other hand, if the environment is too bright then

the pulses will not work, again due to the LiDAR working off reflection [31].

4.4.4 Ultrasonic Sensor

An ultrasonic sensor is an electronic device that detects the distance of an object through

the pinging of ultrasonic sound waves between its emitter and the object. This is done by

converting the waves into an electrical signal [32]. The typical ultrasonic wave signal travels at a

frequency above 18kHz [33]. There are two main types of Ultrasonic sensors: proximity

detection and ranging movement [34]. Proximity detection identifies an object passing within

range and generates an output signal. By measuring the distance between an object moving to

and from the sensor, the ranging measurement allows continuous distance measurements.[34]. A

main advantage of ultrasonic sensors is that they detect objects irrespective of their surface

texture or color [35]. Through this device, a robot is capable of understanding its surroundings.

Ultrasonic sensors have a high level of intensity but come with disadvantages. These

types of sensors have a tendency to detect false signals disturbed by the environment. Some

examples include wind from a ceiling fan, echoes, noise, and object surface textures [33]. In

addition, they can only detect objects within their range and line of sight and multiple ultrasonic

sensors would be needed to overcome this hurdle. Therefore this sensor is only effective in

specific environments.

4.5 Filter Methods

As mentioned previously in the chapter, there are issues with noise and bias that can

occur when using an IMU. A way to combat this bias and noise is to calibrate the device and

apply a filter. There are two main types of filters that are used for IMUs, the complementary

filter and the Kalman filter.

47

4.5.1 Complementary Filter

The complementary filter fuses a high pass filter and a low pass filter to eliminate the

noise in the IMU [36]. During stabilization and assisted walking, there are multiple forces

working on the robot. These forces are measured by the accelerometer and the small forces

create disturbances in the measurements [36]. The long-term measurement is reliable, so it needs

a low pass filter for correction. For the gyroscopic sensor, the integration is performed over a

period of time causing the value to begin to drift in the long-term, thus a high pass filter is

needed for this correction [36]. Figure 4.1 represents the complementary filter process:

Figure 4.1: Block Diagram of the Complementary Filter reproduced as is from[36]

In the complementary filter, there are two transfer functions for each input passing

through the filter:

(22)𝐿𝑜𝑤 𝑝𝑎𝑠𝑠 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 1
1+𝑇𝑠

(23)𝐻𝑖𝑔ℎ 𝑝𝑎𝑠𝑠 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑇𝑠
1+𝑇𝑠

The total transfer function for the complementary filter can be seen in the equation below

with a total gain of 1:

(24)𝑇𝑜𝑡𝑎𝑙 = 𝑎
1+𝑇𝑠 + 𝑇𝑠

𝑠(1+𝑇𝑠) + 1
𝑠⎡⎣ ⎤⎦ × β

In the above equation, α is the acceleration data input and β/s is the calculated angle from

the gyroscope after being integrated. The complementary filter is the fusion of the high pass and

the low pass filters to reduce the noise seen in the IMU.

48

4.5.2 Kalman Filter

On the other hand, the Kalman filter is an iterative process that makes it useful in

dynamic systems. This process predicts a future value by changing the previous data collected in

the system [36]. The Kalman filter uses a correlation between the prediction value and the actual

value to generate a prediction error, which feeds back into the system for correction on the next

iteration. An advantage to this filter is that there is little memory used and it executes with little

computation time [36]. Below in Figure 2 is a diagram representing the Kalman filter process:

Figure 4.2: Block Diagram of the Kalman Filter as reproduced as is from [36]

There are three major components to the Kalman filter: predict, measure, and update.

These are then iteratively processed while using the IMU. Within the Prediction component,

there are two equations being calculated: the state vector and the covariance matrix. The state

vector is used to determine where the new position is in vector form [36]:

(25)

49

In the below equation, vectors A and B are kinematic equations for the position, velocity,

and acceleration.

(26)𝑋 = 𝐴𝑥 + 𝐵𝑢

The next step is determining the covariance matrix to understand the uncertainty of the

new state (P). In the equation below, Q is the process noise covariance matrix.

(27)𝑃 = 𝐴𝑃 * 𝐴𝑇 * 𝑄

P should result in the following matrix:

(28)

For the measurement step, there are two components being calculated: the covariance

matrix R and the Kalman gain. The covariance matrix is converting the sensor readings that are

in the form of Z=[px,py,pz] so that they are able to be compared to the predicted value in the

previous step. The R matrix that is produced can be seen below:

(29)

The next step is calculating the Kalman gain. The Kalman gain is used to compare the

uncertainty in the prediction and measurement steps. This is done by calculating the uncertainty

percentage in the predicted value to the overall uncertainty. The equation can be seen below:

(30)𝐾 = (𝑃 × 𝐻𝑇)/((𝐻 × 𝑃 × 𝐻𝑇) + 𝑅)

The H matrix in the above equation is used to convert P to the same size matrix as R. The

H matrix can be seen below:

50

(31)

In the final component of the Kalman filter, there is one equation for the final state

vector. This is to determine where the actual position is. This equation can be seen below:

(32)𝑋 = 𝑥 + 𝐾𝑦

In order to get the actual value of X, the predicted value is collected and added to the

difference between the predicted and measured values with the Kalman gain. The measured

value should be close to the predicted value to have accounted for the correct amount of

uncertainty [36]. After this step, the covariance matrix P is updated and then the process starts

again.

4.6 Stabilization

Getting a bipedal humanoid robot stable is a difficult and complex task to achieve, and

research is being conducted on the best approaches to this challenge. Some institutions that are

currently doing research include the Georgia Institute of Technology, the University of Osaka,

the University of Tokyo, and the University of Sherbrooke [37].

There are many aspects that go into stabilization, which is to keep the centerline of mass

at the center of bearing mass [38]. This prevents the robot from falling to one side or the other.

One major aspect of stabilization, especially when researching bipedal locomotion, is looking at

the gait cycle. There are two phases in one gait cycle: stance and swing [39]. Stance occurs when

the entire foot is on the ground, and swing is when the foot and knee are in the air. During

regular walking motion, movement is usually 60% stance and 40% swing [39]. Throughout this

motion, the center of mass, which is located about one-third of the distance between the hip joint

and the shoulder, must stay at the center of bearing mass [39].

Zero-moment point control is a method, along with trajectory tracking and inverse

kinematics, that is used in the implementation of stable walking in bipedal robots. When on a flat

surface, the Zero-Moment Point (ZMP) is the same as the center of pressure [39]. The ZMP is

the point on the ground where the torque is produced as a result of the inertial and gravitational

51

forces. The current standard for bipedal gaits is based on the linear inverted pendulum where the

foot on the ground acts as the fulcrum, the leg attached to the foot on the ground as the rod, and

the upper body as the mass [10]. Figure 4.3 shows a diagram showing the inverted pendulum

model:

Figure 4.3: Bipedal humanoid robot in inverted pendulum model reproduced as is from [40]

During bipedal locomotion, a controller is required to stabilize the robot while in motion

and while stationary. Using an IMU, a proportional, integral, and derivative (PID) controller can

be implemented to stabilize the robot. PID is a control loop feedback system related to

minimizing error in real-time. This is done by continuously calculating the error value 𝑒(τ)

which is the difference between the desired target and the measured value [41]. The PID

equation can be seen below:

(33)𝑢(𝑡) = 𝐾
𝑝
𝑒(𝑡)

0

𝑡

∫ 𝑒(τ)𝑑τ + 𝐾
𝑑

𝑑
𝑑𝑡 𝑒(𝑡)

There are three constants, proportional Kp, integral Ki, and derivative Kd. The

proportional constant focuses on the current value of the error. The integral constant accounts for

the remaining errors from before. Finally, the derivative constant focuses on estimating the future

error based on the current rate of change [41]. These constants multiply their respective error in

order to achieve a setpoint.

52

4.7 Cart-Pushing Studies

4.7.1 Stabilization Overview

Understanding the external forces caused by pushing a cart is an important challenge

related to assisted walking via cart pushing. These external forces are applied directly to the

robot’s arms, so the robot must be able to compensate for these forces and mitigate the

disturbance caused by the constant shift in its CoM [42]. A possible solution for this is by

calculating the ZMP. If the ZMP shifts off the support polygon, it will cause the robot to fall. The

support polygon is the horizontal region where the ZMP must lie over for the robot to be in static

equilibrium. This idea is shown in Figure 4.4. Additionally, Figure 4.5 shows how this idea

applies to a humanoid robot in motion. On the left-hand side, the ZMP is on the edge of the foot,

causing it to start rotating. On the right-hand side, after the step has been taken, the ZMP is

located over the support polygon in a balanced position.

Figure 4.4: ZMP Position Example reproduced as is from [43]

53

Figure 4.5: ZMP Example on a Humanoid Robot reproduced as is from [43]

4.7.2 Stabilization System and Calculations

Recent studies have explored this challenge with goals to improve a humanoid robot’s

manipulation abilities so it can maneuver utility carts in industrial scenarios and implement

reliable arm compliance for stable bipedal walking. J.C. Vaz’s “Material Handling by Humanoid

Robot While Pushing Carts Using a Walking Pattern Based on Capture Point” study worked with

the humanoid platform DRC-Hubo. DRC-Hubo has 32 DOF, weighs 80 kg, has a CoM height of

72.52 cm, a total height of 167 cm, an arm link length of 84.8 cm, and its wrists are equipped

with force/torque sensors used to evaluate the force exerted by the cart it pushes (as shown in

Figure 4.6). This study modified the classical Linear-Inverted Pendulum Model (LIPM) to

account for external forces and combined arm compliance via a friction compensation method.

This modification calculated and incorporated a capture point (CP); the CP is the point on the

ground where the humanoid must step to come to a full rest. Simulations and real world

experiments were performed to validate the dynamic model and the humanoid’s overall mobility.

54

Figure 4.6: DRC-Hubo Humanoid Platform reproduced as is from [42]

To better understand LIPM with capture point dynamics for cart pushing, consider a

unique point mass and a constant vertical CoM location where the acceleration of the CoM is

given by:

(34)𝑥''
𝐶𝑜𝑀

= 𝑔
𝑧

𝑐
(𝑥

𝐶𝑜𝑀
− 𝑥

𝑍𝑀𝑃
) +

𝐹
𝑐𝑎𝑟𝑡

𝑀𝑐

The capture point (CP) is the point on the ground where the humanoid must step to come

to a full rest:

(35) 𝐶𝑃
𝑥

= 𝑥
𝐶𝑜𝑀

+ 1
𝜔 𝑥'

𝐶𝑜𝑀

where 𝜔 = 𝑔
𝑍

𝑐

By taking the derivative of the second equation and combining it with the first:

(36)𝐶𝑃'
𝑥

= 𝜔(𝑥
𝐶𝑜𝑀

− 𝑥
𝑍𝑀𝑃

) +
𝐹

𝑐𝑎𝑟𝑡

𝜔𝑀𝑐

55

Where g is gravitational acceleration, zc is height of the CoM, x’’COM is acceleration of the

CoM, xZMP is the ZMP’s location in the x direction, Fcart is force of the cart, Mc is the load mass

on the cart.

Using the CP as state variable, the overall system dynamics are written as:

(37)
𝐶𝑃'

𝑥

𝑥'
𝐶𝑜𝑀⎡

⎢
⎣

⎤
⎥
⎦

=
0
−𝜔

𝜔
𝜔⎡⎢⎣

⎤⎥⎦ 𝐶𝑃
𝑥

𝑥
𝐶𝑜𝑀⎡

⎢
⎣

⎤
⎥
⎦

+
−𝜔
0 ⎡⎢⎣

⎤⎥⎦ +
𝜔
0 ⎡⎢⎣

⎤⎥⎦
𝐹

𝑐𝑎𝑟𝑡

𝑀𝑐

The target CP is given by:

(38)𝐶𝑃
𝑥, 𝑘+1

= 𝑒
𝜔𝑠

𝑡(𝐶𝑃
𝑥, 𝑘

+
𝐹

𝑐𝑎𝑟𝑡

𝑀𝑐) + 𝑥
𝑍𝑀𝑃

, 𝑘(1 − 𝑒
𝜔𝑠

𝑡)

The Zero Moment Point is calculated as follows:

(39)𝑥
𝑍𝑀𝑃,𝑘

=
𝐶𝑃

𝑥,𝑘
−𝑒

𝜔𝑠
𝑡(𝐶𝑃

𝑥,𝑘
+

𝐹
𝑐𝑎𝑟𝑡

𝑀𝑐)

1−𝑒
𝜔𝑠

𝑡

Where CPx,k is the ongoing CP, xZMP,k is the current ZMP in k, and st is the step time.

The force of the cart is obtained from force/torque sensor data, and the model is validated

in MATLAB simulations. Figure 4.7 shows the forces generated by the cart and the mass.

56

Figure 4.7: LIPM with Capture Point Dynamics for Cart Pushing reproduced as is from [42]

For the arm compliance control, a friction compensation method was used. A block

diagram of this system is shown in Figure 4.8, where xwrc is the current position of the wrist and

xwrd is its desired position.

Figure 4.8: Reduced Block Diagram of the Friction Compensation System

For simplicity, Fcart, p1 and p2 are given as:

(x) (x) (x) (40)𝐹'
𝑐𝑎𝑟𝑡

=
𝐹

𝑐𝑎𝑟𝑡

𝜏
𝑐
𝐾

𝑎
𝑝

1
=

𝜇+𝜏
𝑐
𝑓

𝑐

𝐽 𝑝
2

=
𝜏

𝑐
𝐾

𝑎

𝐽

Where 𝜏c is the torque constant, Ka is amplitude gain, 𝜇 is coefficient of friction, is the𝑓
𝑐

arm moment of inertia, and J is the wrist moment of inertia. Figure 4.9 shows the overall system

integration.

57

Figure 4.9: System Integration reproduced as is from [42]

Once the rolling cart is securely coupled, DRC-Hubo can read force/torque data through

corresponding sensors, and the joint encoder will monitor the actuator's real positions. PODO

(software that DRC-Hubo uses to communicate with the programs, sensors, simulator, and user)

is the robot's communication software and is responsible for sending motor commands to the

controllers. A robot state publisher is responsible for the exact joint position during operation.

The system integration, in Figure 4.7.6, is represented by four main sectors; PODO, Humanoid,

External Force and ROS (Robot Operating System) [42].

During experimentation, the robot is initially set in a “walk ready” position to check all

FT sensor statuses before initiating any movement. Then, the pushing experiment is initiated

which has three layers of operation. First, Hubo's main computer runs the modified pushing

algorithm to generate the appropriate walking trajectory. Second, the main computer constantly

monitors the FT sensor data from both wrist and feet. Third, the operator must initiate the

experiment through the Graphical User Interface (GUI) after the insertion of certain parameters

(step length, number of steps, and weight of load). Finally, motion can commence.

58

4.7.3 Cart-Pushing Results

The results of this study showed that the rolling cart has an impact on the walking gait

due to the downward force on the wrists. Additionally, the ZMP error, the root mean square error

(RMSE) between the reference and actual X-ZMP, was measured for each case. A loadless

rolling cart yielded the least error followed by a 25.22% error increase while carrying 11 kg. In

contrast, for the utility cart the error increases only 10.69% between a loadless and 11 kg load

due to the geometric contact favorability of a utility cart (four contact points [42]). Table 4.3

shows the ZMP error or RMSE for each case. Both the rolling cart and utility cart can allow

stable walking, even when pushing a heavy load. More than 30 trials were performed to validate

the approach, and all but two trials yielded satisfactory results. These results are shown in Figure

4.10. The proposed method can be adapted to different carts, and the pushing motion can be

performed during stable walking motion.

Table 4.3: RMSE of Experimental X-ZMP vs. Calculated X-ZMP reproduced as is [42]

Cart Type Load [kg] RMSE

Rolling 0 0.0252

Rolling 11.7 0.0337

Utility 0 0.0284

Utility 11.7 0.0318

59

Figure 4.10: Residual Squared Sum Over Time for Rolling Cart “C1”, and Utility Cart “C2” with

and Without Load reproduced as is from [42]

The key takeaways from this study for exploring assisted walking via cart pushing are the

three layers of operation (running algorithm to generate walking trajectory, constantly

monitoring sensor data from wrist and feet, and initiating experiment through GUI after inserting

parameters), placing FT sensors in the wrists and feet, and possibly using a LIPM with capture

point for cart pushing and walking calculations. This study also emphasized the importance of

considering the feedback provided from the cart while pushing it and how to adjust for it; this

study used an arm compliance control with friction compensation method to this end.

4.8 UI Prototyping

In order to create a well-designed UI, there are many factors that need to be considered.

Most importantly, the UI needs to allow communication between the machine and the user. It

needs to allow the user to perform an action, such as pressing a button, and see an immediate

response from the machine, such as a robot moving.

In order to judge a UI’s quality, it must be evaluated. One way to evaluate a IU is

heuristic evaluation. Jakob Nielsen’s ten heuristics are the most widely used when considering an

application[43]. These ten heuristics are used during prototyping to ensure useability and remove

problems[44]. The benefits of this technique are its ease of identifying issues, ease of

implementing. The ten heuristics are as follows:

60

1. Visibility of System Status

2. System Matches Real World

3. User Control and Freedom

4. Consistency and Standards

5. Error Prevention

6. Recognition Rather than Recall

7. Flexibility and Efficient of use

8. Aesthetic and Minimalist Design

9. Recognize, Diagnose, and Recover

10. Help and Documentation

The first is known as visibility of system status. This implies that the system tells the

user what is happening and displays results. For example, a loading screen tells the user that the

page is loading as well as when loading is complete. The second is that the system matches the

real world. This means that if a user is trying to delete something, the language of “delete” is

used consistently instead of “eject” or something different. Third is user control and freedom.

User control and freedom allows the user to navigate through the application in any way they

please. In this step, evaluators look especially for back and undo buttons, which are essential to

prevent users from performing unwanted actions. Fourth is consistency and standards. This

means using commonly understood words such as “save”, “edit”, etc, and features like having

the same font throughout the interface. Fifth is error prevention. This means that steps are taken

to prevent errors before they are allowed to occur. For example, if a user was expected to enter a

date, instead of having an open input box, the application would have designated spots for the

day, month, and year. Sixth is recognition rather than recall. This simply means reminding users

of what their options are rather than expecting memorization. Seventh is flexibility and

efficiency of use. This consists of allowing users to use an application with greater speed and

effectiveness as they learn it. Eighth is aesthetic and minimalist design. This implies that visuals

are not cluttered and only important information is shown. Ninth is helping users recognize,

diagnose and recover from errors. This means that the application helps users diagnose errors

and provides a data-driven solution. Lastly, help and documentation is essential. Allowing the

user to click on a help button or having a search bar is important to creating a well-designed UI

[45].

61

This evaluation is simple to perform. Members of the development team go through each

section of the prototyped application. In each portion, the ten heuristics are considered, and

comments are written about each heuristic. These comments can be any observations such as,

saying that a section has aesthetic and minimalist design and does not need to be edited in that

way. The comments can also provide constructive criticism, like saying that there is no way to

recover from errors in a section. Then, the results are interpreted and addressed by the team.

There are some limitations to heuristic evaluation. One of the most prominent problems is

that it identifies problems, but does not suggest ways to fix them [46]. While it is helpful to

identify problems, developers still have to come up with their own solutions. Another issue is

that developers performing these evaluations are limited to the mindset that they are in.

Additionally, heuristic evaluations are not as defined and controlled as an evaluation like a user

test. With a user test, there is a clear setup, procedure, and evaluation technique used. With this

heuristic evaluation, there is no way to validate the procedure. However, when doing preliminary

tests, a heuristic test can provide designers with ways to improve in the prototyping stage before

bringing in outside users [47].

4.9 Simulation

Simulation is an easy way to test robot functionality more easily and safely than physical

tests. In the field of robotics, the main use of a simulation is to test a robot’s movement in a given

environment [48]. These simulations can generally be modified along a spectrum of accuracy,

from complete abstraction with only basic physics, to as close to reality as possible [48]. Virtual

simulations can be used to test the safety of robotic surgery tools or underwater vehicles [49, 50].

As such, when employed correctly, they can play a key role in validating development decisions

and early identification of problems. Simulation testing can concern one or both of the two broad

areas of concern on a robot: its physical interaction with its environment, and the efficacy of its

control code. Advanced simulation software such as V-REP and Gazebo allow for the integration

of 3-D models of physical features with an API allowing for the implementation of original

control code, rather than choosing one or the other [51]. In contrast, Blender is designed for

much more general simulation of physics and movement, rather than robots in specific [51]. As a

result, it lacks many of these specialized features that allow for convenient testing pipelines in

industry-specific software. This allows for comprehensive and simultaneous testing of both

62

physical and software modifications made to the robot, greatly increasing the efficiency of

testing and validation.

63

5. Methodology

This chapter discusses the process of first understanding the previous work of this

continued project, choosing new motors and sensors, and developing a simulation. Then, the

process towards developing standing and assisted walking in simulation and then the real world

is outlined. Lastly, the process for developing a new user-friendly interface is discussed.

5.1 A Term

5.1.1 Understanding Koalby’s Initial Status

Last year’s team successfully created the humanoid robot, Koalby. At the outset of our

team’s work, we aimed to fully understand how exactly Koalby functioned, what needed

improvement, and what could be added. The electrical and electronic components were

examined for damage and weaknesses. These tests were conducted continuously throughout the

development of the robot, especially when it was not functioning as expected. Any sources of

possible or real problems for robot operation were recorded and compiled into a troubleshooting

document for future reference. These results can be found in Chapter 6. This allowed for greater

efficiency in fixing repeated problems, as well as identifying which areas to prioritize for

improvement, as parts that broke most frequently could be considered to be the most important to

prevent breaking in the future. Overall, this method was used to ensure that Koalby was

consistently functional so that thorough tests could be conducted without results being

confounded by extraneous factors.

Koalby’s control software was also examined for areas of improvement. In particular, the

team noted pieces of code that were difficult to understand or did not function consistently. By

reducing the time spent in the lab repairing broken pieces, more time could be allotted to

conducting and iterating tests, which increased their effectiveness and efficiency. In addition, we

identified portions of code that were left incomplete by last year’s team, and developed a plan for

either completing their development or discarding unnecessary portions. Targeting unclear or

incomplete functions also served to ensure that any continuation of this project would have an

64

easier time onboarding to testing and development. These software improvements are discussed

in detail in Chapter 12.

5.1.2 Code Refactoring

In order for the code to incorporate every aspect we wanted to implement, it needed to be

refactored. While refactoring, ideas such as processing time and overall functionality were

considered. We also assessed consistency, readability, and useability. This refactoring started in

A term, and was carried out the whole year as new functionalities were added.

5.2 B Term

5.2.1 Forward and Inverse Kinematics

With the goal of upgrading Koalby’s movement to be more fluid and accessible to users

as well as to move the arm to objects to pick them up once the different sensors are implemented,

its arm and leg were analyzed as kinematic chains in order to calculate their forward and inverse

kinematics. The Denavit-Hartenberg Method was used for forward kinematics calculations for

both limbs and DH tables were made for each of them. The inverse kinematics of the leg were

calculated using geometric analysis of an open-loop model of the chain, but the inverse

kinematics of the arm were found using the Product of Exponentials method due to the added

complexity of Koalby’s shoulder joint, as it had three motors in a condensed area actuating

different movements. These calculations were then implemented into Koalby’s software and

testing was done using dummy values in the code to validate the calculations. This process is

more thoroughly explained in Chapter 7.

5.2.2 Simulation Software

In order to conduct thorough tests of the robot, the team needed to create a simulated

version of it. This allowed for more convenient and safe testing of Koalby’s functions, allowing

for tests to be run at home or when the robot is otherwise unavailable and eliminating the risk of

damaging the robot if a test goes wrong. In order to ensure that the simulation suits the needs of

the group, a set of criteria was created for selecting a software in which to model the robot.

These criteria and their results are discussed in Chapter 10. These criteria were cross-platform

65

compatibility to allow the entire team to work together easily, compatibility with the existing

robot control code, and the ability to simulate the sensors which we planned to include on the

physical robot. Various simulation software, including Blender, Gazebo, and CoppeliaSim were

assessed both by reading documentation and by running test simulations, and ranked by how

well they fit the necessary criteria, again discussed in detail in Chapter 10. The software

determined to be the best fit would then be used throughout the rest of development for testing

and verification of new features.

5.2.3 Building Koalby in Simulation

In order to simulate Koalby, he needed to be built in simulation. A URDF file of Koalby’s

3D model was initially used to generate an accurate model of Koalby in simulation. However,

due to numerous errors in transferring that file into our simulation software, we ended up using

CoppeliaSim’s built-in ability to draw and add shapes and connect them by placing joints

between two shapes. Using this functionality, we created Koalby out of many rectangular prisms

connected by joints following the robot’s actual dimensions as accurately as we could for use in

simulation testing. This is elaborated on in Chapter 10.1.

5.2.4 Motors

New motors were considered to standardize everything to one brand. Standardizing to

one brand would improve the coding time by only requiring one motor library and eliminating

the need for additional hardware. When comparing different motors, the functionality differences

(i.e. communication speed and resolution) between Dynamixel and Herkulex motors were

considered.

5.2.5 Sensors

In order to stabilize the humanoid, we needed to implement sensors into the robot for

feedback control. We examined multiple sensors mainly through literary research and then

through testing. This research and experimentation can be reviewed in Chapters 4.4 and 9.3.

When considering the different sensors, two main aspects were examined: aiding in stabilized

standing and sensors that would provide more autonomy in the environment.

66

5.2.6 Code Architecture Evaluation

In order to incorporate the user interface into the existing application, the project

architecture needed to be evaluated. We needed a way to connect to the user interface wirelessly

while still being able to control the robot and connect to the Arduino.

5.3 C Term

5.3.1 Trajectory Planning

For enabling Koalby to walk, we first had to choose a suitable trajectory generation

method to control the leg’s position and velocity over time. This led to the team analyzing the

benefits and drawbacks of linear, cubic, and quintic polynomials through research in order to

determine which would best suit our needs. Once this was decided, the calculations necessary for

trajectory generation were implemented in Koalby’s software. Testing was then done in

simulation with this trajectory planning functionality by feeding a CSV file different joint

positions to determine the optimal step for Koalby while pushing the cart. This is explored

further in Chapter 8: Trajectory Planning.

5.3.2 Determine the Position and Motor Angles

A new initialization position was considered to find where Koalby stood most stable.

Having this position at initialization would allow for consistent standing results and easier testing

of the robot standing stable. Each individual motor position needed to be considered in order to

make the whole robot stable. By initializing the robot in various test positions and recording how

long it was able to stand stably in simulation and in reality, we determined the optimal

initialization position.

5.3.3 Gather IMU Readings and Stabilized Controls

The Arduino IDE was utilized to conduct a series of tests on the IMU, with a focus on

gathering readings at varying speeds and motions. By examining various metrics, such as noise

and bias levels, we were able to determine the most suitable raw data for use in the

implementation code. These tests facilitated a better understanding of the IMU and enabled the

67

development of a code framework that could be readily integrated into the Python code. Once the

most stable motor positions were established, the IMU was placed near the center of mass and

the pitch and roll values were collected. These values were then created as the target motor

positions and a PI controller was implemented in order to keep the robot stabilized in simulation.

The Proportional and Integral values were tested until the most stable constants were found.

5.3.4 Choose a Filter

Due to the noise of an IMU a filter needed to be applied to the IMU readings in order to

stabilize the robot. Two filters that were compared and considered were the complementary filter

and the Kalman filter. The main criteria used to determine which filter to use came down to

computation time and accuracy. The comparison between these two filters can be reviewed in

Chapter 4.5.

5.3.5 UI Prototyping

Different UI designs needed to be considered before making the user interface. We

wanted full robot control from the UI, so we needed a way to incorporate everything while

keeping the design as simple as possible. We also wanted it to be consistent throughout, so

having a pre-designed plan allowed for this and also made it easier to implement in the code.

When this was complete, a heuristic evaluation was performed and informal feedback was

gathered to test its functionality and useability.

5.4 D Term

5.4.1 Testing Stability

Tests were conducted to determine what was considered a stable stance for Koalby. We

first tested in simulation, then on the real robot. The idea behind this was that in the simulation,

there are fewer outside factors, such as loose screws or wires, that needed to be considered.

Additionally, the consequences of failure were a lot less in the simulation because Koalby could

topple over and fail without risk of parts or wires breaking. From there, using control code tested

in the simulation, we could move to the real world and make fewer tweaks.

68

The first set of tests, conducted in simulation, included testing if Koalby could stand

without assistance and if Koalby could stand with assistance only from a held cart. After these

tests were conducted, a new set of tests were done to determine if Koalby could perform basic

actions such as waving and handshaking while stable. Lastly, once these were all conducted in

the simulation, they were tested on the real robot.

5.4.2 UI Testing

After various tests were performed in the simulation and the real world from the text

based code output, these same functionalities were tested from the UI.

69

6. Evaluating Koalby

6.1 Testing Electronics

When the team first received the robot, it had sustained significant damage from sitting in

storage. Several of the 3D-printed pieces were chipped or completely broken, and many wires

were frayed or snapped. This meant that a significant portion of the beginning stages of the

project was dedicated to restoring Koalby to its original working order. The most significant

problems and solutions are explored below, while a more in-depth listing of every issue

encountered by the team can be found in Appendix C.

It became quickly apparent that the most vulnerable components were pieces that

connected the different limbs. In particular, the areas connecting the legs to the torso faced large

amounts of stress and broke frequently. The pelvis, shown in Figure 6.1, had to be replaced on

three separate occasions during the first four months of working on Koalby.

Figure 6.1: Koalby’s Broken Pelvis

70

While the redesign of these pieces was being performed by the design team, we worked

to mitigate these issues as best we could. This included solutions such as changing the

initialization of the robot’s motors to move at a half of their original speed and using a frame to

hold Koalby for testing. Slower movements reduced the chance of the robot damaging itself or

pulling wires loose, while the frame reduced the initial stress placed on the motors due to the

removal of the robot’s body weight from consideration. We also worked to improve Koalby’s

wiring, which also regularly experienced breakage. Additionally, new and higher quality parts,

such as switches and connectors were purchased. The primary improvement was replacing solid

core wiring with threaded wires of the same gauge. These threaded wires were more flexible and

broke less frequently than the solid cores that they replaced.

The two most common sources of problems on the electronics side were the Arduino

board and the primary power switch. The Arduino largely made use of jumper cables, and as a

result its connections were prone to being disconnected by the robot’s movements. The primary

power switch was suspended off of the main body of the robot. On rare occasions, these small

issues of electrical disconnection escalated into a more dangerous shorting of the power supply,

causing smoking and permanent wire damage. Figure 6.2 shows an example of smoke rising up

from underneath the robot due to a shorted connection.

Figure 6.2: Electrical Short

71

As a result, the team engaged in frequent re-wiring of various components of the system,

as well as replacing and re-soldering the main power switch. It was also found that reducing the

range of movement of the wires and other electrical components subsequently reduced the

opportunity for these components to become damaged by jostling or tension. As such, they were

secured in place as much as possible, using electrical tape to group wires together into bundles

and zip-ties to connect components to stable portions of the body such as the back of the torso.

Figure 6.3 illustrates a collection of wires with all of these protections applied.

Figure 6.3: Restricted Wires

The Arduino Mega control board was bolted to the side of the head and the various

sensors were given custom mounts to be held in place. The Arduino’s mount can be seen in

Figure 6.4 below.

72

Figure 6.4: Bolt-Mounted Arduino

The final electronic improvement we made was to implement a system for tracking the

voltages of all three batteries that powered the robot. We found that the stored potential of these

batteries had a significant impact on both the speed and load-bearing capacity of Koalby’s

motors, making it worthwhile to keep an accurate record of exactly when each battery needed to

be charged.

6.2 Testing Software

The software to control the robot developed by last year’s team consisted of two portions:

Arduino code to directly change the positions of the motors, and Python code to make decisions

about what movements to make, when to make them, and pass on instructions to the Arduino.

Koalby’s code structure is explored in more depth in Chapter 2.5. As with the hardware, the team

documented the issues encountered when trying to run this software, along with their solutions.

Often, these problems were determined to have causes on the hardware side, such as the

aforementioned disconnections of wires from the Arduino. The team also worked to resolve

inconsistencies in the coding and documentation of the software. Many functions worked but it

was not always clear what they accomplished, so we tested and documented these functions as

thoroughly as possible. This consisted of running functions one at a time and recording the

results. When the results were not immediately clear, the debugging feature available in the

73

Pycharm IDE was used to go through the code’s actions step-by-step for an in-depth

understanding of what it aimed to accomplish. The largest hurdle in interpreting the software was

the organization of the robot’s motors. Both the Python and Arduino code kept track of the

motors by numbering them, but the two codebases used completely separate systems for

numbering motors, so motor IDs changed depending on the level of abstraction of the code. The

team created and updated as necessary a system for identifying motors and their corresponding

IDs from one set of code to another. The diagram seen in Figure 6.3 was created, which

displayed each motor's physical position on the robot as well as how it is identified in both

Arduino and Python code. This diagram was updated as new motors were introduced into the

system, and is seen in its most recent form below. This allowed for more effective assessment

and modification of individual motors when such actions became necessary.

Figure 6.3: Koalby’s Motor IDs

74

As indicated in the methodology chapter, both the physical and software test results were

thoroughly documented throughout the term, the complete results of which can be found in

Appendix C. The most common problems arose from motors either reaching their torque limits

and giving out or not receiving proper serial communication. Over-torqued motors could be

prevented by removing physical obstacles in their paths, the aforementioned support frame, and

recharging the batteries, as reduced available power weakened the motors. The serial

communication issue most often was the result of the wires originating in the Arduino popping

out of their ports. These would simply have to be plugged in, and were eventually secured in

place with tape to reduce the frequency of these disconnections. This continual documentation

allowed for streamlined problem-solving for repeated problems as well as identifying these

problems and prioritizing them for more permanent solutions. In addition, this document could

serve as a useful starting point for future project teams to prevent repeated fixing across

iterations.

7. Kinematics

Forward and inverse kinematics were calculated for Koalby’s leg and arm through use of

the Denavit-Hartenberg and Product of Exponentials methods. These calculations were

implemented into Koalby’s control software.

The home configuration of the leg was assumed to be at the position where every link

points downward, indicating that Koalby is standing straight up and mimicking the initialization

position we made him start at where every joint is at its zero position. The open-polygon model

of this configuration is shown in Figure 7.1. The DH table for this configuration is shown in

Table 7.1.

75

Figure 7.1: The Open-Polygon Model of Koalby’s Leg

Table 7.1: The DH Table for the Open-Polygon Configuration of Koalby’s Leg Shown in Figure

7.1

Link (degrees)θ d (mm) a (mm) α (degrees)

1 *θ
1

0 187.325 0

2 *θ
2

0 212.725 0

3 *θ
3

0 34.925 0

The core equations used for the inverse kinematics calculations were found using a

geometric analysis of the leg kinematic chain modeled as shown in Figure 7.2. This was done

primarily through the use of trigonometry and drawing triangles composed of parts of the chain

to determine equations (50), (51), and (52), representing the angular position value of each joint

in any leg configuration. The equations for the calculation of the three different joint values can

76

be seen in the same image, where ‘x,’ ‘y,’ and ‘z’ are the Cartesian coordinates of the end

effector in the task space.

Figure 7.2: Open-Polygon Model of Koalby’s Leg

(41)𝑟 = 𝑥2 + 𝑦2

(42)𝑠 = 𝑧 − 𝑙
1

(43)𝑑 = 𝑥/𝑟

(44)𝑒 = (𝑙
2

2 + 𝑟2 + 𝑠2 − 𝑙
3

2)/(2 * 𝑙
2

* 𝑟2 + 𝑠2)

(45)𝑓 = 1 − 𝑒2

(46)𝑔 = (𝑙
3

2 + 𝑙
2

2 − (𝑟2 + 𝑠2))/(2 * 𝑙
2

* 𝑙
3
)

(47)ℎ = 1 − 𝑔2

(48)α = 𝑎𝑡𝑎𝑛2(𝑠, 𝑟)

(49)β = 𝑎𝑡𝑎𝑛2(𝑒, 𝑓)

(50)θ
1

= 𝑎𝑡𝑎𝑛2(1 − 𝑑2, 𝑑)

(51)θ
2

= − (α − β)

77

(52)θ
3

= − (𝑎𝑡𝑎𝑛2(ℎ, 𝑔) − π/2)

Following the calculations for the forward and inverse kinematics of the leg, the DH

parameters and equations that were calculated were hardcoded into Koalby’s software. This was

done to expedite and automate any further kinematics calculations and, at least for forward

kinematics, to read the robot’s current joint angle values and calculate where the position of the

foot is at those positions. Unlike forward kinematics, the position of the end-effector in Cartesian

space needed to be provided by the user, but the joint positions that correspond to the given

position were easily calculable through the code. In the software, the forward kinematics

functionality reads the different angle values of the joints and creates a 4x4 transformation

matrix representing the transformation from the base of the thigh to the bottom of the foot, with

the Cartesian position of the bottom of the foot found in this matrix. The inverse kinematics

functionality takes a desired Cartesian position inputted by a user and produces the joint values

that correspond to this position using the equations derived in equations (41) through (43). A

flowchart of the kinematics functionality in software for the leg can be viewed in Figures 7.3 and

7.4, and all of it was put in place to allow a user to move the foot to a specific Cartesian position

or to specific joint positions by just telling the code the desired position and letting the various

functions do the calculations for them.

78

Figure 7.3: Flowchart of Forward Kinematics Code Functionality in Koalby’s Software

79

Figure 7.4: Flowchart of Inverse Kinematics Code Functionality in Koalby’s Software

The forward kinematics of the arm were implemented in a similar way to the leg as the

DH method was used for the calculations. The home configuration of the arm was modeled with

the arm straight out at each motor’s zero position, and this configuration is shown in Figures 7.5

and 7.6. The DH table created through analyzing this configuration is shown in Table 7.2. Each

joint was established as the length between the end of the previous motor to the beginning of the

following one instead of the printed parts.

Figure 7.5: Koalby’s Arm Straight in Zero Position in Simulation

80

Figure 7.6: The open-polygon model of Koalby’s arm

Table 7.2. The DH Table for the Open-Polygon Configuration of Koalby’s Arm Shown in Figure

7.6.

Link (degrees)θ d (mm) a (mm) α (degrees)

1 *θ
1

50.4 0 -90

2 *θ
2

0 0 +90

3 *+ 90θ
3

158.81 0 +90

4 *+ 90θ
4

0 92.03 +90

5 *θ
5

0 86.76 0

The inverse kinematics of the arm were found using the product of exponentials method

and MATLAB code which takes in the homogeneous transformation matrix M and the Screw

matrix and the starting joint position of q[0], which is a 1x5 matrix, and the target end position

matrix, which is a 4x4 matrix, to get joint angle positions. This performs forward and inverse

kinematics based on the DH table found above and jacobian as a way to control the velocity of

the end effector.

81

Figure 7.7: Flowchart of Arm MATLAB Code

Due to time constraints the code was not tested in simulation or on the real robot.

However the validity of the calculations were tested in MATLAB. The inverse kinematics code

was validated by running the forward kinematics on the final position result of the inverse

kinematics function.

82

8. Trajectory Planning

The first step of the trajectory planning process was for us to choose which trajectory

polynomial we should use for Koalby’s walk cycle, either linear, cubic, or quintic. A linear

polynomial was quickly rejected as it only allows for control over position constraints, which

could lead to unpredictable leg velocities that could be damaging to both the robot itself and

other people. This then left cubic and quintic trajectories to decide between. As mentioned in

Chapter 4.2, cubic trajectories allow for control of position and velocity constraints, while

quintic trajectories allow for additional control of acceleration constraints with slightly added

complexity. Our team figured that the most stable and consistent step would be one where the leg

moves at a constant velocity with no acceleration, so we chose to use a cubic trajectory

polynomial as there was no need for the acceleration control that quintic polynomials offered.

However, we decided to make it easy to implement quintic trajectory planning into the software

if future teams desired to by generalizing most of the functions to work regardless of trajectory

planning method chosen.

Upon choosing a cubic polynomial as our trajectory calculation method, we implemented

the trajectory planning into Koalby’s software. A flowchart of how the trajectory planning

functions is shown in Figure 8.1.

83

Figure 8.1: Flowchart of Trajectory Planning Code Functionality in Koalby’s Software

In essence, the software is fed the joint angle positions of each of the leg motors, as well

as desired input and output times and velocities specified by the user and calculates a series of

intermediate points between the robot’s current position and that final desired position.

Specifically for walking, the software would read different angle positions representing an initial

and final leg position from a CSV file, convert them to a dictionary in

format, and do numerous calculations to interpolate between these{𝑚𝑜𝑡𝑜𝑟 𝑖𝑑: 𝑚𝑜𝑡𝑜𝑟 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛}

two positions. The starting and final positions along with all of the generated points in-between

would be sent back to the robot in the same dictionary format and the robot would then move

through these points. An example of the interpolated points calculated is shown in Figure 8.2.

84

Figure 8.2: Example of Software-Generated Points Between a Beginning and Start Trajectory in

Format to Be Fed Back to the Robot for Movement{𝑚𝑜𝑡𝑜𝑟 𝑖𝑑: 𝑚𝑜𝑡𝑜𝑟 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛}

The amount of intermediate positions generated is controlled by a timing parameter in

the software that determines the delay between point calculations along the desired trajectory For

example, if the timing parameter was set to 1 second, a new intermediate point would be

generated by incrementing the time step by 1 until reaching the final inputted desired position in

the trajectory. Despite being built specifically for getting Koalby to perform a walking motion,

this trajectory code can also be used with other limbs, like the arms, to facilitate other

functionalities crucial to lab assistance, such as picking up and placing objects from the cart the

robot walks with.

Once code implementation was completed, testing to find Koalby’s optimal walking

motion was done in simulation using a model of the robot grasping the cart. The skeleton of

Koalby we created for unassisted stabilization testing was used in tandem with a cart created by

attaching four wheels to a large rectangular object. To simulate Koalby grabbing the cart, the

robot’s right hand was attached to the cart with a joint, however the left hand was not able to be

connected to the cart due to CoppeliaSim’s limb hierarchy system not allowing that. This led to

some balancing issues during testing, but the setup was stable enough to allow for ample testing

of the walk cycle.

Using this simulated model, we mainly tested two different parameters to optimize

Koalby’s walk cycle. The first was the delay between the calculation of each point on the

trajectory mentioned earlier in this chapter. The higher the value was, the fewer points that were

calculated and vice-versa. This parameter affected the smoothness of the walking motion, with

85

less points leading to a more jagged trajectory. However, too many points would lead to a large

computation time and would also result in jagged movements, so our final value for it was 0.5

seconds.

The second parameter was changing the angular position values of the three joints being

controlled in the leg: the thigh extender, the knee, and the ankle. This was done easily by

accessing a CSV file with the initial and final positions in it, and the angles for each joint in both

positions could be edited for testing. We tested numerous different stride lengths and step heights

by changing these values, analyzing how Koalby reacted to each step. Through testing, we found

that steps that were too high would lead to the robot quickly losing its balance and falling over as

all of its weight would be on one leg for too long and it would not be able to readjust by planting

its foot back on the ground fast enough. In a similar vein, stride lengths that were too large would

also lead to Koalby losing balance and falling down as the leg would either smack the cart in

front of the robot or would not be able to lift itself up back into a standing position.

Through our testing, we found that the most stable step that prevented Koalby from

falling over was one with a very short stride length and step height that mirrors how other

bipedal robots in the industry walk. These values led to Koalby lasting the longest amount of

time without falling over, being able to hold itself up for around 10-20 seconds while walking. A

three-frame representation of how the step looked and the joint angle values that correspond with

each part of the step that we decided on are shown in Figure 8.3. However, these angles were not

perfect due to the aforementioned balance issues that came with not being able to attach both of

Koalby’s arms to the simulated cart, but using the simulation results as a proof of concept

provided our team with enough information and confidence to test how Koalby walks in the

real-world.

86

Figure 8.3: Progression of Koalby’s Most Stable Step With Corresponding Joint Angle Values

for Each Stage

With the software in place allowing for Koalby to walk, we ran tests on the real-world

robot to find out if any modifications needed to be made. On the real-world robot, the steps taken

through the use of trajectory planning had very jagged movements that were not suitable for

walking when compared to its smooth simulation counterpart as there were some timing issues

that needed to be debugged. However, we unfortunately did not have to test this further outside

of simulation as we wanted to prioritize getting Koalby to stand stably assisted by the cart.

87

9. Electronics and Control

9.1 Zeroing Motors

In order to simplify the robot’s code, as well as make it easier to move between the

physical machine and its representation in simulation, the team shifted the default positions of

the motors. Based on documentation, it appears that the previous team simply installed the

motors, moved them to a desired location, and read that position’s value through the Arduino

code. This meant that every motor’s default position, while functional in the physical world, was

represented by an entirely arbitrary value in code. To resolve this, the team went through a

process of “zeroing” each motor — that is, disconnecting it from the robot, setting its default

angle to zero, and then reattaching it so that its zero position matched where we wanted the

connected limb to initialize. A sample of the software changes is shown in Figure 9.1. This

resulted in cleaner documentation for both our team and future contributors.

Figure 9.1: Changes in Motor Values From Zeroing

88

9.2 Dynamixel Versus Herkulex Motors

Dynamixel motors generally have a more complex functionality, such as faster

communication speeds and higher resolutions compared to HerkuleX motors, with the drawback

of being more expensive. However, both Dynamixel and HerkuleX motors have similar

functionality related to feedback and control. The HerkuleX DRS-0601 were compared to the

Dynamixel MX-64AT as a possible replacement options.

The key differences between these Dynamixel MX-64AT and HerkuleX DRS-0601

motors are the resolution, operating angle, and communication speeds. The Dynamixel

MX-64AT and HerkuleX DRS-0601 motors are shown in Figures 9.2 and 9.3. The Dynamixel

MX-64AT has a more precise resolution of 0.088° and a larger operating angle of 360° compared

to the HerkuleX DRS-0601 which is 0.163° and 320°, respectively. The Dynamixel MX-64AT

has communication speeds of 8000bps ~ 4.5Mbps while the HerkuleX DRS-0601 is limited to a

maximum of 1Mbps.

Figure 9.2: Dynamixel MX-64AT Motor

89

Figure 9.3: HerkuleX DRS-0601 Motor

Additionally, the HerkuleX DRS-0101 was compared to the Dynamixel AX-12 as a

possible replacement for the neck motors. Figure 9.4 shows the HerkuleX DRS-0101 motor, and

Figure 9.5 shows the Dynamixel AX-12. These motors have similar functionality differences as

the Dynamixel MX-64AT and HerkuleX DRS-0601. The Dynamixel AX-12 has a more precise

resolution of 0.29° compared to the HerkuleX DRS-0101 which is 0.325°. The Dynamixel

AX-12 has communication speeds of 7343bps ~ 1Mbps while the HerkuleX DRS-0101 is limited

to a maximum of 0.67 Mbps. However, the Dynamixel AX-12 has a smaller operating angle of

300° compared to the 320° operating angle of the HerkuleX DRS-0101.

Figure 9.4: HerkuleX DRS-0101 Motor

90

Figure 9.5: Dynamixel AX-12 Motor

For the purpose of this project, the resolution, operating angle, and communication speed

of the HerkuleX motor was determined to be sufficient. Overall, the simple movements and

gripping actions that were expected of this project did not require extremely precise or fast

maneuverability. It was determined that the HerkuleX DRS-0601 and DRS-0101 are sufficient to

replace the Dynamixel MX-64AT and AX-12 motors, respectively. However, the HerkuleX

motor replacements are different dimensions than their Dynamixel counterparts, so this required

redesigns in the parts to fit the new motors which were completed by the 2023 3D Printed

Humanoid Robot Design MQP Team. Based on these replacements, Koalby now has 19

HerkuleX DRS-0201 motors, eight HerkuleX 0601 motors, and two HerkuleX DRS-0101

motors.

9.3 Sensors

As a result of performing literary research (Chapter 4.4) into the types of sensors used to

establish more autonomy and stabilization in humanoid robots, three sensors were chosen: TF

Luna for proximity sensing, BNO055 IMU, and the Huskylens AI Camera. The new circuit

diagram with the new additions can be seen in Appendix E. The overall sensor integration can be

seen and read more in Chapter 12.2 and in Figure 12.3.

91

9.3.1 LiDAR (TF Luna)

A LiDAR TF Luna sensor was chosen for proximity detection. This would be attached to

the head of the robot to detect objects while walking to be able to stop or turn before hitting the

obstacle. This sensor was first set up and tested individually before being integrated into the

robot design.

Two different code bases were developed to run the TF Luna sensor on Arduino Uno and

Arduino Mega boards. The Arduino Uno could use the arduino library SoftwareSerial which is

automatically installed with Arduino. However, this library does not work well with the Arduino

Mega, so this second code base uses an additional library, TFMPlus, that needed to be installed.

Koalby required an Arduino Mega board which is why this second, more complex, code was

developed to run the TF Luna on the Arduino Mega. Both code sources displayed the distance

measured by the TF luna, the flux or strength, and temperature of the sensor in degrees celsius.

After the code was developed, the range of the TF Luna sensor needed to be tested. A

basic testing setup was created to test the range, as shown in Figure 9.6. For this setup, the TF

Luna sensor was taped to a box while a second box was placed in front of it to measure the

distance between them. A tape measure was used to measure the distance and compare it to the

distance measured by the sensor. The range was tested by taking multiple measurements from the

sensor and plotting it against the actual distance, as shown in Figure 9.7. This sensor is

advertised to have a range of up to 8 m, but the testing showed the ideal range to be up to 3 m. If

measuring further than 3 m, the sensor reads nothing. Figure 9.7 shows that the TF Luna sensor

is most accurate in the range of zero to three meters with an inaccuracy of one to 3 cm.

92

Figure 9.6: TF Luna Sensor Testing Setup

Figure 9.7: TF Luna Sensor Testing Graph

This testing also showed two important insights to keep in mind when integrating the

sensor into Koalby: the angle of the sensor and how it is attached. If the sensor is slightly angled

downward, then the sensor may read the distance to the floor before the intended object,

providing incorrect data. This testing setup did not securely attach the sensor to the box to

maintain a horizontal measuring angle which resulted in some incorrect data readings that

needed to be re-measured. Therefore, we recommended that the attachment for the sensor is

designed to hold the sensor securely horizontal for clean measurements. Additionally, loose wire

93

attachments during testing resulted in wires falling out, causing loss of function and making the

testing inconsistent and more time-consuming. Thus, we recommended that the wires be securely

attached or soldered when integrating the sensor onto the robot Our partnered team, the 2023 3D

Printed Humanoid Robot Design MQP Team, used these recommendations during their redesign

of Koalby to integrate the TF Luna sensor into the robot.

9.3.2 IMU (BNO055)

An Adafruit BNO055 IMU was chosen for stability detection. The BNO055 is a 9-DOF

IMU which performs its own sensor fusion [52]. This sensor was attached to the lower part of the

torso and close to the center of mass which can be seen in Figure 9.8 below.

Figure 9.8: IMU Placed on CoM

This device was used to read the acceleration, gyroscope, and magnetometer values,

which were then converted into roll and pitch angles to use with a PI controller to keep the upper

part of the humanoid body stable. The sensor was first tested on the Arduino IDE for various

movements and speeds. The IMU was tested on an Arduino Mega board and included the

Adafruit_BNO055.h and Adafruit_sensor.h libraries.

94

The first test that was done on the IMU was leaving it at rest. The IMU was placed on the

counter (Figure 9.9) and collected raw IMU readings for roughly 20 seconds at each test to find

the X,Y, and Z acceleration relative to time.

Figure: 9.9: BNO055 IMU Testing Setup

Figure 9.10: Acceleration of the IMU at rest in the X direction

95

Figure 9.11: Acceleration of the IMU at rest in the Y direction

Figure 9.12: Acceleration of the IMU at rest in the Z direction

As seen in the above figures, 9.10-9.12, the X and Y accelerations were close to 0.2m2

despite being at rest. This is due to the noise experienced by the IMU. The Z acceleration was

around -9.8m/s2 which was expected as gravity was acting on the IMU while at rest. Other tests

that were performed on the IMU included moving the IMU along the counter slowly in one

direction and then repeating the test at increased speeds. The graphs can be seen below:

96

Figure 9.13: Acceleration of the IMU moving in the left direction slowly

Figure 9.14: Acceleration of the IMU moving in the left direction fast

In these above figures, 9.13 and 9.14, it can be noticed that the IMU readings were

negative when moving, due to the left axes being negative. In Figure 9.3.10, the IMU was very

slow to move from zero until the red line just under 6 s then the acceleration started becoming

negative and it finally got to around -0.7m/s2 at the 10 s mark. In Figure 9.14, the IMU was

moving left up until the 4 s mark. At that time the IMU started moving right until becoming

stationary. This shows that in the X direction, the left is negative while the right is positive. By

performing these tests we were able to establish a coordinate system for the IMU which can be

seen below in Figure 9.15 and we were able to determine that the IMU does pick up noise.

97

Figure 9.15: IMU Coordinate system

9.3.3 AI Camera (Huskylens)

An AI Camera, Huskylens, was chosen for proximity and object detection. The camera

was tested by holding the camera 30 cm above, 25 cm away, and tilted 22.5° down towards the

paper. This is simulated based on where the Huskylens would be mounted to the top of Koalby’s

head to detect objects. The camera was initially tested on an Arduino Mega board, using the

Huskylens library. There were three main areas of testing the Huskylens: color detection, object

recognition, and line tracking. The code can be seen in Appendix D.

The Huskylens had a mode which allowed the camera to learn and recognize colors. To

train it, a blank piece of paper with one bright tape was used. Once this was achieved, the next

step was testing whether the camera could identify the same color when mixed in with other

unknown colors. The camera was successfully able to do so, and from there the next step was to

train a second color and be able to differentiate the two. In order to train the Huskylens, the

colored tape would be placed in the camera’s frame of view for roughly 5 seconds which allowed

it to pick the pixelated points associated with that color. This was done using one piece each of

two different colorful tapes on a blank piece of paper, pink and yellow. Once the camera had

been trained, the two tape colors were arranged on the paper for the camera (Figure 9.16) to

identify which can be seen in Figure 9.17.

98

Figure 9.16: Paper with Color Tape for Training

Figure 9.17: Huskylens trained on two colors

The next set of training was object detection. In order to create a greater sense of

autonomy in Koalby, identifying common laboratory objects (hammer, screwdriver, nail etc.) is

crucial. The Huskylens camera comes with pre-programmed objects that the camera is able to

recognize as seen in Figure 9.18. These pre-programmed objects are common everyday objects

such as a bottle, car, and bird that was trained on the Huskylens using multiple images.

99

Figure 9.18: Correct Classification of Object

There were no preprogrammed objects that fit the scope of laboratory assistant so manual

training was conducted by using multiple pictures for an object. More common lab objects

(screwdriver, hammer, pliers) were attempted but the camera would not recognize the objects as

unknown and it would just assign an incorrect preprogrammed classification.

The final testing of the Huskylens was line tracking. This function was expected to be

helpful as it could potentially allow Koalby to walk in a set path within a laboratory setting,

however the camera was very noisy and the arrow marking the line would jump around and not

give a precise reading. In the line tracking mode, the blue arrow is where the camera thinks the

line is and it prints the x and y of the arrow origin and the x and y of the target position (the end

of the line). This can be seen in Figure 9.19 taken within 2 s of each other.

Figure 9.19: Blue Arrow Attempting to Follow Black Line

100

Due to the noise of the line tracking, the Huskylens was only used for color and object

detection. After testing, it was very apparent that the Huskylens is very dependent on lighting,

which is common for any camera-based system, so for optimal results, the training conditions

should be similar to the testing lighting. The lighting used was in the MQP laboratory on a sunny

day in the afternoon. The Huskylens were also found to not be as accurate at identifying colors

when it was more than 40 cm away.

9.4 Electrical Integration

Due to the addition of sensors and new motors, a new electrical diagram was constructed

for the robot (see Appendix E). To accommodate for the different voltages across the sensors and

motors, a series of adjustable voltage regulators were implemented. Meanwhile, the previous

7.4V batteries were upgraded to two 11.1V batteries to provide sufficient power. Then to

improve the durability and reliability of the circuit, old and worn components were replaced and

higher quality, threaded wires replaced the solid core wires.

101

10. Simulation Software

While Blender is an extremely versatile physics simulation, it is also quite demanding on

machines that run it. In addition, Gazebo and CoppeliaSim were both developed specifically with

the intention of simulating robots, so Blender lacked much of the streamlining and special

features possessed by the other two softwares, particularly the specialized sensors being

incorporated into the robot. Furthermore, Gazebo, while providing extensive support and

plug-ins that could potentially improve workflow, lacked compatibility with Windows, the

primary operating system of our team. CoppeliaSim, therefore, was left as the best candidate for

our purposes. CoppeliaSim, developed as a successor to the V-REP software discussed in the

background chapter, is an exceptionally robust and customizable software for simulating robotic

systems.

Within the CoppeliaSim environment, different versions of the software offered different

functionalities. The two primary points of interest for our team were the ability to implement

Python scripts directly into the simulation and methods of joint control. Within CoppeliaSim,

robots are constructed using joints and links. In order to determine the positions of these links

and joints, the team measured the motor-to-motor distance throughout the entire robot. The joints

were then placed using those distances, and connected using joints.

In CoppeliaSim, movement had to be programmed into the simulated robot using either

the simulation’s custom programming language or by connecting an externally-running Python

script to an online server, which was then subsequently connected to the running simulation.

Both of these methods of movement control are slow and require additional code that must be

discarded when working with the physical robot. Because the two major features that were

important to our team’s work, torque-force mode and embedded Python, were never available on

the same version of CoppeliaSim, our team had to choose one of the two to prioritize. Ultimately,

we determined that, while the additional steps of indirectly running Python code in older

versions was unideal, it was most important to accurately reproduce the construction and

functionality of the robot and its joints. Therefore, our team performed all of our robot

simulations in CoppeliaSim version 4.2 to still allow the use of torque-force mode.

CoppeliaSim also has many built-in features to ease model creation and simulation, like

geometric shapes, placeable and configurable joints, and simulated sensors. These features made

102

testing of the robot’s existing codebase in simulation easier, quicker, and more accurate in

comparison to other simulation environments. For example, in order to test the robot’s

stabilization, which relied on recognizing input from an IMU placed on the robot and adjusting

motor positions based on the IMU data in the real world, the simulated robot could be assigned a

combination gyroscope and accelerometer to replicate the functionality of an IMU. The outputs

of these sensors could then be read by the robot’s control code in the exact same way as the IMU

is read in real life, and thus its ability to keep the robot stable acts as a truly reliable indicator of

the feasibility of the IMU successfully stabilizing the real robot. These same principles applied to

the proximity and visual sensors that were also incorporated into Koalby.

10.1 Building Koalby in Simulation

At the start of our efforts to build Koalby in our simulation environment, we first tried

using URDF files to import the robot’s model and its kinematics into CoppeliaSim. We tried two

different files, one that was left over by the 2021-2022 MQP team’s efforts on the project and

another that we generated from a 3D computerized model of the robot. The one used by the

previous team gave many errors upon importing it into the software that our team was unsure

how to fix and the one our team generated had many confusing errors like importing pieces of

Koalby upside-down and other oddities. Our attempts to fix these URDF files proved fruitless, so

we decided that our best alternative was to recreate Koalby as a skeleton using CoppeliaSim’s

ability to manually import shapes and joints into its simulation environment. The robot’s limbs

were made up of rectangular prisms connected by joints, and the limbs themselves were modeled

in accordance with the actual measurements of the real-world robot. The constructed model can

be seen in Figure 10.1.

103

Figure 10.1: Initial Koalby Model in CoppeliaSim

While some of Koalby’s motors are attached to the same part in the real world, this same

idea could not be replicated in CoppeliaSim. Each joint had to be attached to its own rectangular

prism in order to properly simulate the movement functionality. If two joints did not have a

prism between each other, the one of the joints had no effect when it was moved.

11. Stabilization

11.1 Determine Position and Motor Angles

As Chapter 4.7 states, the most stable position of a person is where their knees are

slightly bent, lowering the center of gravity relative to the ground. The feet must also be shoulder

width apart, creating the most stable base for standing. In order to prevent tipping of the upper

half, arms should be stretched out to the side. With this research in mind, Koalby was set to this

position in the simulation in order to find his most stable standing position. His feet were

manually positioned to be 0.19m apart, the distance of shoulder width. Then, each of his joints

were set to 0°, then physically rotated to what was a T-pose. We tested this initial stance to get a

baseline, and Koalby fell backward. From there, his knees were each bent to -20°, so that his

CoM would be closer to the ground. His ankles also needed to be moved, in order for his feet to

be flat on the ground. His ankles were set to 20°, and the simulation was run again. Koalby fell

104

forward very quickly, so his knees were set to be slightly less bent, at -10°. His ankles were also

adjusted, correspondingly, to 10°. At this point, he fell forward slower, but still was not stable.

From there, we tested a staggered stance. His left leg was positioned slightly in front of

his body, with the hip at 10°, the knee at -20°, and the ankle at 30°. His right leg was positioned

slightly behind his body, with the hip at -10°, the knee at -20°, and the ankle at 30°. This stance

resulted in Koalby falling diagonally forward and to the right. Other tests only produced a fall in

one direction, so this stance was aborted due to the increased difficulty in finding a balancing

point.

We reset to having his feet even with each other, and decided to adjust the bend in his

hips. He was falling forwards, so his front to back movement joint was set to 10°. From there,

the front to back joint was tested with trial and error. We first adjusted the angle by 1°, and found

that between 5° and 6° Koalby was stable for the longest. After this discovery, we incremented

by .1°, and found the most stable front to back angle was 5.2°. This trial and error process led to

the discovery of his most stable position overall, pictured in Figure 11.1 This was before any

sensor was attached or integrated into Koalby so we could have a control reading.

Figure 11.1: Koalby’s Most Stable Position

105

After this position was discovered, with the knees bent to -10°, the ankles at 10°, and the

front to back joint in the hips at 5.2°, Koalby’s arms were adjusted to reflect holding a cart. His

elbows were set to 70°, his shoulders were set to 90° down and rotated 20° inwards. From there,

a cart was added to the simulation. In order to get his hand attached to the cart, we attached a

static joint in-between his right forearm part and the cart. Without this joint, Koalby’s hand did

not connect to the cart in any way. The trial and error process was repeated to find the most

stable position with the cart. Again, his most stable position was discovered. This position

mimicked the stable position without the cart, aside from the arms, with the only exception being

that the front to back joint was -10°. This allowed for Koalby to be leaning forward, making the

CoM of himself and the cart closer to the middle of the system. This stable position with the cart

can be seen in Figure 11.2.

Figure 11.2: Koalby standing in simulation with a cart

11.2 Gathering IMU Readings and Stabilized Controls

Gathering IMU readings and implementation of a PI control feedback loop were

primarily done in simulation. CopelliaSim has a sensor library which allows for a drag and drop

106

feature. This was used to place a gyroscope and accelerometer in the simulation. The two sensors

were placed at the center of mass (approximately 0.583 m from the ground) which can be seen in

Figure 11.3:

Figure 11.3: Gyroscope and Accelerometer Placed at Center of Mass

CoppeliaSim had its own PID controller, which was used to test stabilization. The IMU

readings were found at the most stable standing position in the simulation. The values found

were 67.5° for yaw, -1.9° for pitch, and -0.2° for roll. In order to find the exact PID contents,

values were estimated until the values kept Koalby stable. Through trial and error, the

proportional, integral, and derivative constants were found to be 50, 2, and 0 respectively. These

parameters worked to keep the simulated robot standing for more than five minutes with PI

control in simulation as seen in Figure 11.4.

107

Figure 11.4: Koalby stable in simulation with PI control

Figure 11.5: Koalby Standing with cart

In Figure 11.5, Koalby is seen to be standing assisted with the cart and the IMU at the

center of mass is reading the IMU values in real-time. With IMU values of 69.1° for roll, 4.6° for

pitch, and -1.4° for roll. This proof of concept allowed stabilization testing in the real world

attainable. These values will not be identical to the real world but they are a start to achieving

assisted standing using the IMU and PI control.

108

11.3 Choosing a Filter

As mentioned in Chapter 4.5, IMUs are notoriously noisy, and in order to combat this we

decided on using the Kalman filter. Despite the Kalman filter being more complex compared to

the complementary filter, the predictions are more accurate. In addition, the Kalman filter does

not store a large amount of memory and quickly loops through the predict, measure, and update

states as mentioned in the Background. Quick and accurate processing of IMU readings were

required in order to keep Koalby stabilized. The Kalman filter was applied to the code and can be

seen in Appendix D. The breakdown of the code can be seen in Figures 11.6-11.7 which show

how the IMU collects raw data, then passes it through the Kalman Filter (predict and update

steps) and then it goes through the PI controller which controls the motor positions and these

cycles. The filter was for the IMU in the real-world and was not actually tested due to time

constraints.

Figure 11.6: Flowchart of the IMU Readings with the Kalman Filter

Figure 11.7: Flowchart of the IMU Readings with the PI Controller

11.4 Testing Stability

In simulation stability trials with the sensors integrated, it was determined that Koalby

was most stable in the same position as before, but stood for a longer amount of time with the PI

109

control loop enabled. In an average of five trials, timing when the simulation was started to when

Koalby’s body hit the ground, it was found that Koalby stood for about 7.6 times longer with the

PI control loop enabled. Refer to Table 11.1 to see the chart.

Table 11.1 Stability Trials With and Without PI Control

Stability Trials

Without PI (s) With PI (s)

2.21 18.98

2.28 16.39

2.43 18.41

2.28 15.94

2.11 16.39

Average Average

2.262 17.222

From these trials in simulation, ideas were transferred to the real world and similar tests

were conducted. In the real world, we replicated the same position from the simulation and tested

that stance. The real robot fell slightly forward, so conducted the same trial and error process to

find the best angle for the front to back joint, leaving the knees in place. After the process was

finished, we found the most stable position for the front to back joint was between -7° and -12°.

Unfortunately, it was difficult to be as precise in the real world, due to outside factors such as

loose screws varying the most stable position.

We also had to adjust Koalby’s arms, because in simulation, the cart is about .636m tall,

and in the real world, the cart is .582m tall. The cart is also about 0.291m wide, and in real life,

the cart is 0.424m wide. This meant his arms had to be out wider and reach down more. After

these small adjustments were made, we had found his most stable position, shown in Figure 11.8.

His hands are taped to the cart, and his feet are about shoulder width apart, 0.172 m, with his

knees slightly bent.

110

Figure 11.8: Koalby Standing in the Real World

From this stable position, tests were conducted to see if Koalby could perform

basic movements while maintaining this balance. These basic movements included waving, and

doing a handshake motion with his right hand. Only doing movements with his right hand

allowed him to still have his left hand attached to the cart for support. It was determined that he

could stay stable and standing with only one hand gently taped to the cart, while waving or

shaking hands with the other. Figure 11.9 shows Koalby performing a handshaking movement

with his right hand.

111

Figure 11.9: Koalby Standing with a Cart and Waving

Tests of unassisted standing were limited due to time constraints, however, the most

successful test conducted was having him in the same position as the simulation, with his arms

outstretched, and he was held from his pelvis by one finger. This test can be seen in Figure 11.10.

Figure 11.10: Koalby Standing Assisted by Only One Finger

112

12. Koalby’s Software

12.1 Code Refactoring

In order to achieve all the desired functionalities with one code project, the Python code

needed to be refactored.

12.1.1 Incorporating the Simulation

Getting Koalby working in the simulation was a main goal of the project, so it was

addressed first. The existing Python code was able to be run via CoppeliaSim with a few tweaks.

We needed to add a simulation folder, with remote API functions provided by CoppeliaSim. With

these, we could connect to the simulation with 4 additional lines of code.

In order to physically connect, the simulation needed to be running, then the Python code

could use the CopelliaSim library to establish a connection. The motors’ names also had to

match in the simulation and the Python code so they could be controlled, so those were edited as

well. From there, abstraction was done to reuse code from the real robot in the simulated robot.

12.1.2 Improving Usability and Readability

The previous code contained lots of threads that were unnecessary. Threads allow the

code to be split up into smaller tasks and run concurrently, however, they make the code harder

to debug and put stress on the operating system’s processing time and memory. In the existing

code, executing movements was threaded, recording movements was threaded and updating the

robot was threaded. These processes were not handling large tasks, and ran at the same speed

when they were not threaded. Additionally, when trying to debug these portions of the code, it

was difficult to determine where the issues were with the threads. With this, we determined that

the negatives outweighed the positives in this case, and removed the threads.

Additionally, with the removal of these threads, the code could be simplified and more

widely re-used between different functionalities. For example, the pre-existing ReplayPrimitive

class, used to play and record motions by looping through each motor and setting or getting its

position, contained an object that contained information about the user-specified time it would

take the robot to move from one position to the next, and even kept track of the motors, which

113

was already accounted for in the robot object. In the refactoring, this class was simplified into a

MovementManager class. The new MovementManager class’s only job was to play existing

motions and record new motions. The rest of the information required to do this was passed from

other places, making the code more readable and concise.

Lastly, the previous code’s overall structure and naming conventions were not consistent

or methodically done. The code did not use consistent naming conventions for variables and

methods. In some places, CamelCase was used, and others used Python naming conventions.

The team went through and changed all variables and methods to be lowercase and contain

underscores between words, matching the Python naming conventions. The old code flow chart

can be seen in background in Figure 2.5.1 and the new design can be seen in figure 12.2.3.

12.1.3 Testing

As for testing, similar methods were used from last year, in that there were different files

that could be run to test various functions, such as recording a new motion or playing a

previously existing motion. However, a new section was added to allow the user to specify

whether or not they are running the simulation. The code works the same way, but if the

simulation is being run, it will connect to CoppeliaSim instead of sending signals to the Arduino.

There was also functionality added to test the reading of IMU data from the simulation and the

real world.

12.2 Project Architecture

As for the actual project architecture, the UI prototype was created using HTML and

CSS. These tools were helpful in creating the layout and style of the application. In order to

make buttons functional, Javascript was used. For the backend, Python was already being used

so the decision to remain in Python was easily made. The web application was created using

Flask due to its Python-based infrastructure and accessibility. All of the code itself was written in

Jetbrains’ PyCharm IDE because it is capable of handling all of these capabilities.

We make the connection from frontend to backend with a rest API. A rest API allows for

the separation of the client implementation from the server implementation. Clients send requests

and the server responds to the requests. These requests are sent through the website URL and

received with GET and PUT methods. Responses will then send status codes which are

114

interpreted and rendered to the client. This implementation makes it so the backend can run on

the Raspberry Pi and the frontend can be hosted via a computer. As seen in Figure 12.1, the

Raspberry Pi hosts the interface that can be connected to wirelessly and sends information to the

Arduino via USB serial communication.

Figure 12.1: Code architecture

The user interface was successfully able to be hosted from the Raspberry Pi and

connected to via a phone’s hotspot, as seen in Figure 12.2. Users were able to initialize Koalby

and make him execute pre-recorded movements by navigating to the pre-recorded movements

page, selecting a movement to perform, and pressing run.

115

Figure 12.2: Koalby waving from the UI

One issue with this connection is the processing time. In initialization tests, where we

timed how long it took the robot to initialize starting when we ran the “RunToInitializeKoalby”

test file, it took an average of 6.66s, and the test table can be seen in Table 12.1. This time could

be improved with faster serial communication. Additionally, in other places in the code required

a communication delay. For example, when reading IMU data, if the Python code did not delay,

IMU data would only be read every third loop iteration. However, when it waited for .25s, data

was printed every loop iteration. Loops increase processing time in Python, so it is better to print

data out every time, making the most of the iterations.

116

Table 12.1: Initialization Time Trials

Initialization Time (s)

6.7

7.3

6.2

6.9

6.2

The final code design is as seen in Figure 12.3. This shows how all code elements flow

together, with the UI being the top most element, sending signals to initialize the robot. As

mentioned in Chapter 12.1.1, this controlled either the simulated robot or the real robot. In this

initialized state, the robot would stand stable, without the help of any sensor readings. From here,

the robot was able to record a new movement (only in the real world), execute a preexisting

movement, or stand stable with IMU readings. The stable stance required IMU readings, which

are read, filtered, and passed to the PI controller, which adjusted the corresponding front to back

and side to side motors. The robot also had the option to walk or reach for an object from this

initialized state. To walk, it would use trajectory planning to calculate the trajectory of its desired

step, move the motors corresponding to the trajectory, and repeat this process over and over for

each leg. While this process was happening, it would read from the TF Luna to see if any

obstacles were in the way, and stop walking if it got too close. On the other hand, if the user

wanted Koalby to reach for an object, the robot would first see if the Huskylens detected an

object for him to grab. If it did, he would use inverse kinematics and trajectory planning to figure

out where the best trajectory to move his arm to reach the object.

This flowchart combines the Arduino and Python code, in that the sensor readings came

directly from the Arduino, but were parsed and read by the Python code, allowing them to be

processed and used in their respective ways. While not all of these components were

implemented and tested on the real-world robot, the foundations for them are all present.

117

Figure 12.3: Overall code design

118

13. UI Prototyping

Due to the removal of threads and the need for the user to be able to connect to the robot

wirelessly, the previous UI was discarded and a new one was developed from scratch. Different

features and designs were discussed amongst the team based on robot functionality. We knew we

needed to keep the design simplistic, while also providing full robot control. After this

brainstorming session, each team member individually created a low-fidelity (lo-fi) prototype

with the conversations in mind. We then combined all of our ideas into one and made another

mockup.

13.1 Pre-Recorded Movements

It was important to have buttons for executing pre-recorded movements, as this was an

existing functionality from last year. We also wanted to give the user control in deciding which

movements were to be executed in what order, and for how long, so we added an editable queue

preview to our design sketches. As seen in Figure 13.1, the pre-recorded movements page, the

user had the ability to swipe through different movement options and add them to the queue.

Once added to the queue, these movements would appear in the queue preview. If the user

clicked next, they would be brought to the queue editing page in the right image. From here, the

user could edit how long they wanted each movement to take and how many times they wanted it

to repeat.

Figure 13.1: First UI LoFi Prototype Mockup of Pre-Recorded Movements (left) and Queue

Editing Page (right)

119

13.2 Recording New Movements

Additionally, it was important for us to have a page to record new movements, as this was

also an existing feature. We also wanted to give the user control in deciding how many positions

they wanted to record, and the ability to play the recording while it was in progress of being

created. Figure 13.2 shows the first mockup of this page, with a button to record the position of

the robot, a field showing how many positions have already been recorded, a reset button to clear

the recorded movements, a finish recording button to say the process was done, a play button to

play the recording back, and finally a save button.

Figure 13.2: Creating Movement Page

13.3 Evaluating Prototypes

After this first iteration was completed, Nielsen’s Ten Heuristics [41] of a good

application were discussed and measured within each person’s drawing. A heuristic evaluation

was performed, as described in Chapter 4.8 with these key ideas in mind, and it became clear that

different aspects needed to be fixed. One main aspect needing attention was the editable queue. It

was too difficult for users to understand they could control how long each movement took, so

120

that was removed. The flow was also confusing because there was no defined way to get to the

screen in which a user could control Koalby’s walking. Additionally, user control was limited in

the recording of new movements, because the user could not give a name to the movement they

were creating. These issues were addressed and fixed.

After edits to the first iteration, informal feedback was collected from a variety of our

peers. Some of these people were part of the 2023 3D Printed Humanoid Robot Design MQP

Team, so they knew what we were trying to accomplish. Others were people who had limited

knowledge of our project and the code itself. This informal feedback was minor suggestions, like

including a gif of the robot's movement. It was also suggested to describe some movements, as

some users may not be aware of what various movements are.

13.4 More Iterations

Edits were again made with the feedback received, and the mockup of a described

movement is shown in Figure 13.3. The idea behind this was a user could click on the help

button for a movement and a page having a gif showing the movement, and a description would

pop up, describing what would happen.

Figure 13.3: Second Iteration UI Prototype of Described Movements

121

After these edits were made, it was time for the team to design a mockup using HTML

and CSS. This proved difficult, as some of our ideas were challenging to implement. For

example, we had hoped the user would be able to swipe through different movement options,

much like users can swipe through pictures on a mobile phone. However, the way to get this

executed in HTML and CSS was too complex for a first iteration because it required a lot of

stylistic code, so the team just decided to go with basic buttons. The first software iteration of the

home page can be seen in Figure 13.4 below. This home page allowed users to get to the

pre-recorded movements page or the record new movement page.

Figure 13.4: First Software UI Iteration

13.5 Final UI Design

Figures 13.5-13.7 show the final UI design. On each page, there was a navigation bar at

the bottom, allowing users full control of where they want to go. Clicking the navigation bar

brought users to the corresponding page. There were also various help buttons on every page in

case a user gets lost. Additionally, back buttons were implemented throughout the application

122

allowing users to handle errors by themselves. Lastly, a red shutdown button is on the bottom of

every page in case of emergencies.

The home page, Figure 13.5, shows the final version of the screen users see after

initializing Koalby. There was a help button, describing the functionalities of each button on this

page. There was a begin walking button, telling the robot to begin taking steps. If clicked, the UI

displayed a message showing that the robot had begun walking, and the button changed to say

stop walking. Clicking this told the robot to stop walking. Furthermore, the homepage featured

an execute movement button, and a record new movement button bringing users to that specific

page respectively. A show sensor data button is also there allowing users to view the IMU data

and the battery level of the real robot.

Figure 13.5: Final UI Homepage Design

The execute movements page, Figure 13.6, allowed the user to execute a list of

pre-recorded movements. It displays a list of the executable movements. When clicked, they

appear in the queue preview in order of selection. When the user was satisfied with their

selections, they clicked run and these movements were executed in the same order. This page

also features the back, shutdown, and sensor data buttons as mentioned.

123

Figure 13.6: Pre Recorded Movements Page

The record new movements page, Figure 13.7, allowed the user to record their own

movement. As previously mentioned, it contains back, help, and shutdown buttons for error

prevention and handling. It then asked the user how many positions they would like to record

and what to call this new movement. Then after clicking submit, a message was displayed saying

the new file name and the amount of positions to record. Every time a press to record poses was

clicked, the number decrements and the motor positions were recorded. When it reached 0, the

button was disabled and a finished recording message was displayed. This new position could

then be executed from the pre-recorded page.

124

Figure 13.7: Final UI Record New Movement Design

Lastly, when the UI is being run on the real-world robot, the button to initialize the

simulated robot is hidden on the welcome page, Figure 13.5. Errors were also prevented from the

initialization, as the application prevented the user from moving forward if they were not

connected to the robot. The color scheme was chosen with the robot’s colors in mind, and was

consistent throughout the application. The font was also the same for all text throughout the

application.

125

14. Discussion

This chapter reviews the original goals of this project and how we addressed each one.

Additionally, our live demonstration at WPI’s Undergraduate Research Projects Showcase was

reviewed, highlighting the key achievements and insights learned.

14.1 Goals

The main goals this team focused on achieving this year were to:

1. Assess and repair the physical robot

2. Calibrate and integrate motors and sensors

3. Recreate the robot and its movements in simulation

4. Develop code for stabilization and movement

5. Develop a user-friendly interface where even novice users could interact with the robot

while seeing the sensor data in real time

14.2 Assess and Repair the Physical Robot

This project successfully assessed and then repaired Koalby. Based on our initial

assessment, it was determined that several hardware components needed to be improved such as

repairing broken parts, improving wire management, and redesigning the electrical circuits for

new components (see Chapter 6.1). We worked with the 2023 3D Printed Humanoid Robot

Design MQP Team to replace broken components, and we conducted major updates to the

electrical components (see Chapter 9.4). These electrical updates included replacing the original

solid core wires with higher quality threaded wires and resoldering weak connections. A new

electrical diagram was constructed to accommodate new motors and sensors (see Appendix E).

These changes included swapping out the two 7.4V batteries for stronger 11.1V batteries to

power all of the additional components, and a series of adjustable voltage regulators were

implemented to accommodate for the different voltages across sensors and motors.

Additionally, a software assessment was completed (see Chapter 6.2) which determined

code needed to be refactored not only for useability and readability reasons, but also so we could

implement more features such as sensors and a new UI. We worked on useability and readability

126

first, keeping a consistent naming convention and removing unnecessary threads. Then as we

implemented new features, we updated the existing code to integrate the new features (see

Chapter 12). Our next steps for the software would be to do more refactoring to consolidate files,

and remove duplicated code. We also could make it easier to implement new features and sensors

by abstracting the sensors and movement features.

14.3 Calibrate and Integrate Motors and Sensors

Overall, the sensor integration was mostly successful. The team was able to choose

various sensors to aid in stabilizing Koalby. Code was sourced and developed, which was then

tested. One of the improvements added was implementing a filter to the IMU raw data in order to

mitigate sensor noise (see Chapter 11.3). We were also able to run various tests to familiarize

ourselves with each sensor and know its limitations (see Chapter 9.3).

However, the sensor integration was not fully successful. While all of the foundations for

each sensor were in place, they were not able to be incorporated into the robot’s functionality.

There was code for PI control, but it was not used in getting the robot standing stable. It was also

difficult to integrate the TF Luna code into the codebase. It worked fine on its own separate

project, but then when integrated into the main Koalby code, it read values that were nonsense.

Furthermore, little testing was done to incorporate the Huskylens code into the main code base.

The next steps in this aspect of the project would be to further integrate and test the sensors into

Koalby’s functionality.

Electronics were successful to a degree as the team was able to standardize the brand of

motors and keep the cost low, by replacing the Dynamixel motor with HerkuleX motors (see

Chapter 9.2). New battery circuits were developed which incorporated the new sensors and

motors along with the necessary voltage required to run all the components (see Chapter 9.4).

The wiring proved to be a big hurdle for the team due to old, solid core, wire that kept breaking

or falling out of pins, this issue was addressed throughout the term and the worn components

were replaced with higher quality, threaded wires, to ensure consistency. This proved to be

successful as Koalby was able to be turned on and off repeatedly for over five hours WPI’s

Undergraduate Research Projects Showcase with no wire issues.

127

14.4 Recreate the Robot and its Movements in Simulation

This team successfully created the robot in simulation (see Chapter 10) and developed

standing and walking in simulation (see Chapter 11). In CoppeliaSim, we successfully

developed a stable standing position with and without PI control. Simulation stability trials with

integrated sensors determined that Koalby could stand for an average of 15 seconds longer with

the PI control loop enabled. After the standing positions were developed in simulation, they

were applied to the real world. This project was able to have Koalby stand for upward of 20

minutes with his hands attached to the cart. This was done with the same motor positions

developed in simulation to balance. With this balanced position, the team was able to run the

primitive actions of waving and shaking hands while Koalby stood with one hand attached to the

cart. These motions were successfully demonstrated at the WPI Undergraduate Research Projects

Showcase (see Chapter 14.7). Due to time constraints, limited testing of unassisted standing was

completed and the PI control was not integrated into the actual robot. The most successful

unassisted standing test resulted in the robot standing in the same simulated balanced position

while being held from the pelvis by one finger. The next steps would be to integrate the PI

control into the actual robot and continue to test unassisted standing.

Additionally, assisted walking was developed in simulation. This assisted walking was

done with Koalby’s hands attached to a cart which he pushed (see Chapter 11.4). This project

successfully developed the beginning 3-5 small steps of assisted walking with the cart in

simulation. Also due to time constraints, limited testing of the trajectory planning was done on

the actual robot. The walking motion was successfully tested on the robot while it was attached

to the wooden support frame. The next steps would be developing the walking motion untethered

from the support frame. This would require integrating the balanced standing position and PI

control with the trajectory planning to develop walking in the real world.

14.5 Develop Code for Stabilization and Movement

This project successfully developed kinematics and trajectory planning for assisted

walking in humanoid robotics (Chapters 7 and 8). The team was able to develop inverse and

forward kinematics and trajectory planning to generate movement in the leg and arm. The leg

movement was tested in simulation and on the actual robot. The arm code was developed and

128

tested to ensure the final position matched the initial position. These functionalities were

achieved in order to add more robust and controlled motions such as walking and grasping

objects.

For future work, the timing in the trajectory planning will need to be optimized to create

a more natural movement. The arm code is currently in MATLAB and future teams should

implement it into the overall Python code. Due to timing constraints and missing components,

future teams can run tests using the arm code base.

14.6 Develop a User-Friendly Interface

The team was successfully able to create a user friendly interface with capabilities for full

control of the robot (see Chapter 13). All buttons are functional (except for disco lights), and

were tested in the simulation and in real life. Additionally, other buttons are in place, such as

those for reaching objects, so that once more functionalities are added to the robot, these buttons

can be enabled and functional.

For future work, the UI could be improved upon in various ways. More user studies and

tests can be conducted in order to make it better. It could also be improved for mobile use, as

some of the stylistic designs are not currently consistent.

14.7 Demonstration at Undergraduate Research Projects Showcase

This project was demonstrated at WPI’s Undergraduate Research Projects Showcase.

This event allowed the team to successfully demonstrate and present the project at a higher level,

speaking to WPI faculty and engineering professionals. Koalby successfully demonstrated

assisted walking with the cart and performed primitives such as waving and shaking hands. This

team presented in the Mechanical and Materials Engineering Department and Robotics

Engineering Department for a total of about five hours, and Koalby had no mechanical, software,

or electrical failures the entire day, except for the batteries dying during the fourth hour of

demonstrations. Figure 14.1 shows this team’s poster presentation at WPI’s Undergraduate

Research Projects Showcase.

129

Figure 14.1: Mechanical and Materials Engineering Department Presentation

130

15. Conclusions

Overall, this team successfully developed Koalby towards the application as lab assistant

with our three main goals. First, this team successfully simulated standing and assisted walking

in Coppeliasim, and then applied this to the real-world with assisted standing while performing

primitives. This accomplishment required the development of codes for stabilization and walking

including a PI controller, forward and inverse kinematics, and trajectory planning. These codes

were developed individually and then integrated together into the Koalby interface.

Beyond the initial objective to develop standing and assisted walking in a humanoid

robot, a user-friendly interface was created to allow for ease in controlling the robot’s motion and

displaying sensor data. The UI is capable of playing pre-recorded movements, recording new

movements, starting and stopping walking, and displaying sensor data. Additionally, the team

investigated and implemented different sensors and electronics into the system. Three new

sensors, IMU, LiDAR TF Luna, and AI Huskylens camera, were independently tested and

integrated in simulation.

15.1 Broader Impacts

15.1.1 Engineering Ethics

This project followed the Mechanical Engineering Code of Ethics. First, we used our

knowledge and skill for the enhancement of human welfare. By developing standing and assisted

walking capabilities in a humanoid robot, we worked towards the application of a humanoid

robot lab assistant which would be used to assist people in a lab setting. This assistance

contributes directly to improving human welfare by helping people. Second, we were honest and

impartial throughout the processes of this project. Throughout this project, we took care in

accurately documenting our progress, including our achievements and limitations. Third, we

strived to increase the competence and prestige of the engineering profession. Bipedal

locomotion in humanoid robots is a current engineering challenge where solutions are still being

developed. This project contributed to understanding the code and sensors required for walking

and successfully applying it in simulation.

131

15.1.2 Societal Impact

This project and its achievements contribute to larger societal impacts in the fields of

service. By developing standing and walking in a humanoid robot, we worked towards the larger

application of creating a lab assistant. As a lab assistant, Koalby can be utilized to aid people in

various lab activities such as pushing a cart of supplies and picking up tools. This can improve

the work load for lab staff by eliminating menial tasks required by them, allowing for more

specialized focus. Furthermore, the functionalities of standing and walking in humanoid robots

can be expanded to more applications such as medicine, industry, and academia (as discussed in

Chapter 4.1). Additionally, this project created a user-friendly interface which made the robot’s

controls significantly more accessible (see Chapter 13). This UI allows non-experienced users to

control the robot which expands the domain of possible users. Koalby is no longer limited to

highly specialized, experienced users to operate.

15.2 Recommendations for Future Work

15.2.1 Autonomy

With all of the sensor functionality in place, we hope that future teams are able to

integrate all of this functionality into the robot’s main codebase, allowing Koalby to make

decisions to pick objects up or walk/stop depending on feedback from its different sensors. For

example, when the TF Luna and Huskylens are integrated, along with inverse kinematics and the

gripper, Koably can use their feedback to pick up a specified object and will be able to move his

arm and hand to the location of the object, and pick it up, with one button press from the user.

15.2.2 Optimization

On the software side, optimization can be done to reduce processing time. As mentioned

in Chapter 12.2, it takes about 6.66 seconds from when the user clicks run to run

“RunToInitializeKoalby” to when the real robot actually initializes. This has to do with the slow

serial communication between the processor running the python code and the arduino.

Additionally, in a lot of places, the code is forced to wait due to the communication delay. There

are ways to speed up this process. The first is sending a smaller amount of data. In order to do

132

this, a future team could send data as binary instead of sending it as an ASCII value. In general,

binary files occupy less space on a disk than their ASCII equivalents. While this would speed the

actual transfer of data, the python would also then have to decipher the binary when it is

received. As this has not been tested yet, new tests would have to be conducted to see if this is

faster than it already is. Currently, ASCII values are being passed to and from the Python.

Additionally, future teams could use a higher baud rate as that would theoretically speed up the

rate that information is transferred.

Furthermore, the general processing time of the code can be improved. Loops are widely

used throughout the code base, and when processing large amounts of data, can be slow. These

loops could be refactored and made into something such as a stream to speed up the process.

Additionally, the code could be refactored to use various design patterns. These design patterns

can be used for scalability and accessibility for future teams.

15.2.3 Increasing Capabilities

This robot still requires further testing and integration of components to increase its

capabilities. Related next steps include integrating the sensor codes and hardware into Koalby’s

interface, so that capabilities of Koalby in simulation can be fully transferred to the real world.

For the robot to be used as a lab assistant, the various sensors need to be able to work together to

stabilize Koalby and provide information while walking and picking up objects. Once this

integration occurs and Koalby is capable of walking in the real-world, more movements can be

developed specific to picking up objects and working as a lab assistant.

133

References

[1] A. Gasparetto and L. Scalera, “A brief history of industrial robotics in the 20th Century,”

Advances in Historical Studies, 31-Jan-2019. [Online]. Available:

https://www.scirp.org/journal/paperinformation.aspx?paperid=90517. [Accessed: 27-Apr-2023].

[2] N. G. Hockstein, C. G. Gourin, R. A. Faust, and D. J. Terris, “A history of robots: From

science fiction to Surgical Robotics - Journal of Robotic surgery,” SpringerLink, 17-Mar-2007.

[Online]. Available: https://link.springer.com/article/10.1007/s11701-007-0021-2. [Accessed:

28-Apr-2023].

[3] T. Fukuda, P. Dario, and G.-Z. Yang, “Humanoid robotics—history, current state of the art,

and challenges,” Science Robotics, 20-Dec-2017. [Online]. Available:

https://www.science.org/doi/10.1126/scirobotics.aar4043. [Accessed: 28-Apr-2023].

[4] S. Behnke, “Humanoid Robots - From Fiction to Reality?,” ResearchGate, Jan-2008.

[Online]. Available:

https://www.researchgate.net/publication/220634191_Humanoid_Robots_-_From_Fiction_to_Re

ality. [Accessed: 28-Apr-2023].

[5] M. M. E. van Pinxteren, R. W. H. Wetzels, J. Rüger, M. Pluymaekers, and M. Wetzels, “Trust

in humanoid robots: Implications for services marketing,” Journal of Services Marketing,

28-Jan-2019. [Online]. Available:

https://www.emerald.com/insight/content/doi/10.1108/JSM-01-2018-0045/full/html. [Accessed:

28-Apr-2023].

[6] “The story behind the Poppy Project,” Poppy Project - About. [Online]. Available:

https://www.poppy-project.org/en/about/. [Accessed: 28-Apr-2023].

[7] A. Galgano, D. Fournet, A. Lehman, W. Engdahl, and R. Beazley, “3D printed humanoid

Robot Project,” Digital WPI, 28-Apr-2022. [Online]. Available:

https://digital.wpi.edu/concern/student_works/dr26z168n?locale=en. [Accessed: 28-Apr-2023].

134

[8] “Visualize the Robot in Simulation,” Visualize · Documentation of the Poppy Platform.

[Online]. Available: https://docs.poppy-project.org/en/getting-started/visualize.html. [Accessed:

27-Apr-2023].

[9] “Open Source Technologies for Building Amazing Robots,” Poppy Project - Technologies.

[Online]. Available: https://www.poppy-project.org/en/technologies/. [Accessed: 27-Apr-2023].

[10] R. Beazley, W. Engdahl, D. Fournet, A. Galgano, and A. Lehman, “3D Printed Humanoid

Robot.” Worcester Polytechnic Institute, May-2022.

[11] D. Merkusheva, “Top 10 Examples of Humanoid Robots,” ASME, 25-Mar-2020. [Online].

Available:

https://www.asme.org/topics-resources/content/10-humanoid-robots-of-2020#:~:text=Humanoid

%20robots%20are%20used%20for,%2C%20public%20relations%2C%20and%20healthcare.

[Accessed: 22-Nov-2022].

[12] Agility Robotics “Robots,” Agility Robotics. 2022. [Online]. Available:

https://agilityrobotics.com/robots. [Accessed: 22-Nov-2022].

[13] Kawada Robotics, “Concept,” NEXTAGE, 2022. [Online]. Available:

http://nextage.kawada.jp/en/concept/. [Accessed: 22-Nov-2022].

[14] Macco Robotics, “Kime: Macco: Robotics Technology for hospitality: Spain,”

Maccorobotfoodtech, 2022. [Online]. Available:

https://www.maccorobotics.com/robot-camarero-kime?lang=en. [Accessed: 22-Nov-2022].

[15] Hanson Robotics, “Sophia,” Hanson Robotics, 01-Sep-2020. [Online]. Available:

https://www.hansonrobotics.com/sophia/. [Accessed: 22-Nov-2022].

[16] E. Guizzo, “Iran unveils its most advanced humanoid robot yet,” IEEE Spectrum,

18-Aug-2022. [Online]. Available: https://spectrum.ieee.org/iran-surena-iv-humanoid-robot.

[Accessed: 22-Nov-2022].

[17] “What are D-H parameters?,” Marginally Clever Robots, 05-Jan-2022. [Online]. Available:

https://www.marginallyclever.com/2020/04/what-are-d-h-parameters/. [Accessed: 04-Apr-2023].

135

[18] M. Agheli (2021). RBE 3001 Lectures 6-10 on Forward and Inverse Kinematics

[PowerPoint slides]. [Accessed: 04-Apr-2023].

[19] A. Rosendo (2023). RBE 4815 Lectures 7-8 on PoE [PowerPoint slides]. [Accessed:

06-Apr-2023].

[20] M. Agheli (2021). RBE 3001 Lectures 11-12 on Trajectory Planning [PowerPoint slides].

[Accessed: 04-Apr-2023].

[21] V. Mazzari, “IMU and robotics: All you need to know,” Génération Robots - Blog,

29-Mar-2023. [Online]. Available:

https://www.generationrobots.com/blog/en/imu-and-robotics-all-you-need-to-know-2/.

[Accessed: 02-May-2023].

[22] G. Lewin (2021). RBE 3001 Lectures 04/16 Intro to the IMU [PowerPoint slides].

[Accessed: 04-Apr-2023].

[23] M. Looney, “Anticipating and managing critical noise sources in MEMS gyroscopes,”

Anticipating and Managing Critical Noise Sources In MEMS Gyroscopes | Analog Devices.

[Online]. Available:

https://www.analog.com/en/technical-articles/critical-noise-sources-mems-gyroscopes.html#:~:te

xt=The%20inherent%20sensor%20noise%20represents,noise%2C%20with%20respect%20to%2

0frequency. [Accessed: 27-Apr-2023].

[24] “Understanding Sensor Bias (offset),” Xsens knowledge base, 21-Feb-2022. [Online].

Available: https://base.xsens.com/s/article/Understanding-Sensor-Bias-offset?language=en_US.

[Accessed: 27-Apr-2023].

[25] P. Secor, “Why robots need to see - RGO robotics blog,” RGo Robotics, 21-Apr-2022.

[Online]. Available:

https://www.rgorobotics.ai/post/why-robots-need-to-see#:~:text=For%20example%2C%20becau

se%20they%20can,the%20way%20a%20human%20would. [Accessed: 27-Apr-2023].

136

[26] “3 ways robots see the world,” Boston Dynamics, 07-Apr-2022. [Online]. Available:

https://www.bostondynamics.com/resources/blog/3-ways-robots-see-world. [Accessed:

02-May-2023].

[27] K. Gremillion, “Choose the right sensors for Autonomous Vehicles,” Semiconductor

Engineering, 09-Dec-2021. [Online]. Available:

https://semiengineering.com/choose-the-right-sensors-for-autonomous-vehicles/#:~:text=4.-,Ultr

asonic,reflected%20back%20to%20the%20sensor. [Accessed: 27-Apr-2023].

[28] L. Wasser, “The Basics of Lidar - Light Detection and Ranging - Remote Sensing,” Open

Data to Understand our Ecosystems. [Online]. Available:

https://www.neonscience.org/resources/learning-hub/tutorials/lidar-basics. [Accessed:

27-Apr-2023].

[29] H. Webmaster, “Advantages of 3D vs. 2D lidar in AGV Applications,” HESAI,

20-Apr-2023. [Online]. Available:

https://www.hesaitech.com/advantages-of-3d-vs-2d-lidar-in-agv-applications/#:~:text=The%20k

ey%20difference%20between%202D,dimensional%20view%20of%20the%20area. [Accessed:

02-May-2023].

[30] “What is Lidar and why lidar,” LeddarTech, 17-Feb-2022. [Online]. Available:

https://leddarsensor.com/why-lidar/. [Accessed: 27-Apr-2023].

[31] Admin, “Lidar and Radar Information,” – LiDAR and RADAR Information. [Online].

Available: https://lidarradar.com/info/advantages-and-disadvantages-of-lidar. [Accessed:

27-Apr-2023].

[32] D. Jost, “What is an ultrasonic sensor?,” Fierce Electronics, 07-Oct-2019. [Online].

Available: https://www.fierceelectronics.com/sensors/what-ultrasonic-sensor. [Accessed:

27-Apr-2023].

[33] L. Reese, “The working principle, applications and limitations of ultrasonic sensors,”

Microcontroller Tips, 06-Aug-2019. [Online]. Available:

137

https://www.microcontrollertips.com/principle-applications-limitations-ultrasonic-sensors-faq/.

[Accessed: 27-Apr-2023].

[34] “15 applications for ultrasonic sensors: Migatron Corp..,” Ultrasonic Sensors | Migatron

Corp., 15-Mar-2018. [Online]. Available:

https://www.migatron.com/ultrasonic-detections-and-control-applications/#:~:text=There%20are

%20two%20types%20of%20ultrasonic%20sensors&text=The%20detect%20point%20is%20ind

ependent,reflected%20bursts%20of%20ultrasonic%20sound. [Accessed: 02-May-2023].

[35] “Ultrasonic sensor advantages,” Ixthus, 2022. [Online]. Available:

https://www.ixthus.co.uk/news-media/blog-archive/ultrasonic-sensor-advantages. [Accessed:

27-Apr-2023].

[36] T. Islam, M. S. Islam, M. Shajid-Ul-Mahmud, and M. Hossam-E-Haider, “Comparison of

complementary and Kalman filter based data fusion for attitude heading reference system,” AIP

Conference Proceedings, 2017.

[37] H. Liu, C. Luo, and L. Zhang, “Target recognition and Heavy Load Operation Posture

Control of humanoid robot for trolley operation,” 2018 IEEE-RAS 18th International Conference

on Humanoid Robots (Humanoids), 2018.

[38] D. Bazylev and A. Pyrkin, "Stabilization of biped robot standing on nonstationary plane,"

2013 18th International Conference on Methods & Models in Automation & Robotics (MMAR),

Miedzyzdroje, Poland, 2013, pp. 459-463, doi: 10.1109/MMAR.2013.6669952.

[39] G. H. Liu, M. Z. Chen, and Y. Chen, “When joggers meet robots: The past, present, and

future of research on Humanoid Robots,” Bio-Design and Manufacturing, vol. 2, no. 2, pp.

108–118, 2019.

[40] K. Yin, Y. Xue, Y. Yu, and S. Xie, “Variable impedance control for bipedal robot standing

balance based on artificial muscle activation model,” Journal of Robotics, vol. 2021, pp. 1–9,

2021.

[41] S. Zhuge, “PID Control Theory,” Sentek Dynamics, 05-Feb-2021. [Online]. Available:

https://www.sentekdynamics.com/sentek-dynamics-news/2020/8/24/pid-control-theory?gclid=Cj

138

0KCQiAvqGcBhCJARIsAFQ5ke6NK7eFAd2bBkIAwbnJEUXteeefP4YT0tzYErxG3TyZihNtT

BsPD0IaApBIEALw_wcB. [Accessed: 27-Apr-2023].

[42] J. C. Vaz and P. Oh, “ Material Handling by Humanoid Robot While pushing Carts Using a

Walking Pattern Based on Capture Point,” 2020 IEEE International Conference on Robotics and

Automation , Aug-2020. [Online]. Available:

https://drive.google.com/file/d/1u6poTADYp34d-K7pRSK_tYL4Oo1kvy8B/view. [Accessed:

09-Oct-2022].

[43] “What is heuristic evaluation?,” The Interaction Design Foundation, 15-Jun-2021. [Online].

Available: https://www.interaction-design.org/literature/topics/heuristic-evaluation. [Accessed:

26-Apr-2023].

[44] J. Nielsen and R. Molich, “Heuristic Evaluation of User Interfaces.” Association for

Computing Machinery, New York, NY, 1990.

[45] E. Solovey, “HEURISTIC EVALUATION,” 2022.

[46] A. Lodhi, “2010 2nd International Conference on Software Technology and Engineering,”

in Usability Heuristics as an assessment parameter: For performing Usability Testing, vol. 2, pp.

256–259.

[47] W.-siong Tan, D. Liu, and R. Bishu, “Web Evaluation: Heuristic Evaluation vs. User

Testing,” International Journal of Industrial Ergonomics, vol. 39, no. 4, pp. 621–627, Jul. 2009.

[48] Leon Žlajpah, Abstract Simulation has Been Recognized as an Important Research Tool

Since the Beginning of the 20th Century. A. Cavalcanti, P. I. Corke, S. Dubowsky, C.-M. Éve, J.

Go, H. Hirukawa, O. Khatib, A. T. Miller, and A. Miller, “Simulation in robotics,” Mathematics

and Computers in Simulation, 16-Feb-2008. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0378475408001183. [Accessed:

26-Apr-2023].

[49] “UUV Simulator: A Gazebo-based Package for Underwater Intervention and Multi-Robot

Simulation.” [Online]. Available: https://ieeexplore.ieee.org/abstract/document/7761080/.

[Accessed: 27-Apr-2023].

139

[50] “The Trifecta: Great Concept, Lousy Statistic.” [Online]. Available:

https://bjui-journals.onlinelibrary.wiley.com/doi/full/10.1111/j.1464-410X.2012.11327.x?cookieS

et=1. [Accessed: 27-Apr-2023].

[51] “V-REP: A Versatile and Scalable Robot Simulation Framework.” [Online]. Available:

https://ieeexplore.ieee.org/abstract/document/6696520/. [Accessed: 27-Apr-2023].

[52] A. Industries, “Adafruit 9-DOF absolute orientation IMU Fusion Breakout - BNO055,”

adafruit industries blog RSS. [Online]. Available: https://www.adafruit.com/product/2472.

[Accessed: 02-May-2023].

140

Appendices

Appendix A: Humanoid Applications

Digit (Ford Agility
Robotics)

Nextage (Kawada
Robotics)

T-HR3 (Toyota) Kime (Macco
Robotics)

Robotthespian Vyammitra Fedar Robonaut 2 (NASA)

Valkyrie (NASA) Sophia (Hanson
Robotics)

Surena Robot
(Iranian U)

141

Appendix B: Kinematics and Trajectory Planning

Kinematics Calculations for Polar/Spherical Manipulators

Geometric Approach

→𝑟 * 𝑐𝑜𝑠(θ
1
) = 𝑥

𝑐

→𝑐𝑜𝑠(θ
1
) = (𝑥

𝑐
)/(𝑟) = 𝐷

𝑠𝑖𝑛(θ
1
) =+− (1 − 𝐷2)

(1)θ
1

= 𝑎𝑡𝑎𝑛2(+− (1 − 𝐷2) , 𝐷)

→𝑟2 + 𝑠2 = 𝑑
3

2

(2)𝑑
3

=+− (𝑟2 + 𝑠2)

→𝑑
3

* 𝑐𝑜𝑠(θ
2
) = 𝑟

→𝑐𝑜𝑠(θ
2
) = (𝑟)/(𝑑

3
) = 𝐸

 𝑠𝑖𝑛(θ
2
) =+− 1 − 𝐸2

(3) θ
2

= 𝑎𝑡𝑎𝑛2(+− (1 − 𝐸2) , 𝐸)

142

Algebraic Approach

1) 𝑥
𝑐

= 𝑑
3

* 𝑐𝑜𝑠(θ
2
) * 𝑐𝑜𝑠(θ

1
) → 𝑠𝑞𝑢𝑎𝑟𝑒: 𝑥

𝑐
2 = 𝑑

3
2 * 𝑐𝑜𝑠2(θ

2
) * 𝑐𝑜𝑠2(θ

1
)

2) 𝑦
𝑐

= 𝑑
3

* 𝑐𝑜𝑠(θ
2
) * 𝑠𝑖𝑛(θ

1
) → 𝑠𝑞𝑢𝑎𝑟𝑒: 𝑦

𝑐
2 = 𝑑

3
2 * 𝑐𝑜𝑠2(θ

2
) * 𝑠𝑖𝑛2(θ

1
)

3) 𝑧
𝑐

= 𝑑
1

+ 𝑑
3

* 𝑠𝑖𝑛(θ
2
) → 𝑠𝑞𝑢𝑎𝑟𝑒: (𝑧

𝑐
− 𝑑

1
)2 = 𝑑

3
2 * 𝑠𝑖𝑛2(θ

2
)

𝑠𝑢𝑚: 𝐺 = 𝑥
𝑐

2 + 𝑦
𝑐

2 + (𝑧
𝑐

− 𝑑
1
)2 =

𝑑
3

2 * 𝑐𝑜𝑠2(θ
2
) * 𝑐𝑜𝑠2(θ

1
) +𝑑

3
2 * 𝑐𝑜𝑠2(θ

2
) * 𝑠𝑖𝑛2(θ

1
) + 𝑑

3
2 * 𝑠𝑖𝑛2(θ

2
) =

𝑑
3

2 * 𝑐𝑜𝑠2(θ
2
) + 𝑑

3
2 * 𝑠𝑖𝑛2(θ

2
)

(1)𝐺 =𝑑
3

2 → 𝑑
3

=+− 𝐺

𝑧
𝑐

− 𝑑
1

= 𝑑
3

* 𝑠𝑖𝑛 (θ
2
) → 𝑠𝑖𝑛 (θ

2
) = (𝑧

𝑐
− 𝑑

1
)/(𝑑

3
) = 𝐶 → 𝑐𝑜𝑠 (θ

2
) =+− 1 − 𝐶2

(2)θ
2

= 𝑎𝑡𝑎𝑛2(𝐶, +− (1 − 𝐶2))

𝑥
𝑐

= 𝑑
3

* 𝑐𝑜𝑠(θ
2
) * 𝑐𝑜𝑠(θ

1
) → 𝑐𝑜𝑠(θ

1
) = (𝑥

𝑐
)/(𝑑

3
* 𝑐𝑜𝑠(θ

2
) = 𝐹 → 𝑠𝑖𝑛(θ

1
) =+− 1 − 𝐹2

(3)θ
1

= 𝑎𝑡𝑎𝑛2(+− (1 − 𝐹2) , 𝐹)

Appendix C: Troubleshooting Document

Troubleshooting

Troubleshooting Document

143

https://docs.google.com/spreadsheets/d/17zkbRfB8nsjgZB4DauAOL5JKHWNwgz8bh09bOa0YOMY/edit?usp=sharing
https://docs.google.com/spreadsheets/u/0/d/17zkbRfB8nsjgZB4DauAOL5JKHWNwgz8bh09bOa0YOMY/edit

Appendix D: GitHub and Simulation

Github:

https://github.com/orgs/KoalbyMQP22-23/repositories

The github contains several repositories, each of which is documented internally:

● Flask Project

○ Rewritten Python code to control the robot, interfaces with firmware

■ Contains everything from simulation to UI

● Arduino Code

○ Arduino firmware, receives commands from Python code

○ Testing programs, used at various points to verify features of the motors

○ Setup programs, assign motor ID’s and read motor positions to set limits

○ Sensor programs - base programs to read sensor data

● RaspberryPi

○ Fork of Flask-Project without simulation files to be run on the Pi

● Koalby Humanoid

○ Fork from last year’s team - aborted when flask application was created

● MATLAB Code

To set up Koalby’s software, go to the GitHub link above and click on the green “Code”

button that appears on the page. After, click on the repository you want; “flask-project” is the

Python code, “raspberry-pi” is the code for the Raspberry Pi, and “Arduino-Code” is the arduino

code component. The repository “koalby-humanoid” is an as-of-now outdated version of the

Python code, so use “flask project” instead for that. You can then hit the option to download the

.ZIP file, extract it, and open the source folder in your code environment. You can also hit the

option to clone the repository, copy the link and/or open it directly using GitHub desktop. Once

the code is open on your computer, each of the main files are titled “run this to…” and each

controls a different testing component that can be run. The other supplementary files in the

repository should be self-explanatory with their titling.

144

https://github.com/orgs/KoalbyMQP22-23/repositories

To set up the simulation environment, in the “flask-project” repository there is a folder in

“backend” → “KoalbyHumanoid” that contains three “.ttt” files. These are scenes that you can

open within CoppeliaSim by clicking “File” then “Open Scene.” The “Koalby Skeleton Sim bent

arms cart.ttt” file is the primary one to test Koalby’s walk cycle and the “Koalby Skeleton Sim T

Pose.ttt“ file is the primary one to test Koalby standing without assistance with PI control. There

is also a “Koalby Skeleton Sim New Arms.ttt” file for testing the inverse kinematics of the arms.

Appendix E: Electrical Diagram

145

Reflections

This project required two valuable interpersonal skills from each team member to achieve

all that we did throughout this year: communication and organization. This Major Qualifying

Project required 15-17 hours of work per week from each member, so the ability to communicate

effectively and timely between team members was crucial to the project’s success. Strong

organizational skills were required to delegate tasks and document our progress.

Additionally, various technical skills were brought to this project from individual team

members. Our team members had a strong technical background various areas, ranging from

kinematics, to full stack software applications, to mechanical design. Over the course of this

project, our team learned from each other while also developing new skills related to electrical

components and sensor integration.

Overall, this project successfully continued the 2022 3D Printed Humanoid MQP Team’s

work by developing standing and assisted walking in simulation that was then applied to the real

world with the successful demonstrations of assisted standing and waving.

146

