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Abstract

The quickest change-point detection problems with sampling right constraints are con-

sidered. Specially, an observer sequentially takes observations from a random sequence,

whose distribution will change at an unknown time. Based on the observation sequence,

the observer wants to identify the change-point as quickly as possible. Unlike the clas-

sical quickest detection problem in which the observer can take an observation at each

time slot, we impose a causal sampling right constraint to the observer. In particular,

sampling rights are consumed when the observer takes an observation and are replen-

ished randomly by a stochastic process. The observer cannot take observations if there

is no sampling right left. The causal sampling right constraint is motivated by several

practical applications. For example, in the application of sensor network for monitoring

the abrupt change of its ambient environment, the sensor can only take observations if it

has energy left in its battery. With this additional constraint, we design and analyze the

optimal detection and sampling right allocation strategies to minimize the detection delay

under various problem setups. As one of our main contributions, a greedy sampling right

allocation strategy, by which the observer spends sampling rights in taking observations

as long as there are sampling rights left, is proposed. This strategy possesses a low com-

plexity structure, and leads to simple but (asymptotically) optimal detection algorithms

for the problems under consideration. Specially, our main results include:

• Non-Bayesian quickest change-point detection: we consider non-Bayesian quickest

detection problem with stochastic sampling right constraint. Two criteria, namely

the algorithm level average run length (ARL) and the system level ARL, are pro-

posed to control the false alarm rate. We show that the greedy sampling right allo-

cation strategy combined with the cumulative sum (CUSUM) algorithm is optimal



for Lorden’s setup with the algorithm level ARL constraint and is asymptotically

optimal for both Lorden’s and Pollak’s setups with the system level ARL constraint.

• Bayesian quickest change-point detection: both limited sampling right constraint

and stochastic sampling right constraint are considered in the Bayesian quickest de-

tection problem. The limited sampling right constraint can be viewed as a special

case of the stochastic sampling right constraint with a zero sampling right replen-

ishing rate. The optimal solutions are derived for both sampling right constraints.

However, the structure of the optimal solutions are rather complex. For the problem

with the limited sampling right constraint, we provide asymptotic upper and lower

bounds for the detection delay. For the problem with the stochastic sampling right

constraint, we show that the greedy sampling right allocation strategy combined

with Shiryaev’s detection rule is asymptotically optimal.

• Quickest change-point detection with unknown post-change parameters: we extend

previous results to the quickest detection problem with unknown post-change pa-

rameters. Both non-Bayesian and Bayesian setups with stochastic sampling right

constraints are considered. For the non-Bayesian problem, we show that the greedy

sampling right allocation strategy combined with the M-CUSUM algorithm is asymp-

totically optimal. For the Bayesian setups, we show that the greedy sampling right

allocation strategy combined with the proposed M-Shiryaev algorithm is asymptot-

ically optimal.
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Chapter 1

Introduction

Sequential analysis, initiated by Wald in 1940s [1–3], has become a powerful tool for

data analysis in modern science and engineering [4–17]. As an important sub-class of the

sequential analysis, quickest detection has received significant research interest [18–31]

in recent years. This technique has found a broad range of applications from finance [32]

to engineering such as network intrusion detection [33], seismic sensing [34], structural

health monitoring, signal segment, etc. In this chapter, we give a brief review of the

classic setups for quickest detection problems, discuss the motivation of our research and

summarize the main contributions of this thesis.

1.1 Quickest Change-Point Detection

Quickest change-point detection, also known as “quickest change detection” or “quickest

detection”, aims to detect an abrupt change in the probability distribution of a stochastic

process with a minimal detection delay. Let {Xk, k = 1, 2, . . .} be a sequence of random

variables whose distribution changes at some unknown time t. In the basic setup, before t,

Xk’s are independent and identically distributed (i.i.d.) with probability density function
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(pdf) f0(x); and after t, Xk’s are i.i.d. with pdf f1(x). f0 and f1, which are referred to as

pre-change distribution and post-change distribution respectively, are perfectly known by

the observer.

The observer sequentially takes observations from {Xk}, and aims to detect the change-

point t as quickly as possible. At each time slot k, the observer has to make one of the

following two decisions: 1) to stop the detection procedure and claim that the change has

happened; or 2) to continue the detection procedure and take another observation in the

next time slot. Let τ be the time instance that the observer claims that the change has

occurred. τ is a stopping time with respect to the filtration {Fk, k = 1, 2, . . .} with

Fk = σ{X1, . . . , Xk}. (1.1)

Detection delay and false alarm are two commonly used performance metrics in

quickest detection problems. If the observer raises an alarm before the change happens,

i.e. {τ < t}, then the observer makes a false alarm. On the other hand, if the observer

raises an alarm after the change occurs, then we use detection delay to measure the dif-

ference between the time when the alarm is raised and the time when the change occurs.

Depending on the assumption of t, the quickest change-point detection problem can be

roughly classified into non-Bayesian and Bayesian setups.

The non-Bayesian quickest detection problem [35, 36] assumes that the change-point

t is a fixed but unknown constant, and aims to minimize the worst case (over t) detection

delay. We use Pt and Et to denote the conditional probability measure and the conditional

expectation when the change happens at t, respectively, and use P∞ and E∞ to denote the

case t = ∞. Depending on how to measure the detection delay, there are two main

problem formulations, namely Lorden’s formulation and Pollak’s formulation, for the
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non-Bayesian problem. In particular, Lorden’s problem is formulated as

inf
τ

WADD(τ) subject to ARL(τ) ≥ γ, (1.2)

where

WADD(τ) := sup
t≥1

esssupEt[(τ − t+ 1)+|Ft−1] (1.3)

is the worst case average detection delay (WADD)1 2, and

ARL(τ) := E∞[τ ] (1.4)

is the average run length (ARL) to false alarm. γ is a constant that controls the false

alarm rate. Note that the ARL constraint is measured under P∞ since all the observations

are generated from f0 when a false alarm occurs. The intuitive explanation of the ARL

constraint is that: under {t = ∞}, the observer raises a false alarm at τ since he claims

the occurrence of the change. If the observer restarts the detection procedure whenever

he makes a false alarm, then E∞[τ ] can be viewed as the expected duration between two

consecutive false alarms.

Another important non-Bayesian setup is Pollak’s setup, which is formulated as

inf
τ

CADD(τ) subject to ARL(τ) ≥ γ, (1.5)

1The essential supremum (esssup) of a set X of random variables is any extended random variable Z
having the following properties
(1) P (Z ≥ X) = 1,∀X ∈ X ; and
(2) {P (Y ≥ X) = 1,∀X ∈ X} ⇒ P (Y ≥ Z) = 1,∀X ∈ X .
For more details, one can see, for example, Page 42 in [37] or Page 261 in [38].

2x+ := max{x, 0}.
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where

CADD(τ) = sup
t≥1

Et[τ − t|τ ≥ t] (1.6)

is the conditional average detection delay (CADD). Since {τ ≥ t} ∈ Ft−1, Pollak’s setup

is less conservative, and we always have infτ CADD(τ) ≤ infτ WADD(τ) under the

same ARL constraint.

The Bayesian quickest detection [39, 40] usually assumes that the change-point t is

geometrically distributed:

P (t = k) =

 π0 k = 0

(1− π0)(1− ρ)k−1ρ k = 1, 2, . . .
, (1.7)

in which π0 is a constant within [0, 1), and ρ is a constant that characterizes the geometric

distribution. The problem is formulated as

inf
τ

ADD(τ) subject to PFA(τ) ≤ α,

where

ADD(τ) := Eπ
[
(τ − t)+

]
is the average detection delay (ADD) , and

PFA(τ) = Pπ(τ < t)

is the probability of false alarm (PFA). α is a constant that controls the false alarm proba-

bility. Here, ADD and PFA are measured under probability Pπ defined as follows. Let Pk

denote the conditional probability measure given that the change happens at {t = k}. Pπ
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is the “average” probability measure which is defined as Pπ(F ) =
∑∞

k=1 Pk(F )P (t = k)

for all measurable set F .

So far we have reviewed the problem formulations for the classic quickest change-

point detection problems. In the following, we review the optimal solutions for these

problems.

To facilitate the understanding, we first consider a problem closely related to the

change-point detection problem. In this problem, at time slot n, we are interested in

the hypothesis testing between “H0 : t > n” and “Hk : t = k” for some k < n . The

likelihood ratio (LR) is given as

L(X1, . . . , Xn) =

∏k−1
i=1 f0(Xi)

∏n
i=k f1(Xi)∏n

i=1 f0(Xi)
=

n∏
i=k

f1(Xi)

f0(Xi)
=

n∏
i=k

L(Xi). (1.8)

Two well known statistics, namely the cumulative sum (CUSUM) statistic and the Shiryaev-

Robert (SR) statistic [40,41], used in the quickest detection are constructed from the above

LR. In particular, the CUSUM statistic is defined as the maximum of LRs

Sn := max
1≤k≤n

[
n∏
i=k

L(Xi)

]
= max[Sn−1, 1]L(Xn), (1.9)

and the SR statistic is defined as the summation of LRs

Rn :=
n∑
k=1

n∏
i=k

L(Xi) = (1 +Rn−1)L(Xn). (1.10)

The CUSUM detection procedure [42]

τC := inf{n ≥ 0|Sn ≥ B}, (1.11)

in which the threshold B is selected such that ARL(τ) = γ, is known to be the optimal
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detection procedure for Lorden’s setup [43]. As γ → ∞, the CUSUM procedure with

B = γ is also asymptotically optimal for Pollak’s setup. It is known [36, 44–46] that as

γ →∞

inf
τ

WADD(τ) ∼WADD(τC) ∼ | log γ|
D(f1||f0)

,

inf
τ

CADD(τ) ∼ CADD(τC) ∼ | log γ|
D(f1||f0)

,

whereD(f1||f0) is the Kullback-Leibler (KL) divergence, and the notation an ∼ bn means

limn→∞ an/bn = 1.

The optimal solution of the Bayesian quickest detection is related to the SR procedure.

Taking the geometric distribution of the change-point into consideration, we modify the

SR procedure as

Rρ,n :=
π0

(1− π0)ρ

n∏
i=1

1

1− ρ
L(Xi) +

n∑
k=1

n∏
i=k

1

1− ρ
L(Xi) (1.12)

τS := inf{n ≥ 0|Rρ,n ≥ B}. (1.13)

Rρ,n is called Shiryeav’s statistic. Similar to (1.10), Rρ,n can be computed recursively by

Rρ,n = (1 +Rρ,n−1)
1

1− ρ
L(Xn), n ≥ 1; Rρ,0 =

π0

(1− π0)ρ
. (1.14)

It is easy to see that Rn is limiting form of Rn,ρ when π0 = 0 and ρ → 0. It is known

that (1.13) is optimal when B is selected such that PFA(τS) = α [39, 40]. Moreover, the

Shiryeav’s procedure with B = (ρα)−1 is asymptotically optimal as α → 0, it is known

that [47]

inf
τ

ADD(τ) ∼ ADD(τS) ∼ | log γ|
D(f1||f0) + | log(1− ρ)|

.
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τS has an equivalent form in terms of posterior probabilities. Let πn := P (t ≤ n|Fn)

be the posterior probability that the change has occurred at time slot n. By Bayes’ rule,

πn can be written recursively as

πn+1 =
[πn + (1− πn)ρ]f1(Xn+1)

[πn + (1− πn)ρ]f1(Xn+1) + (1− π1)(1− ρ)f0(Xn+1)
. (1.15)

It is easy to verify that

πn =
Rρ,n

Rρ,n + 1/ρ
. (1.16)

Hence, πn and Rn,ρ have one-to-one relationship, and τS can be written as a threshold

rule for posterior probabilities.

Besides the papers mentioned above, there are also many other papers that investigated

the (asymptotically) optimal solution for the quickest detection problem. We mention a

few of them here. For example, [44] proved that CUSUM and windowed CUSUM is first

order asymptotically optimal for both Lorden’s and Pollak’s setups with non-i.i.d. ob-

servations. [46] showed that the SR-r procedure, which is a modified version of the SR

procedure, is third order asymptotically optimal for Pollak’s setup. [47] proved that the

Shiryeav’s detection procedure is first order asymptotically optimal for the Bayesian setup

with non-i.i.d. observations. [48] discussed the asymptotic optimality of the CUSUM and

the Shiryaev’s procedures for nonhomogeneous Gaussian process. [49] showed that the

SR procedure is optimal for minimizing the relative integral average detection delay (RI-

ADD). There are also some works that discussed the asymptotic solution for the quick-

est detection problem with unknown pre-change and/or post-change distributions. These

works will be briefly reviewed in Chapter 4. [50] and [51] are recent reviews on the topic

of quickest detection.
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1.2 Motivation and Contributions

Wireless sensor networks are commonly deployed to monitor the abnormal changes in

their surrounding environment [52–68]. Such changes typically imply certain activities

of interest. For example, a sensor network may be built in a bridge to monitor its structural

health condition. In this case, a change may imply that a certain structural problem, such

as an inner crack, has occurred in the bridge. As another example, in the application of

threat detection and defense, a sensor network may be deployed in an area of interest to

monitor a potential chemical or biological attack. In this case, a change may indicate

the occurrence of such attack. In these applications, it is of interest to quickly detect the

presence of a change in order to win valuable time for taking proper actions. Quickest

change-point detection is a suitable mathematical framework to model such applications.

In recent years, the quickest detection problem and its application in the sensor net-

works have attracted considerable attention [22, 25, 33, 52, 54, 55, 57, 69–75]. However,

in most of the existing works, it is assumed that the sensor can take infinitely many ob-

servations. This assumption is impractical. For sensor networks, taking samples and

computing statistics consume energy. Sensors are typically powered by batteries with

limited capacity or batteries that are charged randomly with renewable energy. Hence in

practice, it is unlikely that the sensor can take observations at all time slots. For example,

for sensors powered by batteries, they can only take a finite number of observations. For

sensors powered by renewable energy, they cannot take observations at every time slot

when the battery charging rate is lower than the energy consumption rate.

On the other hand, as a promising green solution in the wireless communication field,

the study of sensor networks powered by renewable energy has attracted much atten-

tion in recent years [76–83]. These sensors constantly harvest renewable energy, such as

solar, electromagnetic energy and mechanical vibrational energy, from the ambient envi-
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ronment; hence they have an unlimited life span. Most of the existing works mainly focus

on the design of power management schemes to optimize communication related perfor-

mance metrics such as channel capacity [83], transmission delay [79,80,82], transmission

rate or network throughput [76–78,81,82]. However, few works consider the power man-

agement scheme to optimize the signal processing related performance metrics such as

detection delay mentioned above.

Motivated by the importance of minimizing the detection delay and the wide range of

applications of energy harvesting wireless sensor networks, we extend the classic quickest

change-point detection by imposing causal stochastic energy constraints. Specifically, we

relax the assumption in the classic setup that the sensor can observe the underlying signal

at every time slot. Instead, we assume that the energy of a sensor is consumed by taking

and processing observations and is replenished randomly. The sensor cannot store extra

energy if its battery is full, and cannot take observations if its battery is empty. Although

the sensor has the freedom to choose the sampling time, it has to plan its use of energy

carefully due to the energy constraint. The main contributions of this thesis are:

1. In Chapter 2, we investigate the non-Bayesian quickest change detection problem

with stochastic energy constraints. Our goal is to design optimal energy allocation

and detection schemes to minimize WADD in Lorden’s setup and CADD in Pollak’s

setup. Two types of ARL constraints, namely an algorithm level ARL constraint

and a system level ARL constraint, are considered. We propose a low complexity

greedy energy allocation strategy, in which the sensor spends the energy in taking

observations as long as its battery is not empty. We further show that the greedy

energy allocation strategy combined with the CUSUM procedure is optimal for the

formulation with the algorithm level ARL constraint and is asymptotically optimal

for the formulations with the system level ARL constraint.
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2. In Chapter 3, we consider Bayesian quickest change detection problems with en-

ergy constraints. Both limited and stochastic energy constraints are considered. The

limited energy constraint can be viewed as a special case of the stochastic energy

constraint with a zero energy replenishing rate. Under the limited energy constraint,

we show that the cost function can be written as a set of iterative functions. The

optimal solution can then be obtained by Markov optimal stopping theory [84, 85].

The optimal stopping rule is shown to be a threshold rule. An asymptotic upper

bound of the average detection delay is derived as the false alarm probability goes

to zero. Under the stochastic energy constraint, we obtain the optimal solution using

dynamic programming technique. However, the obtained solution has a very com-

plex structure. We propose a low complexity algorithm, which adopts the greedy

energy allocation and Shiryeav’s detection procedure, and show that this scheme is

first order asymptotically optimal as the false alarm probability goes to zero.

3. In Chapter 4, we extend both Bayesian and non-Bayesian quickest detection prob-

lems to the case that the post-change distribution is not completely known to the

sensor. This assumption is of practical interest. In particular, we consider the case

that the post-change distribution belongs to a parametric distribution family, and the

unknown post-change parameter is drawn from a finite set. It is well known from

recent research that the M-CUSUM procedure is asymptotically optimal for the

non-Bayesian setup when the unknown parameter is drawn from a finite set [86].

Correspondingly, we propose the M-Shiryaev procedure and show its asymptotic

optimality under the Bayesian setup. Moreover, we impose the stochastic energy

constraint to the quickest detection problems with unknown post-change parameter.

We show that the greedy energy allocation combined with the M-CUSUM proce-

dure is asymptotically optimal for the non-Bayesian setup, and the greedy energy

allocation combined with the M-Shiryeav procedure is asymptotically optimal for
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the Bayesian setup.

Among extensive works on sequential change-point detection, our work is most rel-

evant to [33, 87–90]. In particular, [87] considers the Bayesian quickest change-point

detection problem with sampling right constraints in the continuous time scenario. [33]

considers a wireless network with multiple sensors monitoring the Bayesian change in the

environment. Based on the observations from sensors at each time slot, the fusion center

decides how many sensors should be activated in the next time slot to save energy. [88]

takes the average number of observations taken before the change-point into considera-

tion, and it provides the optimal solution along with low-complexity but asymptotically

optimal rules. There are also some existing works consider the problem under minmax

setting. For example, [89,90] extend the constraint of the average number of observations

into non-Bayesian setups and sensor networks. [37] is a recent book and [50, 51, 91] are

recent surveys on the topic of quickest change-point detection.

Although the causal energy constraints are originally motivated by the applications of

sensor networks. However, their applications are not limited to this area. For example,

in clinical trials, it is desirable to quickly and accurately obtain the efficiency of certain

medicine or therapy by conducting several tests. However, it might be very costly and

sometime even health-damaging to conduct such a test. In this scenario, it is of interest

to impose constraint on the number of tests. Hence, when we state the problem, we

use general terms such as “observer” and “sampling right” instead of using application

specific concepts such as “sensor” and “energy”. Correspondingly, we use “sampling

right constraint” instead of “energy constraint” in the rest of this dissertation.

The rest of the dissertation is organized as follows. Chapter 2 and Chapter 3 study

the non-Bayesian and Bayesian quickest change-point detection problems with sampling

right constraints, respectively. Chapter 4 extends the study to the case with unknown

post-change distributions. Finally, Chapter 5 concludes this dissertation with discussions
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about future research.
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Chapter 2

Non-Bayesian Quickest Detection with

Stochastic Sampling Right Constraint

In this chapter, we extend the classic non-Bayesian quickest detection setting by imposing

stochastic sampling right constraints. We first consider a relatively simple case that the

sampling right arrives to the observer is either 0 or 1. Then, we extend our result to a

more general setting in which there might be more than one sampling right arriving at the

observer at each time slot.

2.1 Problem Formulation

Let {Xk, k = 1, 2, . . .} be a sequence of random variables whose distribution changes at

a fixed but unknown time t. Before t, {Xk}’s are i.i.d. with pdf f0; after t, they are i.i.d.

with pdf f1. The pre-change pdf f0 and the post-change pdf f1 are perfectly known by the

observer. We use Pt and Et to denote the probability measure and the expectation with

the change happening at t, respectively, and use P∞ and E∞ to denote the case t =∞.

For the observer, his sampling right is consumed by taking observations and is replen-
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ished randomly. To facilitate the presentation and set up notations, we present the model

for the case when the sampling right arriving process is a Bernoulli process with param-

eter p in this section. A more general model will be considered in Section 2.4. We use

ν = {ν1, ν2, . . . , νk, . . . } to denote the sampling right arriving process with νk ∈ {0, 1},

in which {νk = 1} indicates that one sampling right is collected by the observer at time

slot k and {νk = 0} means that no sampling right is harvested. We assume that {νk}

is i.i.d. over k. Moreover, we use P ν to denote its probability measure (correspond-

ingly, we use Eν to denote the expectation with respect to the measure P ν), and we have

P ν(νk = 1) = p.

The observer can decide how to use his collected sampling rights. For example, the

sampling right can be spent on taking observation as soon as it is collected; or the sam-

pling right can be stored for future use. Let µ = {µ1, µ2, . . . , µk, . . . } be the sampling

right allocation strategy. Let {µk = 1} denote that the observer spends one sampling right

on taking an observation at time slot k, while {µk = 0} denote that no sampling right is

spent at time k and hence no observation is taken.

Let C be the capacity of sampling rights. In practice, C is always a finite number. The

sampling right replenishing process and the sampling right allocation process will affect

the amount of sampling rights. We use Nk to denote the amount of sampling rights left at

the end of time slot k. Nk evolves according to

Nk = min[C,Nk−1 + νk − µk].

Let N0 = N be the initial sampling rights. The sampling right allocation strategy has to

satisfy the causality constraint, i.e.,

µ ∈ U := {µ|Nk ≥ 0, k = 1, 2, . . .}. (2.1)
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Let {Zk, k = 1, 2, . . .} be the observation sequence with

Zk =

 Xk if µk = 1

φ if µk = 0
. (2.2)

We call an observation Zk a non-trivial observation if µk = 1, i.e., if the observation is

taken from the environment. We note that {Zk}’s are not necessarily conditionally (condi-

tioned on the change-point) i.i.d. due to the existence of {µk}. As will be explained in the

sequel, {µk} depends causally on {νk}; hence we use P ν
t and Eνt to denote the probability

measure and expectation of the observation sequence {Zk} with the change happening at

t, respectively. Let
{
X̃k, k = 1, 2, . . .

}
be the non-trivial observation sequence. We note

that
{
X̃k

}
is a conditionally i.i.d. sequence, since X̃k is either generated by f0 or f1,

depending on whether this observation is taken before change-point t or after t.

We want to find a stopping time τ , at which the observer will declare that a change

has occurred, and a sampling right allocation rule µ that jointly minimize the detection

delay. The stopping time τ is with respect to the filtration {Fk} with

Fk = σ{Z1, · · · , Zk}. (2.3)

The sampling right allocation strategy µk depends causally on the observation process,

the sampling right arriving process and the sampling right allocation process:

µk = gk(Z
k−1
1 ,νk1,µ

k−1
1 ),

in which Zk−1
1 denotes the vector [Z1, . . . , Zk−1], νk1 and µk−1

1 are defined similarly, and

gk is the sampling right allocation function used at time slot k.

In this chapter, we consider following three problem setups.
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Setup I (Lorden’s quickest change detection with an algorithm level ARL constraint).

Let

WADD(N,µ, τ) := sup
t≥1

dt(N,µ, τ), (2.4)

dt(N,µ, τ) := esssupEνt
[
(τ − t+ 1)+|Ft−1

]
, (2.5)

ARLa(κ) := E∞[κ], (2.6)

where τ is the stopping time and κ is the total number of non-trivial observations taken

by the observer before it claims that the change has happened. We consider the following

formulation

min
µ∈U ,τ∈T

WADD(N,µ, τ),

subject to ARLa(κ) ≥ η, (2.7)

in which T is the set of all stopping times with Eνt [τ ] <∞. Unlike the standard Lorden’s

setup, here the worst case average detection delay WADD(N,µ, τ) is a function of obser-

vations {Z1, · · · , Zt−1} controlled by µ; hence the expectation used in (2.5) is Eνt rather

than Et. The algorithm level ARL constraint ARLa(κ) uses the expectation E∞ rather

than Eν∞ because all the observations taken from the environment (non-trivial observa-

tions) are i.i.d. with pdf f0 under probability measure P∞. Hence, the distribution law of

κ is independent of the sampling right allocation scheme µ, the sampling right arriving

sequence ν and the initial sampling right N . As the result, this problem setup is robust

against the variation of the ambient environment.

Setup II (Lorden’s quickest change detection with a system level ARL constraint).
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The problem is formulated as follows:

min
µ∈U ,τ∈T

WADD(N,µ, τ),

subject to ARLs(N,µ, τ) ≥ γ, (2.8)

where

ARLs(N,µ, τ) := Eν∞[τ ] (2.9)

is the system level ARL constraint. We note that Setup II and Setup I have the same

objective function, but their constraints are quite different. For the system level constraint,

a lower bound is set on the expected duration to a false alarm. The stopping time τ

not only depends on the number of non-trivial observations, but also relies on the time

interval between each two successive observations, hence the system level ARL constraint

depends on the sampling right allocation µ, which is further related to the sampling right

arriving process ν. Hence, we use expectation Eν∞ in the ARL constraint. This setup is

more sensitive to the environment.

Setup III (Pollak’s quickest change detection with a system level ARL constraint).

In some applications, Pollak’s formulation is of interest since its delay metric is less

conservative than that of Lorden’s formulation. Define the conditional average detection

delay as

CADD(N,µ, τ) := sup
t≥1

Eνt [τ − t|τ ≥ t] . (2.10)
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In our context, Pollak’s formulation can be written as

min
µ∈U ,τ∈T

CADD(N,µ, τ),

subject to ARLs(N,µ, τ) ≥ γ, (2.11)

Even without the additional sampling right constraint, the optimal solution for Pollak’s

formulation is still open [50, 91]. Therefore, in this chapter, we discuss only the asymp-

totic solution for Pollak’s formulation. In the sequel, we will see that the proposed asymp-

totically optimal solution under the system level ARL constraint is also asymptotically

optimal under the algorithm level ARL constraint. Hence, we discuss only the system

level ARL constraint for Pollak’s formulation in detail.

2.2 Optimal solution for Lorden’s formulation with the

algorithm level ARL constraint

In this section, we study the optimal solution for Setup I under the assumptionN = 0. We

use L(·) to denote LR, and use l(·) = logL(·) to denote the log likelihood ratio (LLR).

For the observation sequence {Zk}, LR is defined as

L(Zk) =


f1(Zk)
f0(Zk)

, if µk = 1

1, if µk = 0
. (2.12)

The CUSUM statistic and Page’s stopping time can be written as [35]

Sk = max
1≤q≤k

[
k∏
i=q

L(Zi)

]
= max[Sk−1, 1]L(Zk),

18



and

τC = inf{k ≥ 0|Sk ≥ B}

for some constant threshold B, respectively.

In order to characterize the sampling right arriving and spending time, for an arbitrary

realization of the sampling right allocation µ and sampling right replenishing ν, we use

the following notations throughout of this section:

1. {ak, k = 1, 2, . . .} to denote the time instants at which the sampling right is re-

ceived, i.e., νak = 1;

2. {bk, k = 1, 2, . . .} to denote the time instants at which the sensor takes observations,

i.e., µbk = 1.

If N0 = 0, using above notations, the energy causality constraint indicates the following

inequality:

bk ≥ ak, k = 1, 2, . . . . (2.13)

Taking the advantage of ak and bk, in this section we also use
{
X

(ak,bk)
k , k = 1, 2, . . .

}
to denote the non-trivial observation sequence. Specifically, X̃k and X

(ak,bk)
k are used

interchangeably, but X(ak,bk)
k will be used when we want to emphasize the sampling time.

In particular, X(ak,bk)
k is the kth non-trivial observation taken by the observer at time bk

using the sampling right arriving at time ak.

Generally, for a given detection strategy pair (µ, τ), the detection delay dt(N,µ, τ) in

(2.5) varies from different change-point t, hence the worst case delay takes the supreme

over t. If there is an equalizer strategy which makes dt(N,µ, τ) be a constant over t,

it might be a good candidate for the optimal strategy for the minmax problem. Similar

to the conclusion that Page’s stopping time is an equalizer rule for the classic Lorden’s
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problem [37], we have following proposition:

Proposition 2.2.1. The sampling right allocation scheme µ∗ = ν (or bk = ak) and Page’s

stopping time τC together achieve an equalizer rule, i.e., dt(N,µ∗, τC) = d1(N,µ∗, τC),∀t ≥

1.

Proof. Since µ∗ = ν indicates that {µ∗k}’s are i.i.d. over k, {Zk}’s are conditionally i.i.d.

given the change-point t.

Let Wk = max[Sk, 1]. On the event {τC ≥ t}, τC is a non-increasing function of

Wt−1. Since Wt−1 ≥ 1 and event {Wt−1 = 1} ∈ Ft−1, the worst case of τC happens at

Wt−1 = 1, that is

dt(N,µ
∗, τC) = esssupEνt [τC − t+ 1|Ft−1]

= Eνt [τC − t+ 1|Wt−1 = 1] . (2.14)

Since {Zk}’s are conditionally i.i.d. under µ∗, {Wk} is a homogeneous Markov chain,

then, dt(N,µ∗, τC) = d1(N,µ∗, τC).

Remark 2.2.2. The equalizer property plays a critical role in the proof of (asymptotic)

optimality and the performance analysis in the sequel. From this property, we have

WADD(N,µ∗, τC) = d1(N,µ∗, τC) = Eν1[τC ], which can greatly simplify the analy-

sis. Since the proof of Proposition 2.2.1 holds regardless of the ARL constraint, we can

conclude that (µ∗, τC) is also an equalizer rule for Setup II.

The optimality of the immediate sampling right allocation scheme along with the

CUSUM detection scheme is described in the following theorem.

Theorem 2.2.3. With zero initial sampling right, i.e., N = 0, the optimal sampling right

allocation strategy for Setup I is µ∗, and the optimal stopping time is τC with the threshold

B being a constant such that ARLa(κ) = η.
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Proof. The proof consists of two steps. The first step is to show that for an arbitrary but

given sampling right allocation strategy µ, τC is the optimal stopping time. The second

step is to show that under τC , µ∗ is the optimal sampling right allocation scheme. A

detailed proof is provided in Appendix A.1.

Remark 2.2.4. We emphasize that N = 0 is a necessary assumption for proving the

optimality. Technically, the optimality of µ∗ relies on the inequality bk ≥ ak for every

k, which is only true under N = 0. If N 6= 0, the optimal sampling right allocation

is difficult to find, but µ∗ is still a good strategy since it is asymptotically optimal as

η → ∞. As stated in Proposition 2.2.6, the detection delay WADD(N,µ∗, τC) scales

linearly with log η; hence, the contribution of a finite initial sampling rightN is negligible

when η →∞.

In the following, we analyze the performance of (µ∗, τC) by determining the detection

delay and the algorithm level ARL. We note that the strategy (µ∗, τC) is independent of

N ; hence the following propositions hold for any initial sampling right level. Since {Zk}

is a conditionally i.i.d. sequence under µ∗, we can apply Wald’s identity in our analysis.

We first have the following proposition:

Proposition 2.2.5. Suppose B > 1, then for any initial sampling right N , we have

ARLa(κ) =
E∞[ι]

1− P∞(F0)
, (2.15)

WADD(N,µ∗, τC) =
1

p

E1[ι]

1− P1(F0)
, (2.16)

where ι is the stopping time

ι = min

{
k ≥ 1

∣∣∣∣∣
k∑
i=1

l
(
X̃i

)
6∈ (0, logB)

}
,
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and F0 denotes the event

{
ι∑
i=1

l
(
X̃i

)
≤ 0

}
.

Proof. The proof follows closely that of Theorem 6.2 in [37]. A detailed proof is given

in Appendix A.2.

In Proposition 2.2.5, ARLa(κ) and WADD(N,µ∗, τC) are given as functions of P∞(F0)

and P1(F0), whose precise values are difficult to evaluate. The following result, which

is an extension of Lorden’s asymptotic result [35], shows that WADD(N,µ∗, τC) scales

linearly with log η when η →∞.

Proposition 2.2.6. As η →∞, then for any sampling right N , we have

WADD(N,µ∗, τC) ∼ 1

p

| log η|
D(f1||f0)

. (2.17)

Proof. This statement can be shown by discussing the relationship between one-sided

sequential probability ratio test (SPRT) and CUSUM. The discussion is similar to the

proof of Theorem 2.3.2, therefore, we omit this proof.

2.3 Asymptotically optimal solution under the system level

ARL constraint

In this section, we consider Setup II and Setup III for any value of N . Inspired by the

previous section, we propose to use the simple detection strategy (µ∗, τC). We will show

that this simple strategy is asymptotically optimal for Setup II and Setup III as γ →∞.

The asymptotic optimality of (µ∗, τC) in the rare false alarm region (γ → ∞) can be

shown by two steps. In the first step, we derive a lower bound on the detection delay for
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any sampling right allocation and detection scheme. In the second step, we show that

(µ∗, τC) achieves this lower bound, which then implies that (µ∗, τC) is asymptotically

optimal.

The following theorem presents our lower bound on the detection delay.

Theorem 2.3.1. For any initial sampling right N , as γ →∞,

inf{WADD(N,µ, τ) : ARLs(N,µ, τ) ≥ γ}

≥ inf {CADD(N,µ, τ) : ARLs(N,µ, τ) ≥ γ}

≥ 1

p

| log γ|
D(f1||f0)

(1 + o(1)). (2.18)

Proof. Please see Appendix A.3.

This lower bound | log γ|(pD(f1||f0))−1(1 + o(1)) can be obtained by (µ∗, τC) for

both Setup II and Setup III, which is specified in Theorem 2.3.2 and Theorem 2.3.4.

Theorem 2.3.2. (µ∗, τC) is asymptotically optimal for Setup II as γ → ∞. Specifically,

for any initial sampling right N ,

WADD(N,µ∗, τC) ∼ 1

p

| log γ|
D(f1||f0)

. (2.19)

Proof. As discussed in Remark 2.2.2, (µ∗, τC) is an equalizer rule for Setup II, i.e.,

WADD(N,µ∗, τC) = d1(N,µ∗, τC) = Eν1[τC ].

The statement can be shown by discussing the relationship between CUSUM and one-

sided SPRT. Denote SPRT statistic as

Λ1:k =
k∏
i=1

L(Zi), (2.20)
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and the stopping time as

τs,1 = inf {k ≥ 1|Λ1:k ≥ B} .

Since the CUSUM statistic

Sk = max
1≤q≤k

[
k∏
i=q

L(Zi)

]
≥

k∏
i=1

L(Zi) = Λ1:k,

we always have

Eν1[τC ] ≤ Eν1[τs,1].

Let B = γ, by the performance of SPRT (Proposition 4.11 in [37]), we have

Eν1[τs,1] ∼ | log γ|
pD(f1||f0)

.

By Theorem 2.3.1, we have

WADD(N,µ∗, τC) ∼ 1

p

| log γ|
D(f1||f0)

.

Moreover, by (10) in Theorem 2 of [35], the threshold B = γ will guarantee

Eν∞[τC ] ≥ γ.

Remark 2.3.3. Although (µ∗, τC) is shown to be asymptotically optimal for Setup II, we

were not able to show the optimality of (µ∗, τC). In our setup, the observer can control

the sampling time instants, as long as the sampling right causality constraint is satisfied.

Hence, for a general sampling right allocation µ 6= µ∗, the observation sequence {Zk} is

not necessarily conditionally i.i.d. any more. This is one of the main challenges. In addi-
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tion, the technique used in the proof of Theorem 2.2.3 cannot be applied here. Although

the non-trivial observation sequence {X̃k} is relatively easy to handle, it is difficult to

evaluate the detection delay from this non-trivial observation sequences {X̃k}. This is

due to the facts that the detection delay is also related to the time intervals between two

successive non-trivial observations, and the time intervals between each two successive

non-trivial observations are not necessarily i.i.d. under a general sampling right alloca-

tion µ.

Theorem 2.3.4. (µ∗, τC) is asymptotically optimal for Setup III as γ → ∞. Specifically,

for any initial sampling right N ,

CADD(N,µ∗, τC) ∼ 1

p

| log γ|
D(f1||f0)

. (2.21)

Proof. We consider the one-sided SPRT with the threshold B = γ, which will guarantee

Eν∞[τC ] ≥ γ. Let τs,t denote the stopping time of SPRT starting at time instant t, i.e.,

τs,t = inf

{
m ≥ 1

∣∣∣∣∣
t+m−1∏
i=t

L(Zi) ≥ B

}
,

then Page’s stopping time can be written as

τC = inf {τs,t + t− 1|t = 1, 2, . . .} . (2.22)

Note that

{τC < t} = {τs,1 < t} ∪ . . . ∪ {τs,t−1 < t} ∈ Ft−1,

therefore,

{τC ≥ t} ∈ Ft−1.
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Then, for an arbitrary t,

Eνt [τC − t|τC ≥ t]
(a)

≤ Eνt [τs,t − 1|τC ≥ t]

(b)
= Eνt [τs,t]− 1

(c)
= Eν1 [τs,1]− 1.

Here, (a) is due to (2.22), (b) is due to the fact that τs,t is independent of Ft−1, and (c) is

true because {Zk}’s are conditionally i.i.d. under µ∗, hence τs,t has the same distribution

under P ν
t as τs,1 does under P ν

1 . Since Eν1[τs,1] ∼ | log γ|
pD(f1||f0)

, combining this with Theorem

2.3.1, we have

CADD(N,µ∗, τC) = sup
t≥1

Eνt [τC − t|τC ≥ t] ∼ 1

p

| log γ|
D(f1||f0)

.

As we mentioned in Section 2.1, although we consider Pollak’s formulation only un-

der the system level ARL constraint in detail, the proposed strategy (µ∗, τC) is also asymp-

totically optimal for the formulation under the algorithm level ARL constraint, which is

stated in the following proposition:

Proposition 2.3.5. For any initial sampling right N , (µ∗, τC) is asymptotically optimal

for Pollak’s formulation under the algorithm level ARL constraint as η → ∞, and we

have

sup
t≥1

Eνt [τC − t|τC ≥ t] ∼ 1

p

| log η|
D(f1||f0)

. (2.23)
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Proof. Following the similar argument used in (A.5) in Appendix A.2, we have

Eν∞[τC ] = Eν∞[aκ] = Eν∞

[
κ∑
k=1

Ik

]
=

1

p
E∞[κ].

That is, under the immediate sampling right allocation µ∗, the algorithm level ARL con-

straint E∞[κ] ≥ η can be equivalently converted into a system level ARL constraint

Eν∞[τC ]. Setting γ = η/p for a given p, η → ∞ is equivalent to γ → ∞. By Theorem

2.3.4, (µ∗, τC) is asymptotically optimal under the system level ARL constraint, hence it

is asymptotically optimal under the algorithm level ARL constraint.

2.4 Extension

In this section, we extend the original problem setup by assuming that the observer can

receive more than one sampling right at each time slot. Specifically, we assume that

the sampling right arriving sequence ν = {ν1, . . . , νk, . . .} is i.i.d. over k. νk ∈ V =

{0, 1, 2, . . .}, in which {νk = 0} means that the observer collects nothing at time slot

k and {νk = i} means that the observer collects i sampling rights at time k. We use

pi = P ν(νk = i) to denote its probability mass function (pmf). Then the sampling right

left at the end of time slot k is updated by

Nk = min{C,Nk−1 + νk − µk}.

The observer has an initial sampling right N0 = N , and the sampling right causality

constraint indicates Nk ≥ 0 for k = 0, 1, . . ..

Under this setup, we consider Setup II and Setup III. We consider the greedy sampling
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right allocation strategy:

µ̃∗k =

 1 if Nk−1 + νk ≥ 1

0 if Nk−1 + νk = 0
.

That is, the observer keeps taking observations as long as he has sampling rights left.

In the following, we show that the greedy allocation µ̃∗ combined with Page’s stopping

time τC is asymptotically optimal for Setup II and Setup III in this random sampling right

arriving case. Corresponding to Theorem 2.3.1, Theorem 2.3.2 and Theorem 2.3.4, we

have Theorem 2.4.1 and Theorem 2.4.2.

Theorem 2.4.1. For any initial sampling right N , as γ →∞,

inf{WADD(N,µ, τ) : ARLs(N,µ, τ) ≥ γ}

≥ inf {CADD(N,µ, τ) : ARLs(N,µ, τ) ≥ γ}

≥ 1

p̃

| log γ|
D(f1||f0)

(1 + o(1)), (2.24)

where p̃ := Eν [µ̃∗].

Proof. We first show that Eν [µ̃∗] exists, and 0 < Eν [µ̃∗] ≤ 1.

We claim that Nk is a regular Markov chain with a finite number of states. At each

time slot, Nk has only C + 1 possible states. If at the end of the previous time slot, the

observer has no sampling right left, then the transition probability is given as

P ν(Nk+1 = 0|Nk = 0) = p0 + p1,

P ν(Nk+1 = j − 1|Nk = 0) = pj, for 1 < j ≤ C,

P ν(Nk+1 = C|Nk = 0) =
∞∑

j=C+1

pj.
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If at the end of the previous time slot, the observer has i(1 ≤ i ≤ C) sampling rights left,

the transition probability is given as

P ν(Nk+1 = i− 1|Nk = i) = p0,

P ν(Nk+1 = i+ j − 1|Nk = i) = pj, for 1 ≤ j ≤ C − i,

P ν(Nk+1 = C|Nk = i) =
∞∑

j=C−i+1

pj.

The above transition probability indicates Nk is a regular Markov chain. We denote the

stationary distribution as w̃ = [w̃0, w̃1, . . . , w̃C ]T , where w̃i is the stationary probability

for the state Nk = i. Since µ̃∗k = 0 only happens when Nk−1 = 0 and νk = 0, then we

have

Eν [µ̃∗k] = P ν [µ̃∗k = 1]

= 1− P ν [µ̃∗k = 0]

= 1− P ν [νk = 0]P ν [Nk−1 = 0]

= 1− p0w̃0 as k →∞.

Hence, Eν [µ̃∗k] exists, and 0 ≤ Eν [µ̃∗k] ≤ 1.

We denote p̃ = Eν [µ̃∗]. The rest of the proof follows the one in Appendix A.3 by

replacing p with p̃.

Theorem 2.4.2. (µ̃∗, τC) is asymptotically optimal for Setup II and Setup III as γ → ∞.

Specifically, for any initial sampling right N ,

WADD(N, µ̃∗, τC) ∼ CADD(N, µ̃∗, τC) ∼ 1

p̃

| log γ|
D(f1||f0)

. (2.25)

Proof. Please see Appendix A.4.
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Remark 2.4.3. The above theorems indicate that N does not affect the asymptotic op-

timality. Since the detection delay goes to infinity as γ → ∞, a finite initial sampling

right N , which only contributes finite observations, does not decrease the detection delay

significantly. However, the sampling right capacity C would affect the detection delay

since the parameter p̃ is a function of C and ν.

2.5 Numerical Simulation

In this section, we give some numerical examples to illustrate the analytical results ob-

tained in this chapter. In these numerical examples, we assume that the pre-change distri-

bution f0 is zero mean Gaussian with variance σ2 and the post-change distribution f1 is

zero mean Gaussian with variance P +σ2. In this case, the KL divergence is D(f1||f0) =

1
2

[
log 1

1+P/σ2 + P
σ2

]
, and the signal-to-noise ratio is defined as SNR = 10 logP/σ2.

In the first example, we illustrate the equalizer property of (µ∗, τC) under Lorden’s

formulation. As we mentioned, the equalizer property plays a critical role in the per-

formance analysis, since it allows us to study WADD(N,µ∗, τC) through a relatively

simple expression Eν1[τC ]. In this example, we compare our optimal strategy with a seem-

ingly reasonable strategy: a save-test sampling right allocation scheme combined with

CUSUM. The save-test allocation µst is described as follows:

µstk =

 0 if Nk < c1 and Sk−1 < c2

1 otherwise
.

That is, the µst is a two-threshold strategy: 1) The observer saves the collected sampling

right for future use if the sampling right is less than a threshold c1 and the CUSUM statis-

tic is less than threshold c2; and 2) the observer takes observation when either of these

two thresholds is exceeded. This rule says that if the CUSUM statistic is low (suggesting
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that a change has not happened yet) and the sampling right left for the observer is low, the

observer saves his sampling right. On the other hand, if either the observer has enough

sampling rights, or the CUSUM statistic is high, the observer should take an observation.

In this simulation, we set N = 0, σ2 = 1, SNR = 0dB, p = 0.5 and γ = 560.

The simulation result is shown in Figure 2.1. In the figure, the blue line with circles

is the performance of (µ∗, τC), the green dash line with stars is the performance of

(µst, τC). This simulation confirms our analysis that (µ∗, τC) is an equalizer rule, i.e.,

d1(N,µ∗, τC) = dt(N,µ
∗, τC). However, (µst, τC) is not an equalizer rule. Actually, in

the save-test sampling right allocation scheme, d1(N,µst, τC) is larger than others. This is

due to the fact that in the first time slot, both the CUSUM statistic and the initial sampling

right is zero, hence the observer chooses to store his sampling right. The observer will not

take observations until the stored sampling rights exceed c2. The duration of this sampling

right collection period is independent of the change-point. Then, the worst case happens

at t = 1, and the detection delay caused by the sampling right collection period is larger

than that caused by the immediate sampling right allocation. Since Lorden’s performance

metric focuses on the worst case, the save-test allocation is not as good as the immediate

allocation.

Figure 2.1: The change-point t vs. dt(N,µ, τ)
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In the second example, we illustrate the relationship between the detection delay and

the expected number of observations to false alarm with respect to the sampling right

arriving probability p under Setup I. In this simulation, we set σ2 = 1, SNR = 0dB. The

simulation result is shown in Figure 2.2. In this figure, the blue line with circles is the

simulation result for p = 0.2, the green line with stars and the red line with squares are the

results for p = 0.5 and p = 0.8, respectively. The black dash line is the performance of the

classic Lorden’s problem, which serves as a lower bound since in this case the observer

can take observations at every time slot. As we can see, for a given η, the detection delay

is in inverse proportion to the sampling right arriving probability p. The larger p is, the

closer is the performance to the lower bound.
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Figure 2.2: Detection delay vs. the algorithm level ARL

In the third scenario, we examine the asymptotic optimality of (µ∗, τC) for Setup II

and Setup III. In this simulation, we set p = 0.3, σ2 = 1 and SNR = 5dB. In this case,

we have D(f1||f0) = 0.8681. The simulation result is shown in Figure 2.3. In this figure,

the blue line with circles is the performance of Setup II. The red line with squares is

the performance of Setup III, and the black dash is calculated by | log γ|(pD(f1||f0))−1.

Along all the scales, the red curve is below the blue one, which indicates that Pollak’s

detection delay is smaller than Lorden’s detection delay. We also note that these three
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Figure 2.3: Detection delay vs. the system level ARL

curves are parallel to each other, which confirms that the proposed strategy, (µ∗, τC), is

asymptotically optimal since the difference between them is negligible as γ →∞.

In the fourth scenario, we examine the asymptotic optimality of (µ̃∗, τC) for Setup

II and Setup III in the extension case that the sampling right arrives randomly both in

amount and in time. In the simulation, we use C = 3, and we assume that the amount of

sampling rights that arrives at each time slot takes values in the set V = {0, 1, . . . , 4}. In

this case, the probability transition matrix is given as

P =



p0 + p1, p2, p3, p4

p0, p1, p2, p3 + p4

0, p0, p1,
∑4

i=2 pi

0, 0, p0,
∑4

i=1 pi


. (2.26)

In the simulation, we set p0 = 0.8, p1 = 0.1, p2 = 0.05, p3 = 0.025, p4 = 0.025, then

the stationary distribution is w̃ = [0.0182, 0.0545, 0.2000, 0.7273]T and p̃ = 1− p0w̃0 =

0.9964.

In this simulation, we set σ2 = 1 and SNR = 5dB. The simulation result is shown

in Figure 2.4. In this figure the blue line with circles is the performance of Setup II. The
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Figure 2.4: Detection delay vs. the system level ARL

red line with squares is the performance of Setup III, and the black dash is calculated by

| log γ|(p̃D(f1||f0))−1. Similar to the results obtained in the third simulation scenario,

along all the scales, Pollak’s detection delay is smaller than Lorden’s detection delay, and

these three curves are parallel to each other, which confirms that the proposed strategy,

(µ̃∗, τC), is asymptotically optimal as γ →∞.

In the last scenario, we compare our proposed strategy (µ̃∗, τC) with the seemingly

reasonable strategy (µst, τC) discussed in the first simulation. In this simulation, the sam-

pling right arriving process is the same as that in the forth simulation. Moreover, we set

C = 7, σ2 = 1, N = 0. For µst, we set c1 = 5 and c2 = 1. In the simulation, we

consider Lorden’s detection delay, and we adjust the SNR from 0dB to 20dB by keeping

the system level ARL around 1100. The simulation result is shown in Figure 2.5. In this

figure, the blue line with circles is the performance of our proposed strategy (µ̃∗, τC), the

red line with squares is the performance of (µst, τC). From the figure, we can see our

proposed strategy has a smaller detection delay than (µst, τC) in all parameter range.

Another similar simulation is also conducted under a fixed SNR = 0dB with vary-

ing system level ARL. By keeping the rest of simulation parameters same as before, the

simulation result is listed in Table 2.1. This simulation result also shows that (µ̃∗, τC)
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Figure 2.5: Performance of (µ̃∗, τC) and (µst, τC) under same system ARL constraint

outperforms (µst, τC).

Table 2.1: Performance of (µ̃∗, τC) and (µst, τC) under same SNR
System level ARL log ARL Lorden’s detection delay

(µ̃∗, τC) (µst, τC)
2.28× 102 2.275 41.5 57.8
7.13× 102 2.704 72.8 82.9
2.56× 103 3.375 142.7 148.1
5.01× 103 3.709 178.1 187.1

2.6 Conclusion

In this chapter, we have studied the non-Bayesian quickest change detection problems

with stochastic sampling right constraints. Three non-Bayesian quickest change detec-

tion problem setups, namely Lorden’s problem under the algorithm level ARL, Lorden’s

problem under the system level ARL and Pollak’s problem under the system level ARL,

have been considered. For the binary sampling right arriving model, we have shown that

the immediate sampling right allocation scheme coupled with the CUSUM detection pro-

cedure is optimal for Setup I, and is asymptotically optimal for Setup II and Setup III

as ARL goes to infinity. For the more general sampling right arriving model, we have
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shown that the proposed greedy sampling right allocation coupled with CUSUM is still

first order asymptotically optimal for Setup II and Setup III.
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Chapter 3

Bayesian Quickest Detection with

Sampling Right Constraints

In this chapter, we consider the Bayesian quickest detection setting with additional sam-

pling right constraints. In Bayesian setting, we assume that the change-point has geomet-

ric prior distribution. In particular, we consider both the limited sampling right constraint

and stochastic sampling right constraint. Both of these two problems are solved by dy-

namic programming, and the optimal solution indicates that the optimal sampling right

allocation is decided by the posterior probability πk. For the setup with stochastic sam-

pling right constraint, we show that the greedy sampling right allocation is first order

optimal as the false alarm probability goes to zero.

3.1 Model

Let {Xk, k = 1, 2, . . .} be a sequence of random variables with an unknown change-point

t. {Xk}’s are i.i.d. with pdf f0(x) before the change-point t, and i.i.d. with pdf f1(x)

after t. The change-point t is modeled as a geometric random variable with parameter ρ,
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i.e., for 0 < ρ < 1, 0 ≤ π < 1,

P (t = k) =

 π k = 0

(1− π)ρ(1− ρ)k−1 k = 1, 2, . . .
. (3.1)

We use Pπ to denote the probability measure under which t has the above distribution.

We will denote the expectation under this measure by Eπ. Additionally, we will use Pk

and Ek to denote the probability measure and the expectation under the event {t = k}.

We assume that the observer initially hasN sampling rights. Let ν = {ν1, ν2, . . . , νk, . . . }

be the sampling right replenishing procedure, in which νk is the amount of sampling rights

collected by the observer at time slot k. Specially, νk ∈ V = {0, 1, 2, . . .}, in which

{νk = 0} implies that he obtains no sampling right at time slot k and {νk = i} implies

that he collects i sampling rights at k. We use pi = P ν(νk = i) to denote its pmf. We

assume that {νk} is i.i.d. over k.

The observer can decide when to spend his sampling rights to take observations. Let

µ = {µ1, µ2, . . . , µk, . . . } be the sampling strategy with µk ∈ {0, 1}, in which {µk = 1}

means that he spends one sampling right on taking observation at time slot k and {µk = 0}

means that no sampling right is spent at k and hence no observation is taken.

Let Nk be the amount of sampling rights at the end of time slot k. Nk evolves accord-

ing to

Nk = min{C,Nk−1 + νk − µk} (3.2)

with N0 = N . The observer’s strategy belongs to the following set

U = {µ|Nk ≥ 0, k = 1, 2, . . . .} . (3.3)
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The observation sequence {Zk, k = 1, 2, . . .} has the same form as (2.2). In addition,

denote bi as the time instance that the observer makes the ith observation, and then the

non-trivial observation sequence can be denoted as {Xb1 , Xb2 , . . . , Xbn , . . .}.

The observation sequence {Zk} generates the filtration {Fk}k∈N with

Fk = σ(Z1, · · · , Zk, {t = 0}), k = 1, 2, . . . .

and F0 contains the sample space Ω and {t = 0}.

ν Z

μ δ

N ν Z N

μ δδ

νk

k-1

k+1 k+2kk

kk

k+1 k+1

k+1 k+1

time slot k time slot k+1

Figure 3.1: The observer’s decision flow

Figure 3.1 illustrates the observer’s decision flow. At each time slot k, the observer has

to make two decisions: the sampling decision µk and the terminal decision δk ∈ {0, 1}.

These two decisions are based on different information. First, the observer needs to decide

whether he should spend a sampling right to take an observation (µk = 1) or not (µk = 0)

after he obtains the information of νk. After taking each observation Zk (whether it is

a non-trivial observation in the case of µk = 1 or it is a trivial observation in the case

of µk = 0), the observer needs to decide whether he should stop sampling and declare

that a change has occurred (δk = 1), or to continue the sampling procedure (δk = 0).

Therefore, δk is a Fk measurable function. We introduce a random variable τ to denote

the time when the observer decides to stop, i.e., {τ = k} if and only if {δk = 1}, then τ

is a stopping time with respect to the filtration {Fk}.

We note that the distribution of Zk is related to both Xk and µk. Unlike the clas-

sic Bayesian setup which only takes the expectation with respect to Pπ, in our setup we

should take the expectation with respect to both Pπ and P ν . Hence, we use the superscript
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ν over the probability measure and the expectation to emphasize that we are working with

a probability measure taken the distribution of the process ν into consideration. Specif-

ically, we use P ν
π and Eνπ to denote the probability measure and the expectation under t,

respectively; and we use P ν
k and Eνk under the event {t = k}.

Our goal is to design a strategy pair (µ, τ) to minimize the detection delay subject to

a false alarm constraint. In particular, the average detection delay (ADD) is defined as

ADD(π,N, µ, τ) := Eνπ
[
(τ − t)+

]
,

and the probability of the false alarm (PFA) is defined as

PFA(π,N, µ, τ) := P ν
π (τ < t).

With the initial probability π0 = π and the initial sampling right N0 = N , we want to

solve the following optimization problem:

min
µ∈U ,τ∈T

ADD(π,N, µ, τ) subject to PFA(π,N, µ, τ) ≤ α. (3.4)

in which α is the false alarm level. By Lagrangian multiplier, for each α the above

optimization problem can be equivalently written as

J(π,N) = inf
µ∈U ,τ∈T

U(π,N, µ, τ), (3.5)

where

U(π,N, µ, τ) := Eνπ
[
c(τ − t)+ + 1{τ<t}

]
(3.6)

for an appropriately chosen constant c. We would like to characterize J(π,N) in this
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chapter.

3.2 Problems with the Limited Sampling Right Constraint

We first consider a special case that p0 = P ν(νk = 0) = 1, that is, other than the

initial sampling rights, there will be no additional sampling rights arriving at the observer.

Hence he can take at mostN0 = N observations from the sequence {Xk} for the detection

purpose. Therefore, we name the sampling right causality constraint as a limited sampling

right constraint in this case.

From (3.2) and (3.3), it is easy to verify that there are at most N nonzero elements in

µ. Hence, instead of considering µ = {µk} with infinite elements, we can describe the

sampling strategy by the sampling time sequence µ = {b1, . . . , bκ}, where bκ is the time

instance that the observer takes the last observation, and κ is the number of observations

taken by the observer when he stops. Hence, we term κ as the sample size, and we note

that κ is a random variable whose realization varies from different trials. The admissible

strategy set (3.3) can be equivalently written as UN = {µ : κ ≤ N} in this case.

In addition, as indicated in Section 3.1, in general we need to take the expectation with

respect to both Pπ and P ν . However, in this special case we only need to take expectation

with respect to Pπ since the process ν has no randomness. Therefore, Eνπ and P ν
π can be

replaced by Eπ and Pπ respectively. In particular, the cost function can be written as

U(π,N, µ, τ) = Eπ
[
c(τ − t)+ + 1{τ<t}

]
. (3.7)
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3.2.1 Optimal Solution

Let πk be the posterior probability that a change has occurred at the kth time instance,

namely

πk = P (t ≤ k|Fk), k = 0, 1, . . . . (3.8)

Using Bayes’ rule, πk can be shown to satisfy the recursion

πk =

 Φ0(πk−1), if µk = 0

Φ1(Xk, πk−1), if µk = 1
, (3.9)

in which

Φ0(πk−1) = πk−1 + (1− πk−1)ρ, (3.10)

and

Φ1(Xk, πk−1) =
Φ0(πk−1)f1(Xk)

Φ0(πk−1)f1(Xk) + (1− Φ0(πk−1))f0(Xk)
. (3.11)

It turns out that πk is a sufficient statistic for this problem, as the next result demon-

strates.

Proposition 3.2.1. For each sampling strategy µ and stopping rule τ

U(π,N, µ, τ) = Eπ

[
1− πτ + c

τ−1∑
k=0

πk

]
. (3.12)
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Proof. An outline of the proof is provided as follows:

U(π,N, µ, τ) = Eπ
[
c(τ − t)+ + 1{τ<t}

]
= Eπ

[
c(τ − t)1{τ≥t} + 1{τ<t}

]
= Eπ

[
c

τ−1∑
k=0

1{t≤k} + 1{τ<t}

]

= Eπ

[
c

τ−1∑
k=0

πk + (1− πτ )

]
.

A rigorous proof follows closely to that of Proposition 5.1 of [37] and is omitted in this

dissertation.

We first have the following lemma characterizing some properties of the optimal

(µ, τ):

Lemma 3.2.2. Let µ = {b1, . . . , bκ} be an admissible sampling strategy, and τ be a

stopping time. If κ < N and τ > bκ, then (µ, τ) is not optimal.

Proof. The proof is provided in Appendix B.1.

This result implies that if the observer has any sampling rights left, it is not optimal

for him to stop at time slot k without taking an observation at k. In other words, the only

scenario in which the observer may stop sometime after an observation is taken occurs

when he has exhausted all his sampling rights. From this lemma, we immediately have

the following result.

Corollary 3.2.3. If µ∗ = {b∗1, . . . , b∗κ∗} is the optimal sampling strategy, then on the event

{κ∗ < N}, we have τ ∗ = b∗κ∗ .

The problem can be solved by dynamic programming principle. Similar to the ap-
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proach used in [20], we define a functional operator G as

GV (π) = min

{
1− π, inf

m≥1
Eπ

[
c
m−1∑
k=0

πk + V (πm)

]}
, (3.13)

in which

π0 = π,

πk = π +
k∑
i=1

(1− π)ρ(1− ρ)i−1, k = 1, · · ·m− 1,

πm =
Φ0(πm−1)f1(Xm)

Φ0(πm−1)f1(Xm) + (1− Φ0(πm−1))f0(Xm)
.

Using this functional operator, we can introduce a set of iteratively defined functions:

V0(π) = min
m≥0

[
c
m−1∑
k=0

πk + 1− πm

]
, (3.14)

Vn(π) = GVn−1(π), n = 1, . . . , N. (3.15)

The operator G converts the original problem to a Markov stopping problem. Specifi-

cally, we have the following result:

Theorem 3.2.4. For all n = 0, · · · , N , π0 = π ∈ [0, 1), we have

J(π, n) = Vn(π).

Furthermore, by letting b∗0 = 0, the optimal sampling time for (3.5) can be determined by

b∗n+1 − b∗n = argminm≥1 Eπb∗n

[
c

m−1∑
k=0

πk + VN−n−1(πm)

]
, (3.16)
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for n = 0, 1, . . . , N − 1. The optimal sampling size is given as

κ∗ = inf
{

0 ≤ n ≤ N : πb∗n ∈ Sn
}
, (3.17)

in which Sn is the stopping domain defined as

Sn :=

{
πbn : 1− πbn ≤ inf

m≥1
Eπbn

[
c
m−1∑
k=0

πk + VN−n−1(πm)

]}
,

for n = 0, · · · , N − 1, and SN := [0, 1]. In addition, the optimal stopping time is given

as

τ ∗ = b∗κ∗ +m∗1{κ∗=N}, (3.18)

where

m∗ = argminm≥0 Eπb∗
N

[
c
m−1∑
k=0

πk + 1− πm

]
.

Proof. The proof is provided in Appendix B.2.

Remark 3.2.5. Theorem 3.2.4 indicates that the observer cannot decide the sampling

time bn+1 until he takes the nth observation. The conditional expectation on the right

hand side of (3.16) is a function of πbn , which can only be obtained after making the nth

observation. Hence, the optimal sampling time is characterized by the sampling interval,

which is the time that the observer should wait after he makes the nth observation, on the

left hand side of (3.16).

Remark 3.2.6. Using Theorem 3.2.4, we now give a heuristic explanation of the operator

G and the iterative function (3.15). In particular, Vn(π) is the minimum cost when there

are only n sampling rights left. We could choose either to stop, which costs 1 − π, or to
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continue and take another observation at m that minimizes the expectation of the future

cost. Therefore, the minimizer m in the definition of the operator G is the next sampling

time, and πk’s in G are the posterior probabilities that are consistent with the expressions

(3.8)-(3.11).

Let

π̄ = 1− π, ρ̄ = 1− ρ,

it is easy to verify that

m−1∑
k=0

πk = m− π̄

ρ
(1− ρ̄m), (3.19)

πm =
(1− π̄ρ̄m)f1(Xm)

(1− π̄ρ̄m)f1(Xm) + (π̄ρ̄m)f0(Xm)
. (3.20)

Hence GV (π) can be simplified as

GV (π) = min

{
1− π, inf

m≥1

{
c

(
m− π̄

ρ
(1− ρ̄m)

)
+ Eπ [V (πm)]

}}
, (3.21)

and V0(π) can be simplified as

V0(π) = min
m≥0

[
c

(
m− π̄

ρ
(1− ρ̄m)

)
+ π̄ρ̄m

]
. (3.22)

Based on this form, the optimal stopping time can be further simplified to a threshold rule.

We define

πUn = inf{π ∈ [0, 1]|1− π = VN−n(π)},

for n = 0, . . . , N , and the threshold rule is described in the following theorem.

Theorem 3.2.7. For each n ≤ N , Vn(π) is a concave function of π and Vn(1) = 0.
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Furthermore, the optimal stopping rule for the N sampling right problem can be given as

a threshold rule. Specifically,

κ∗ = min{n|πb∗n ∈ Sn}, (3.23)

where

Sn = {πbn|πbn ≥ πUn } (3.24)

for n = 0, . . . , N − 1 and SN = [0, 1]. Moreover, if κ∗ < N , then τ ∗ = bκ∗; if κ∗ = N ,

then

τ ∗ = inf
{
k ≥ bN |πk ≥ πUN

}
. (3.25)

Proof. The proof is provided in Appendix B.3.

Remark 3.2.8. We note that κ∗ is a threshold rule if κ∗ < N , but it is not a threshold rule

if κ∗ = N in Theorem 3.2.7. Hence κ∗ = N is true even if πb∗N < πUN . This is consistent

with our intuition that the observer cannot take more than N observations. However, on

the event {πb∗N < πUN}, the optimal stopping rule is still a threshold rule due to the fact

that V0(π) is concave and V0(π) is bounded by 1− π.

Although Theorem 3.2.7 simplifies the optimal stopping rule into a threshold rule,

the optimal strategy still has a very complex structure as the optimal sampling rule is

in general difficult to characterize. From (3.16), one can see that the optimal sampling

rule depends on Vn(π). Generally Vn(π) does not have a close form for a general value

of n, and it could only be calculated numerically. For reader’s convenience, Table 3.1

summarizes the numerical procedure for the calculation of the optimal solution. Although

the problem can be solved numerically, numerical calculation provides little insight for the

47



Table 3.1: Optimal Algorithm for N sampling right Problem
Offline Procedure:
step 0: Calculate

V0(π) = min
m≥0

[
c
m−1∑
k=0

πk + 1− πm
]

.

Calculate

W0(π,m) = c
(
m− π̄

ρ
(1− ρ̄m)

)
+ Eπ[V0(πm)].

Calculate
πUN = inf{π ∈ [0, 1]|1− π = V0(π)}.

step n: Given Wn−1(π,m), calculate
Vn(π) = min{1− π, infmWn−1(π,m)}.

Given Vn(π), calculate

Wn(π,m) = c
(
m− π̄

ρ
(1− ρ̄m)

)
+ Eπ[Vn(πm)].

Calculate
πUN−n = inf{π ∈ [0, 1]|1− π = Vn(π)},

for n = 1, 2, . . . , N.
Online Procedure:
step 0: If π0 ≥ πU0 , the observer stops. Otherwise, continues.

Find the sampling interval b1 = argmWN(π0,m).
Take observation Xb1 and calculate πb1 by (3.11).

step n: If πbn ≥ πUn , the observer stops. Otherwise, continues.
Find the sampling interval bn+1 − bn = argmWN−n(πn,m).
Take observation Xbn+1 and calculate πbn+1 by (3.11),
for n = 1, 2, . . . , N − 1.

step N : If πbN ≥ πUN , the observer stops. Otherwise, continues.
Updates the posterior probability by (3.10) at every time slot,
stops when πUN is exceeded.

optimal solution. This motivates us to conduct asymptotic analysis in the next subsection.

3.2.2 Asymptotic Bounds

In this subsection, we investigate if there are any scenarios under which the performance

of the limited sampling right problem would approach to the performance of the classic

Bayesian detection.

The performance of the classic Bayesian case, in which the observer can take observa-

tions at every time slot, is certainly a lower bound of the performance of the N sampling
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right problem. In this case, the asymptotic performance is given as

ADD(π,N, µ∗, τ ∗) ≥ | logα|
D(f1||f0) + | log(1− ρ)|

(1 + o(1)). (3.26)

We consider a uniform sampling strategy with a threshold stopping rule. In particular,

the observer adopts a sampling strategy µ = {ς, 2ς, . . . , κς}, i.e., he takes observations

every ς symbols, and he adopts a stopping rule τ = inf{nς : πnς ≥ 1 − α, n ∈ N}. The

performance of this uniform sampling strategy serves as an upper bound of the perfor-

mance of the N sampling right problem. In particular, we have the following proposition:

Proposition 3.2.9. (Asymptotic Upper Bound) As α→ 0, if the number of sampling rights

satisfies

N ≥ | logα|
| log(1− ρ)|ς

(3.27)

for some constant ς <∞, then

ADD(π,N, µ∗, τ ∗) ≤ | logα|ς
D(f1||f0) + | log(1− ρ)|ς

(1 + o(1)). (3.28)

Proof. The proof is provided in Appendix B.4.

Remark 3.2.10. In the conventional asymptotic analysis, one is interested in the average

detection delay when α → 0. For the limited observation case (0 ≤ N < ∞), it is easy

to find that

ADD(π,N, µ∗, τ ∗) =
| logα|

| log(1− ρ)|
(1 + o(1)). (3.29)

However, this result brings little information since this ADD can be achieved by any

sampling strategy with the threshold rule τ = inf{k, πk ≥ 1 − α}. (3.29) could only
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indicate the order of the average detection delay of the limited sampling right problem.

In order to obtain an informative result, in Proposition 3.2.9, we consider an alternative

condition (3.27). This condition is weaker than the limited sampling rights constraint, but

is stronger than the condition that the observer has infinity many sampling rights, which

is assumed in the classic Bayesian setting.

Remark 3.2.11. One can notice from (3.27) that N → ∞ when α → 0 for any given

ρ. However, this is different from the classic Bayesian quickest detection. In the classic

Bayesian problem, the observer has so many sampling rights that he can take observation

at every time slot. But (3.27) gives no guarantee that observer can achieve the false

alarm constraint at his last sampling right if he takes sample at every time instance. It

guarantees only that one can achieve the false alarm constraint by the uniform sampling

with interval ς .

From Proposition 3.2.9, we can identify scenarios under which the performance of

the N sampling right problem is close to that of the classic Bayesian problem. Here we

give two such cases. In the first case, when N satisfies (3.27) with ς = 1, from (3.26)

and (3.28), we can see that the upper bound and the lower bound are identical, and hence

the ADD of the N sampling right problem will be close to that of the classic Baysian

problem. For a problem with a finite sampling rights N , this condition can be achieved

when ρ→ 1. Intuitively, in the large ρ case, even a few samples can lead to a small false

alarm probability, hence the N sampling right problem is close to the classic Bayesian

problem. In another scenario, if D(f1||f0) close to 0, i.e. f0 and f1 are very close to

each other, the difference between the ADD of the N sampling right problem and that

of the classic Bayesian problem is on the order o(logα). Intuitively, in this scenario,

the information provided by the likelihood ratios of observations is quite limited, and

therefore, the decision making mainly depends on the prior probability of the change-

point t.
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3.3 Problems with the Stochastic Sampling Right Con-

straint

In this section, we study the optimal solution for the problem in the general setup when ν

is a stochastic process described in Section 3.1.

3.3.1 Optimal Solution

Denote the posterior probability as

πk = P ν
π (t ≤ k|Fk).

Following the similar procedure as in Proportion 3.2.1, for any µ and τ , we can convert

the cost function into the following form:

U(π,N, µ, τ) = Eνπ

[
1− πτ + c

τ−1∑
k=0

πk

]
. (3.30)

This problem can be solved by the backward induction method. In particular, we first

solve a finite horizon problem, then we extend the solution to the infinite horizon problem

by a limit argument. Hence, we first consider a finite horizon problem with a horizon T ,

that is, we consider the case that the observer must stop at a time no later than T . We

define

JTk (πk, Nk) := inf
µTk+1∈U

T
k+1,τ∈T

T
k

U(πk, Nk, µ
T
k+1, τ)

with

U(πk, Nk, µ
T
k+1, τ) := Eνπk

[
1− πτ + c

τ−1∑
i=k

πi

]
,
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in which µTk = {µk, µk+1, . . . , µT} is the strategy adopted by the observer from k to T ,

UTk = {µTk : Ni ≥ 0,∀i = k, . . . , T} is the admissible set of sampling strategies, and

T Tk = {τ ∈ T : k ≤ τ ≤ T} is the set of admissible stopping times. We note that

by setting k = 0, JT0 (π0, N0) is the cost function for the finite horizon problem with a

horizon T .

We then introduce a set of iteratively defined functions. Let

V T
T (πT , NT ) = 1− πT ,

and for k = T − 1, T − 2, . . . , 0, we define

W T
k+1(πk, Nk, νk+1) = min

{
Eνπk [V

T
k+1(πk+1, Nk+1)|νk+1, µk+1 = 0],

Eνπk [V
T
k+1(πk+1, Nk+1)|νk+1, µk+1 = 1]

}
,

V T
k (πk, Nk) = min{1− πk, cπk + Eν [W T

k+1(πk, Nk, νk+1)]}.

This set of functions convert the finite horizon problem into a Markov stopping prob-

lem. Specifically, we have the following theorem:

Theorem 3.3.1. For all k = 1, 2, . . . , T , we have

JTk (πk, Nk) = V T
k (πk, Nk).

Furthermore, the optimal sampling strategy is given as

µ∗k = argminµk∈{0,1} E
ν
πk−1

[V T
k (πk, Nk)|νk, µk].
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The optimal stopping rule is given as

τ ∗ = inf
{

0 ≤ k ≤ T |1− πk ≤ cπk + Eν [W T
k+1(πk, Nk, νk+1)]

}
.

Proof. This proof is provided in Appendix B.5.

Remark 3.3.2. Using Theorem 3.3.1, we now give a heuristic explanation of the iterative

functions W T
k+1 and V T

k . In each time slot, as shown in Figure 3.1, the observer needs

to make two decisions: the sampling decision µk and the terminal decision δk. Both

decisions affect the cost function, however these two decisions are based on different

information. In particular, the observer decides whether to take an observation or not at

time slot k after he knows how many sampling rights has been collected at time slot k.

Hence, µk is a function of νk, πk−1 and Nk−1. When µk is decided, the observer could

determine the way that πk andNk evolve, and hence the decision δk is a function of πk and

Nk. Actually, the iterative function V T
k is the cost function associated with δk, and W T

k

is that associated with µk. At the end of time slot k, the observer could choose either to

stop, which costs 1−πk, or to continue. Since µk+1 is the next decision after δk, the future

cost in V T
k is Eν [W T

k+1]. On the other hand, since δk+1 is the decision after µk+1, hence

the observer chooses µk+1 based on the rule that the future cost is minimized, that is the

conditional expectation of V T
k+1 is minimized, which leads to the expression of W T

k+1.

In the following, we use a limit argument to extend the above conclusion to the infinite

horizon problem. Since V T
k (πk, Nk) ≥ 0 and

V T+1
k (πk, Nk) ≤ V T

k (πk, Nk),

which is true due to the fact that all strategies admissible for horizon T are also admissible

for horizon T + 1. As the result, the limit of V T
k (πk, Nk) as T →∞ exists. Furthermore,
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as πk and Nk are homogenous Markov chains, the form of the limit function is same for

different values of k, which is defined as

V (πk, Nk) := lim
T→∞

V T
k (πk, Nk).

Similarly, we have

W (πk, Nk, νk+1) := lim
T→∞

W T
k+1(πk, Nk, νk+1).

By the monotone convergence theorem, the iterative functions can be written as

W (πk, Nk, νk+1) = min
{
Eνπk [V (πk+1, Nk+1)|νk+1, µk+1 = 0],

Eνπk [V (πk+1, Nk+1)|νk+1, µk+1 = 1]
}
,

V (πk, Nk) = min{1− πk, cπk + Eν [W (πk, Nk, νk+1)]}.

Hence, we have the following conclusion for the infinite horizon problem.

Theorem 3.3.3. The optimal sampling strategy for (3.5) is given as

µ∗k = argminµk∈{0,1} E
ν
πk−1

[V (πk, Nk)|νk, µk]. (3.31)

The optimal stopping rule is given as

τ ∗ = inf {k ≥ 0|1− πk ≤ cπk + Eν [W (πk, Nk, νk+1)]} . (3.32)

3.3.2 Asymptotically Optimal Solution

The optimal solution for the stochastic sampling problem has a very complex structure. In

this subsection, we propose a low complexity algorithm and show that it is asymptotically
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optimal when α→ 0. The proposed algorithm is

µ̃∗k =

 1 if Nk−1 + νk ≥ 1

0 if Nk−1 + νk = 0
, (3.33)

and

τ̃ ∗ = inf{k ≥ 0|πk ≥ 1− α}. (3.34)

That is, the observer adopts a greedy sampling strategy in which he takes observations as

long as he has sampling rights left, and he declares the change using Shiryaev’s detec-

tion procedure. In the following, we show the asymptotic optimality of this algorithm in

two steps. In the first step, we derive a lower bound on the average detection delay for

any sampling strategy and any stopping rule. In the second step, we show that (µ̃∗, τ̃ ∗)

achieves this lower bound asymptotically, which then implies that (µ̃∗, τ̃ ∗) is asymptoti-

cally optimal. Similar to (2.12), we define the likelihood ratio of the observation sequence

{Zk} as

L(Zk) =


f1(Xk)
f0(Xk)

, if µk = 1

1, if µk = 0
, (3.35)

and denote l(Zk) = logL(Zk) as LLR. The lower bound on the detection delay is pre-

sented in the following theorem:

Theorem 3.3.4. As α→ 0,

inf
µ∈U ,τ∈T

ADD(π,N, µ, τ) ≥ | logα|
p̃D(f1||f0) + | log(1− ρ)|

(1 + o(1)), (3.36)

where p̃ := Eν [µ̃∗].
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Proof. This proof is provided in Appendix B.6.

To study the asymptotic optimality of (µ̃∗, τ̃ ∗), we need to impose some additional

assumptions on f1 and f0. Specifically, for any ε > 0, we define the random variable

T kε := sup

{
n ≥ 1

∣∣∣∣∣
∣∣∣∣∣ 1n

k+n−1∑
i=k

l(Zi)− p̃D(f1||f0)

∣∣∣∣∣ > ε

}
,

in which the supremum of an empty set is defined as 0. Under the sampling strategy µ̃∗,

we make additional assumptions that

Eνk
[
T kε
]
<∞ ∀ε > 0 and ∀k ≥ 1 (3.37)

and

Eνπ
[
T tε
]

=
∞∑
k=1

Eνk
[
T kε
]
P (t = k) <∞, ∀ε > 0. (3.38)

With these assumptions, we have the following result:

Theorem 3.3.5. If (3.37) and (3.38) hold, then (µ̃∗, τ̃ ∗) is asymptotically optimal as α→

0. Specifically,

ADD(π,N, µ̃∗, τ̃ ∗) =
| logα|

p̃D(f1||f0) + | log(1− ρ)|
(1 + o(1)). (3.39)

Proof. This proof is provided in Appendix B.7.

Remark 3.3.6. More general assumptions corresponding to (3.37) and (3.38) are termed

as “r-quick convergence” and “average-r-quick convergence” [47], respectively. In par-

ticular, (3.37) and (3.38) are special cases for r = 1. The “r-quick convergence” was

originally introduced in [92] and has been used previously in [24,93] to show the asymp-

totic optimality of the sequential multi-hypothesis test. The “average-r-quick conver-

56



gence” was introduced in [47] to show asymptotic optimality of the SR procedure in the

Bayesian quickest change-point problem.

Remark 3.3.7. The above theorems indicate that N0 does not affect the asymptotic op-

timality. Since the detection delay goes to infinity as α → 0, a finite initial N0, which

could contribute only a finite number of observations, does not reduce the average detec-

tion delay significantly. However, the sampling right capacity C could affect the average

detection delay since p̃ is a function of C and ν.

Remark 3.3.8. Since there is no penalty on the observation cost before the change-point,

one may expect the observer to take observations as early as possible for the quickest

detection purpose, and hence expect the greedy sampling strategy to be exactly optimal.

However, taking observations too aggressively before the change-point will affect how

many sampling rights the observer can use after the change-point, although there is no

penalty on the observations cost before the change-point. Theorem 3.3.3 shows that the

optimal sampling strategy should be a function of πk, Nk and νk. Intuitively, an observer

will save the sampling rights for future use when he has little energy left (Nk is small) or

when he is pretty sure that the change-point has not occurred yet (πk is small). To use the

greedy sampling at the very beginning may reduce the observer’s sampling rights at the

time when the change occurs, hence increase the detection delay. Therefore, the greedy

sampling strategy is only first order asymptotically optimal but not exactly optimal.

3.4 Numerical Simulation

In this section, we give some numerical examples to illustrate the analytical results of

the previous sections. In these numerical examples, we assume that the pre-change dis-

tribution f0 is Gaussian with mean 0 and variance σ2. The post-change distribution f1 is

Gaussian distribution with mean 0 and variance P+σ2. We denote SNR = 10 log(P/σ2).
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The first set of simulations are related to the limited sampling right problem. In the

first scenario, we illustrate the relationship between ADD and PFA with respect to N .

In this simulation, we take π0 = 0, ρ = 0.1 and SNR = 0dB, from which we know

that D(f1||f0) ≈ 0.15 and | log(1 − ρ)| ≈ 0.11 in this case. The simulation results are

shown in Figure 3.2. In this figure, the blue line with squares is the simulation result for

N = 30, the green line with stars and the red line with circles are the results for N = 15

and N = 8, respectively. The black dash line is the performance of the classic Bayesian

problem, which serves as a lower bound for the performance of our problem. The black

dot dash line is the performance of the uniform sampling case with sampling interval

ς = 11 (One can verify this value by putting α = 10−5 and N = 8 into (3.27)), which

serves as an upper-bound for the performance of our problem. As we can see, these three

lines lie between the upper bound and the lower bound. Furthermore, the more sampling

rights the observer has, the shorter detection delay the observer can achieve, and the closer

the performance is to the lower bound.
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Classical Bayesian Case

Uniform Sampling ς=11

Figure 3.2: PFA vs. ADD under SNR = 0dB and ρ = 0.1

In the second scenario, we discuss the relationship between ADD and PFA with re-

spect to different ρ. In this simulation, we set π0 = 0, N = 8 and SNR = 0dB. The

simulation results are shown in Figure 3.3. In this figure, the red line with circles is the

58



performance with ρ = 0.2, the green line with stars and the blue line with squares are

the performances with ρ = 0.5 and ρ = 0.8, respectively. The three black dash lines

from the top to the bottom are the lower bounds obtained by the classic Bayesian case

with ρ = 0.2, ρ = 0.5 and ρ = 0.8, respectively. From this figure we can see that, as

ρ increases, the distance between the performance of our scheme and the lower bound is

reduced. For the case ρ = 0.8, the performance of N = 8 is almost the same as that of the

lower bound, which verifies our analysis that when ρ is large, the performance of limited

sampling right problem is close to that of the classic one.
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Figure 3.3: PFA vs. ADD under SNR = 0dB and N = 8

In the third scenario, we consider the case when f0 and f1 are close to each other. In

the simulation, we set the SNR = −5dB and ρ = 0.4. One can verify that D(f1||f0) =

0.02, which is only about 4% of the value | log(1− ρ)|. In this simulation, we set N = 15

and ς = 2 to achieve a false alarm probability 10−5. The simulation results are shown in

Figure 3.4. As we can see, the distance between the upper bound, which is the black dot

dash line obtained by the uniform sampling with ς = 2, and the lower bound, which is

the black dash line obtained by the classic Bayesian case, is quite small, and therefore the

performance of the limited sampling right problem (the blue line with squares) is quite

close to the lower bound.
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Figure 3.4: PFA vs. ADD under SNR = −5dB and ρ = 0.4

In the last simulation, we examine the asymptotic optimality of (µ̃∗, τ̃ ∗) for the stochas-

tic sampling right problem. In the simulation, we set C = 3, and we assume that the

amount of sampling rights is taken from the set V = {0, 1, . . . , 4}. In this case, the

probability transition matrix of the Markov chain Nk under µ̃∗ is given as

P =



p0 + p1, p2, p3, p4

p0, p1, p2, p3 + p4

0, p0, p1,
∑4

i=2 pi

0, 0, p0,
∑4

i=1 pi


.

In the simulation, we set p0 = 0.85, p1 = 0.1, p2 = 0.03, p3 = 0.01, p4 = 0.01, then

the stationary distribution is w̃ = [0.7988, 0.0988, 0.0624, 0.0390]T and p̃ = 1− p0w̃0 =

0.3610. Furthermore, we set σ2 = 1 and SNR = 5dB. The simulation result is shown

in Figure 3.5. In this figure the red line with squares is the performance of the proposed

strategy (µ̃∗, τ̃ ∗), and the black dash line is calculated by | logα|/(p̃D(f1||f0) + | log(1−

ρ)|). As we can see, along all the scales, these two curves are parallel to each other, which

confirms that the proposed strategy, (µ̃∗, τ̃ ∗), is asymptotically optimal as α → 0 since

the constant difference can be ignored when the detection delay goes to infinity.
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Figure 3.5: PFA vs. ADD under strategy (µ̃∗, τ̃ ∗)

3.5 Conclusion

In this chapter, we have analyzed the Bayesian quickest change detection problem with

sampling right constraints. Two types of constraints have been considered. The first one

is a limited sampling right constraint. We have shown that the cost function of the N

sampling right problem can be characterized by a set of iterative functions, each of them

could be used for determining the next sampling time or the stopping time. The second

constraint is a stochastic sampling right constraint. Under this constraint, we have shown

that the greedy sampling strategy coupled with the Shiryaev detection procedure is first

order asymptotically optimal as α→ 0.
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Chapter 4

Quickest Detection with Unknown

Post-Change Parameters

In previous chapters, we examined the quickest change-point detection problems with

stochastic sampling right constraints. In these problems, we assume that both the pre-

change and the post-change distributions are known by the observer. In practice, the pre-

change distribution is likely to be known by the observer as he can collect a large amount

of data to estimate the pre-change distribution when the system or the environment he

monitors behaves normally. However, the post-change distribution is often unknown or

known only to belong to a parametric distribution family. Hence, in this chapter, we

extend our previous studies to the case with unknown post-change distributions. In par-

ticular, we assume that the post-change parameter belongs to a finite set Ξ. With the

unknown post-change parameter, the observer still wants to minimize the detection delay

under a stochastic sampling right constraint. We propose to use the greedy sampling right

allocation strategy coupled with the multi-chart detection strategy to tackle this problem.

We show that the greedy sampling right allocation with the M-CUSUM procedure is first

order asymptotically optimal for the non-Bayesian setup, and the greedy sampling right
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allocation with the M-Shiryaev procedure is first order asymptotically optimal for the

Bayesian setup.

4.1 Non-Bayesian Quickest Detection Problem with Un-

known Post-Change Parameters

4.1.1 Preliminary Results

Let {Xk, k = 1, 2, . . .} be a sequence of random variables whose distribution changes at a

fixed but unknown time t. Initially, the random variables are i.i.d. with pdf fξ0(x), which

is known to the observer; after the change-point t, the density of X changes to fξ(x), in

which ξ is unknown but

ξ ∈ Ξ := {ξ1, ξ2, . . . , ξM}. (4.1)

Ξ is the post-change parameter space with M possible states. We assume ξ0 /∈ Ξ, and

ξ0 < ξ1 < . . . < ξM . Besides this assumption, the observer has no other prior information

about Ξ in the non-Bayesian setting.

The non-Bayesian quickest detection problem with unknown post-change parameter

has attracted much attention in recent research [12,29,60,94–98]. As the post-change pa-

rameter is unknown, a reasonable approach is to replace the unknown with its estimate. As

pointed out in [12,35,44,98], the generalized likelihood ratio (GLR) based CUSUM (i.e.,

the unknown parameter is replaced by its maximum likelihood estimate (MLE)) is asymp-

totically optimal over all post-change parameters. [95] proposed an adaptive CUSUM

whose unknown parameter is replaced by its one stage delayed estimate. [97] adopted the

shrinkage estimator for the unknown parameter. [60] extended the previous studies into
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distributed sensor networks. One may refer to a recent book [86] for more detailed results

of this topic. In this subsection, we briefly summarize a few important results from [86]

to lay foundations to the problems that will be investigated in the sequel.

In the classic setting, there is no sampling right constraint, hence {Xk, k = 1, 2, . . .}

itself is the observation sequence. Denote {Fk} as the filtration generated by the obser-

vation sequence, i.e.,

Fk = σ(X1, . . . , Xk), k = 1, 2, . . . .

The goal is to find a stopping time τ to minimize the detection delay subjected to the ARL

constraint. In particular, let

WADDξ(τ) := sup
t≥1

esssupEt,ξ[(τ − t+ 1)+|Ft−1], (4.2)

CADDξ(τ) := sup
t≥1

Et,ξ[τ − t|τ > t], (4.3)

ARL(τ) := sup
t≥1

E∞[τ ], (4.4)

where Et,ξ is the expectation under Pt,ξ, which is the conditional probability measure

given that the change happens at t with the post-change parameter being ξ. Note that the

ARL constraint is measured when the change happens at infinity, hence it is not related to

the post-change parameter ξ. Lorden’s problem is formulated as

min
τ

WADDξ(τ) subject to ARL(τ) ≥ γ, (4.5)

and Pollak’s problem is formulated as

min
τ

CADDξ(τ) subject to ARL(τ) ≥ γ. (4.6)
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In this case, the M-CUSUM procedure to be described below is asymptotically optimal

for above setups. In particular, for i = 1, . . . ,M , let

Sn,i := max
1≤q≤n

[
n∏
j=q

fξi(xj)

fξ0(xj)

]
(4.7)

and

τC,i := inf{n ≥ 0|Sn,i ≥ B}, (4.8)

τMC := min τC,i. (4.9)

From these definitions, we can see that Sn,i is the CUSUM statistic assuming that the

post-change parameter is ξi, and τC,i is corresponding Page’s stopping time. The whole

detection procedure stops at τMC , i.e., the observer runs M parallel CUSUM detection

procedures, and the observer stops when anyone of these M procedure raises an alarm.

The asymptotic optimality of τMC is stated in the following theorem:

Theorem 4.1.1. As γ → ∞, τMC defined in (4.9) is asymptotically optimal for Lorden’s

and Pollak’s setups with threshold B = Mγ. Moreover,

inf
τ

WADDξ(τ) ∼WADDξ(τMC) ∼ | log γ|
D(fξ||f0)

,

inf
τ

CADDξ(τ) ∼ CADDξ(τMC) ∼ | log γ|
D(fξ||f0)

.

Proof. The results presented in Lemma 9.2.1 and Theorem 9.2.1 in [86] is stronger than

the result presented in this theorem. One can see [86] for details.

Remark 4.1.2. We provide an intuitive explanation of the asymptotic optimality of the M-

CUSUM procedure. We note that τMC achieves the asymptotic optimality simultaneously

for all possible post-change parameters. Assuming that ξi is the true post-change parame-
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ter, we know that the detection delay is lower bounded by | log γ|(D(fξi ||fξ0))−1(1+o(1)),

and this lower bound is achieved by stopping time τC,i defined by (4.8) with threshold

B = γ. Since the M-CUSUM algorithm takes the minimum over M stopping times,

it tends to reduce the average run length to false alarm. Hence, the observer raises

the threshold M times, which is enough to satisfy the ARL constraint. In the mean-

while, increasing the threshold M times only increases the detection delay slightly, as

logMγ = logM + log γ = log γ(1 + o(1)) when γ →∞.

4.1.2 Non-Bayesian Quickest Detection with Unknown Post-change

Parameters and Stochastic Sampling Right Constraint

In this subsection, we extend the non-Bayesian quickest detection problems considered in

the previous subsection by introducing stochastic sampling right constraints. In particular,

the sampling right arriving sequence ν = {ν1, ν2, . . . , νk, . . .} is i.i.d. over k, and νk ∈

V = {0, 1, 2, . . .}. The sampling right allocation strategy µ = {µ1, µ2, . . .} is controlled

by the observer, and µk ∈ {0, 1}. The sampling right left at the end of time slot k is

updated by

Nk = min{C,Nk−1 + νk − µk}.

The observation sequence is denoted as {Zk}, whose definition is the same as (2.2). Lor-

den’s and Pollak’s detection delays are defined as

WADDξ(µ, τ) := sup
t≥1

esssupEνt,ξ[(τ − t+ 1)+|Ft−1], (4.10)

CADDξ(µ, τ) := sup
t≥1

Eνt,ξ[τ − t|τ > t]. (4.11)
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With a little abuse of notation, we still use WADDξ and CADDξ to denote Lorden’s and

Pollark’s detection delays, respectively. However, different from the classic definition in

(4.2) and (4.3), the stopping time τ in (4.10) and (4.11) is with respect to the filtration

{Fk} generated by {Zk}. Hence, besides the stopping rule τ , the detection delay also

depends on the sampling right allocation rule µ. Furthermore, the probability measure is

ν related. In this subsection, we only focus on the asymptotic analysis of the detection

delay subjected to the system level ARL constraint, which is defined as

ARLs(µ, τ) := Eν∞[τ ]. (4.12)

In general, WADDξ(µ, τ), CADDξ(µ, τ) and ARLs(µ, τ) are also functions of the initial

sampling right level N . However, the impact of N , which is a finite number, on the detect

delay and ARL can be ignored since WADD, CADD and ARL will approach to infinity

in the asymptotic analysis; therefore, we drop the parameter N in their expressions.

In the following, we propose a low complexity detection strategy that is first order

asymptotically optimal for both Lorden’s and Pollark’s settings. In particular, we propose

to use the greedy sampling right allocation strategy

µ̃∗k =

 1 if Nk−1 + νk ≥ 1

0 if Nk−1 + νk = 0
(4.13)

combined with the M-CUSUM procedure

τ̃C,i := inf{n ≥ 0|Sn,i ≥ B}, (4.14)

τ̃MC = min τ̃C,i, (4.15)
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where Sn,i is defined as

Sn,i := max
1≤q≤n

n∏
j=q

L(Zj; ξi, ξ0), (4.16)

L(Zj; ξi, ξ0) =


fξi (Zj)

fξ0 (Zj)
, if µj = 1

1, if µj = 0
. (4.17)

In addition, we use l(Zj; ξi, ξ0) = logL(Zj; ξi, ξ0) to denote LLR.

Theorem 4.1.3. As γ → ∞, (µ̃∗, τMC) is asymptotically optimal for both Lorden’s and

Pollak’s setups with threshold B = Mγ. In particular, we have

inf
µ∈U ,τ∈T

WADDξ(µ, τ) ∼WADDξ(µ̃∗, τ̃MC) ∼ | log γ|
p̃D(fξ||fξ0)

,

inf
µ∈U ,τ∈T

CADDξ(µ, τ) ∼ CADDξ(µ̃∗, τ̃MC) ∼ | log γ|
p̃D(fξ||fξ0)

.

Proof. Please see Appendix C.1.

4.2 Bayesian Quickest Detection Problem with Unknown

Post-Change Parameters

4.2.1 The M-Shiryaev Procedure and Its Asymptotic Optimality

In this subsection, we consider the classic Bayesian quickest detection problem with un-

known post-change parameters. Corresponding to the M-CUSUM procedure in Subsec-

tion 4.1.1, we propose a detection procedure termed as “M-Shiryaev procedure”, and

show that the proposed procedure is first order asymptotically optimal. The problem

setup in this subsection is similar to that in Subsection 4.1.1. Hence, we only highlight

major differences in the following.
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Let {Xk, k = 1, 2, . . .} be a sequence of random variables whose distribution changes

at an unknown time t. The change-point is geometrically distributed

P (t = k) = ρ(1− ρ)k−1, k = 1, 2, . . . . (4.18)

Initially, the random variables are i.i.d. with pdf fξ0(x); after the change-point t, the

density of X changes to fξ(x), where ξ ∈ Ξ. In the Bayesian setting, we assume that

there is a prior distribution over Ξ, which is given as

$i = P (ξ = ξi). (4.19)

t and ξ are independent to each other.

Since there is no stochastic sampling right constraint in this subsection, {Xk} itself

is the observation sequence. In the following, denote Pk,ξi as the conditional probability

measure of the observation sequence given {t = k; ξ = ξi}. In addition, for a measurable

event F , we define probability measures Pπ,ξi and Pπ,$ as

Pπ,ξi(F ) :=
∞∑
k=1

Pk,ξi(F )P (t = k),

Pπ,$(F ) :=
M∑
i=1

Pπ,ξi(F )P (ξ = ξi).

We use Ek,ξi , Eπ,ξi and Eπ,$ to denote the corresponding expectations. We consider

two performance metrics: the average detection delay and the probability of false alarm,

which are defined as

ADD(τ) := Eπ,$
[
(τ − t)+

]
,

PFA(τ) := Pπ,$(τ < t),
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respectively. The goal is to find a stopping time τ with respect to {Fk}, which is the

minimal filtration generated by the observation sequence, to solve the following problem

min
τ∈T

ADD(τ) subject to PFA(τ) ≤ α. (4.20)

To this end, we define the following posterior probabilities

πi,k := P (t ≤ k, ξ = i|Fk),

π0,k := P (t > k|Fk) = 1−
M∑
i=1

πi,k.

It is easy to see that πn = {π0,n, . . . , πM,n} is a Markov Process and satisfies

πi,n =
%i,n(X1, . . . , Xn)∑M
j=0 %j,n(X1, . . . , Xn)

, (4.21)

where

%0,n(X1, . . . , Xn) = (1− ρ)n
n∏
j=1

fξ0(Xj),

%i,n(X1, . . . , Xn) = ρ$i

n∑
k=1

(1− ρ)k−1

k−1∏
j=1

fξ0(Xj)
n∏
j=k

fξi(Xj).

Consider the following statistic

Λn,i := log
%i,n
%0,n

= log
$i

∑n
k=1 ρ(1− ρ)k−1

∏k−1
j=1 fξ0(Xj)

∏n
j=k fξi(Xj)

(1− ρ)n
∏n

j=1 fξ0(Xj)

= log$iρ

n∑
k=0

(1− ρ)−n+k−1

n∏
j=k

fξi(Xj)

fξ0(Xj)

= log$iρ+ logRρ,n,i, (4.22)
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where

Rρ,n,i :=
n∑
k=1

n∏
j=k

1

1− ρ
fξi(Xj)

fξ0(Xj)
(4.23)

is the statistic used in the Shiryaev procedure. We propose the following detection rule

τS,i = inf{n ≥ 1|Λn,i > logB}, (4.24)

τMS = min τS,i. (4.25)

We term this strategy as M-Shiryaev procedure since it can be viewed as a procedure that

simultaneously runs M Shiryaev procedures. The observer stops when one of these M

parallelled Shiryaev procedures stops. In the following, we show the asymptotic optimal-

ity of this procedure.

We first present a lemma which will be used repeatedly in the sequel.

Lemma 4.2.1. (Changing probability measure) Let τ be a stopping time with respect to

{Fk}. Let F be an Fτ measurable event, we have

Pπ,$(F ∩ {τ < t}) = $iEπ,ξi
[
1F∩{t≤τ<∞}e

−Λτ,i
]
. (4.26)

Proof. This proof is similar to the proof of Lemma 2.3 in [99]. In particular,

Pπ,$(F ∩ {τ < t}) =
∞∑
n=0

Pπ,$(F ∩ {τ = n;n < t}) =
∞∑
n=0

Eπ,$
[
1F∩{τ=n;n<t}

]
=

∞∑
n=0

Eπ,$
[
1F∩{τ=n}Eπ,$[1{n<t}|Fn]

]
=
∞∑
n=0

Eπ,$
[
1F∩{τ=n}π0,n

]
=

∞∑
n=0

Eπ,$
[
1F∩{τ=n}πi,n

π0,n

πi,n

]
=
∞∑
n=0

Eπ,$
[
1F∩{τ=n,t≤n;ξ=i}

π0,n

πi,n

]
= $i

∞∑
n=0

Eπ,ξi
[
1F∩{τ=n,t≤n}

π0,n

πi,n

]
= $iEπ,ξi

[
1F∩{t≤τ<∞}

π0,τ

πi,τ

]
.
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Theorem 4.2.2. As α→ 0,

inf
τ∈T

Eπ,ξi
[
(τ − t)+

]
≥ | logα|
D(fξi ||fξ0) + | log(1− ρ)|

(1 + o(1)). (4.27)

Proof. This proof is provided in Appendix C.2.

Theorem 4.2.3. By setting B = 1
α

, the M-Shiryaev procedure defined in (4.25) satisfies

the false alarm constraint. In addition,

Eπ,ξi
[
(τMS − t)+

]
≤ | logα|
D(fξi ||fξ0) + | log(1− ρ)|

(1 + o(1)). (4.28)

Proof. We first consider the detection delay. Assuming ξi is the true post-change param-

eter, then it is well known that the detection delay of the ith Shiryaev procedure is

Eπ,ξi
[
(τS,i − t)+

]
=

| logα|
D(fξi ||fξ0) + | log(1− ρ)|

(1 + o(1)). (4.29)

As τMS < τS,i, we know that τMS has a smaller detection delay.

In the following, we consider the false alarm probability of τMS . By Lemma 4.2.1,

we have

Pπ,$(τMS < t; τ = τi) = $iEπ,ξi
[
1{τMS=τi}∩{t≤τMS<∞}e

−ΛτMS,i
]

≤ $iEπ,ξi
[
1{τMS=τi}∩{t≤τ<∞}

1

B

]
≤ $i

B
= α$i. (4.30)

Hence

PFA(τMS) =
M∑
i=1

Pπ,$(τMS < t; τMS = τi) ≤ α. (4.31)
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Remark 4.2.4. Theorem 4.2.2 and Theorem 4.2.3 together demonstrate the asymptotic

optimality of the proposed M-Shiryaev strategy. Note that instead of directly proving

ADD(τMS) ∼ infτ ADD(τ), we develop the lower bound of detection delay and show

the achievablity for every possible post-change parameter ξi.

4.2.2 Bayesian Quickest Detection with Unknown Post-Change Pa-

rameters and Stochastic Sampling Right Constraint

In this subsection, we reconsider the Bayesian quickest detection problem with unknown

post-change parameter by imposing the stochastic sampling right constraint. In this case,

we denote {Zk} as the observation sequence, and we use P ν
k,ξi

, P ν
π,ξi

and P ν
π,$ to denote

the corresponding probability measures for {Zk}. We want to conduct the asymptotic

analysis for the following problem

min
µ∈U ,τ∈T

ADD(µ, τ) subject to PFA(µ, τ) ≤ α. (4.32)

where

ADD(µ, τ) := Eνπ,$
[
(τ − t)+

]
,

PFA(µ, τ) := P ν
π,$(τ < t).

In general, ADD(µ, τ) and PFA(µ, τ) are also functions of initial sampling right N .

However, as discussed in Subsection 4.1.2, we drop the parameter N in their expressions

since the effect of a finite N is negligible in the asymptotic analysis.

We propose to use the greedy sampling right allocation rule (as specified in (4.13))
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and the following M-Shiryaev procedure for the detection propose:

τ̃S,i = inf{n ≥ 1|Λn,i > logB}, (4.33)

τ̃MS = min τ̃S,i, (4.34)

in which

Λn,i = log$iρ+ logRρ,n,i, (4.35)

Rρ,n,i :=
n∑
k=1

n∏
j=k

1

1− ρ
L(Zj; ξi, ξ0), (4.36)

where L(Zj; ξi, ξ0) is defined in (4.17).

Corresponding to Theorem 4.2.2 and Theorem 4.2.3, we have following two Theo-

rems that establish the asymptotic optimality of the proposed strategy.

Theorem 4.2.5. As α→ 0,

inf
µ∈U ,τ∈T

Eνπ,ξi
[
(τ − t)+

]
≥ | logα|
p̃D(fξi ||fξ0) + | log(1− ρ)|

(1 + o(1)). (4.37)

Proof. Please see Appendix C.3

Theorem 4.2.6. By setting B = 1
α

, (µ̃∗, τ̃MS) is asymptotically optimal. In particular,

Eνπ,ξi
[
(τ̃MS − t)+

]
≤ | logα|
p̃D(fξi ||fξ0) + | log(1− ρ)|

(1 + o(1)). (4.38)

Proof. Please see Appendix C.4
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4.3 Conclusion

In this chapter, we have reviewed the classic non-Bayesian quickest detection problem

with unknown post-change parameters. It is known that the M-CUSUM procedure is

asymptotically optimal for both Lorden’s and Pollak’s setups. Corresponding to the M-

CUSUM procedure, we have proposed the M-Shiryaev detection procedure and have

shown that this procedure is asymptotically optimal for the Bayesian quickest detection

when the post-change parameter is unknown. In addition, we have imposed the stochastic

sampling right constraints to both Bayesian and non-Bayesian setups. We have shown

that the greedy sampling right allocation strategy coupled with the M-CUSUM procedure

is asymptotically optimal for the non-Bayesian setup, and the greedy sampling right allo-

cation strategy coupled with the M-Shiryaev procedure is asymptotically optimal for the

Bayesian setup.
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Chapter 5

Summary and Future Work

5.1 Summary

Motivated by various applications, we have studied quickest detection problems with

stochastic sampling right constraints. We have proposed the greedy sampling right al-

location strategy for the observer, and have shown that, coupled with proper detection

rules, this greedy strategy is asymptotically optimal under various setups. We summarize

our main results as follows:

In Chapter 2, we have discussed the non-Bayesian quickest change-point detection

problem with the stochastic sampling right constraint. In particular, we have considered

three non-Bayesian quickest change detection setups, namely Lorden’s problem with the

algorithm level ARL constraint, Lorden’s problem with the system level ARL constraint

and Pollak’s problem with the system level ARL constraint. For the binary sampling

right arriving model, we have shown that the immediate sampling right allocation scheme

coupled with the CUSUM detection procedure is optimal for the first setup, and is asymp-

totically optimal for the second and the third setup. When the observer can collect more

than one sampling right at each time slot, we have shown that the proposed greedy sam-
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pling right allocation coupled with CUSUM is still asymptotically optimal for the second

and the third setup.

In Chapter 3, we have considered both the limited sampling right constraint and the

stochastic sampling right constraint under the Bayesian setup. For the limited sampling

right constraint, we have shown that the cost function can be expressed by a set of it-

erative functions, each of which can be used to determining the next sampling time or

the stopping time. We have obtained the optimal solution via optimal stopping theory.

For the problem with the stochastic sampling right constraint, we have also solved the

optimal solution via the dynamic programming. Moreover, we have shown that the low

complexity greedy sampling strategy coupled with the Shiryaev procedure is first order

asymptotically optimal as the false alarm probability goes to zero.

In Chapter 4, we have considered the case when the post-change parameter is un-

known to the observer. We have shown that the proposed M-Shiryaev detection procedure

is asymptotically optimal for the Bayesian setup without any sampling right constraints.

By imposing the stochastic sampling right constraint, we have shown that the greedy

sampling strategy coupled with the M-CUSUM procedure is asymptotically optimal for

the non-Bayesian setup, and the greedy sampling strategy coupled with the M-Shiryaev

procedure is asymptotically optimal for the Bayesian setup.

As the final comment, here we provide a high-level explanation why the greedy sam-

pling strategy performs well for both Bayesian and non-Bayesian cases. In the asymp-

totic analysis (either PFA goes to zero or ARL goes to infinity), the detection delay goes

to infinity, hence the observer needs infinitely many sampling rights after the change-

point. These sampling rights mainly come from the replenishing procedure νk. After

the change-point, the greedy sampling strategy is the most efficient way to consume the

sampling rights collected by the observer. Before the change-point, the greedy sampling

might not be the best strategy, but the penalty incurred by this sub-optimality in terms of
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the detection delay is at most C (the finite sampling right capacity of the observer), which

is negligible when the detection delay goes to infinity.

5.2 Future Work

There are many possible directions for the future work. So far, we have only considered

the optimal strategy for a single observer (or a single sensor node). It would be of interest

to extend our work to the distributed sensor networks. In the following, we describe

a possible formulation for the case with two sensors. The general multi-sensor case is

similar.

As shown in Figure 5.1, the system consists of two sensors S1, S2 and a fusion cen-

ter. The observation sequences of S1 and S2 are denoted by
{
Z

(1)
k , k = 1, 2, . . .

}
and{

Z
(2)
k , k = 1, 2, . . .

}
, respectively. We assume that the change occurs at two sensors

simultaneously. Based on the information received from these two sensors, the fusion

center wishes to detect the presence of a change as quickly as possible. In the distributed

sensor network, the communication links between sensors and the fusion center usually

has a limited capacity. Hence each sensor has to quantize its information
{
Z

(i)
k

}
into{

U
(i)
k

}
using function

{
φ

(i)
k

}
. For the sensors powered by renewable energy, we assume

that each transmission from sensor to the fusion center consumes c units of energy. Hence,

the energy stored in sensor Si, denoted as N (i)
k , evolves according to

N
(i)
k+1 = min

[
C(i), N

(i)
k + ν

(i)
k+1 − µ

(i)
k+1 − cψ

(i)
k+1

]
, i = 1, 2,

where C(i) is the energy capacity of sensor Si, ν(i), µ(i) and ψ(i) are energy replenishing

process, energy allocation strategy and communication strategy, respectively.

With this new energy constraint, we can formulate the Bayeisan and the non-Bayesian

quickest detection problems, which are similar to the setups presented in Chapter 2 and
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Figure 5.1: Two-sensor distributed change detection model

Chapter 3. This setup is more challenging than the single sensor setup since both com-

municating with the fusion center and taking observations from the environment consume

energy. In this problem, we need to reinvestigate three subproblems: 1) what energy allo-

cation strategy and statistics should sensors adopt to perform the local detection; 2) how

to quantize the local information; and 3) how often should sensors communicate with

the fusion center. As the single sensor case, characterizing the optimal solution of this

problem is expected to be challenging. Even if the optimal solution can be obtained, it

will have a very complex structure. Therefore, low complexity but asymptotically optimal

solutions are of interest.

As another extension of our research, it would be of interest to extend the problem

discussed in Chapter 4 to the case that the post-change parameter belongs to a compact

set. In particular, the GRL based CUSUM, which is defined as

τ̃GRL−CUSUM = inf

{
k ≥ 0

∣∣∣ max
1≤q≤n

sup
ξ

n∏
j=q

L(Zj; ξ, ξ0) > B

}
, (5.1)

can be viewed as a generalization of (4.15). It is easy to see that τ̃GRL−CUSUM reduces

to τ̃MC when Ξ is a finite set. In Chapter 4, we have shown that τ̃GRL−CUSUM is asymp-

totically optimal for the non-Bayesian quickest detection with stochastic sampling right

constraint when Ξ is finite, it is of interest to see whether or not τ̃GRL−CUSUM preserves
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the asymptotic optimality when Ξ is compact.

We want to use the same idea to generalize τ̃MS for the Bayesian quickest detection

problem with the unknown post-change parameter and the stochastic sampling right con-

straint. This task is more challenging. As specified in (4.35), the proposed statistic is

given as

Λn,i = log$iρ+ logRρ,n,i.

Although LRs in Rρ,n,i can be replaced by GLR as what we did for τ̃MC in (5.1), we note

that $i, which is the prior probability of ξi, reduces to zero when Ξ is a compact set;

hence the first item in Λn,i is problematic in this generalization approach. In our future

work, we are interested in finding a method to generalize the stopping time τ̃MS such that

its asymptotic optimality is preserved under the Bayesian setting.
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Appendix A

Proofs in Section 2

A.1 Proof of Theorem 2.2.3

We first show τC is optimal for any µ. For any path of any sampling right utility process

µ, the quasi change-point of the non-trivial observation sequence is defined as

λ = inf{k|X̃k ∼ f1} = inf{k|bk ≥ t}. (A.1)

This implies that λ can be viewed as the change-point happening in the non-trivial obser-

vation sequence
{
X

(ak,bk)
k

}
. Moreover, κ can be viewed as a stopping time on the non-

trivial observation sequence. Therefore, a rule minimizing the detection delay (τ − t)+

among {Zk} is the same as the one minimizing (κ−λ)+ among
{
X

(ak,bk)
k

}
. Specifically,

the stopping rule is decided by

min
κ

sup
λ≥1

esssupEλ
[
(κ− λ+ 1)+

∣∣∣X̃1, . . . , X̃λ−1

]
,

s.t. E∞[κ] ≥ η.
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Since
{
X

(ak,bk)
k

}
is a conditionally i.i.d. (conditioned on λ) sequence with pre-change

distribution f0 and post-change distribution f1 under any path of sampling right utility

process µ, the above problem is the classical Lorden’s quickest change detection problem

[35], and CUSUM with threshold B, which is a constant such that E∞[κ] = η, is optimal.

Since CUSUM is path-wise optimal, it is optimal for any sampling right utility µ.

To prove the optimality of µ∗ under τC , we examine the following problem:

min
µ∈U

Eν1[τC ],

s.t. E∞[κ] = η. (A.2)

Note that the objective function is the same as d1(N,µ, τC). Since

Eν1[τC ] = Eν1[bκ]
(a)

≥ Eν1[aκ]
(b)
= Eν1[τC ],

in which inequality (a) is due to causal sampling right constraint, and equality (b) is true

because τC = aκ under µ∗ = ν. Therefore, µ∗ is optimal for the problem (A.2).

Since

min
µ,τ

d1(N,µ, τ) = d1(N,µ∗, τC) = dt(N,µ
∗, τC),

in which the last equality is due to Proposition 2.2.1, we have

WADD(N,µ∗, τC) = d1(N,µ∗, τC).

Combining this with the fact that

WADD(N,µ, τ) ≥ d1(N,µ, τ),
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we know that (µ∗, τC) is the optimal solution for Setup I.

A.2 Proof of Proposition 2.2.5

We first examine the quantity E∞[κ]. Note that the non-trivial observation sequence{
X̃k

}
is i.i.d. under P∞. Hence, κ is generated by a renewal process, with renewals

occurring whenever the sum of LLR is less than or equal to zero, and with a termination

when the sum is larger than or equal to the upper threshold, that is,

κ =
J∑
j=1

ιj,

where ι1, ι2, . . . are i.i.d. repetitions of ι, and J is the number of repetitions before the

termination. Let Mj denote the indicator of the event that the jth repetition exits at the

upper boundary. That is Mj = 1 if the jth repetition exits at the upper boundary, and

Mj = 0 if the jth repetition exits at the lower boundary, then J = inf{j : Mj = 1}.

Hence, under P∞, J is a geometric random variable with

P∞(J = j) = [1− P∞(F0)] [P∞(F0)]j−1 , j = 1, 2, . . . .

Then, we have

E∞[J ] =
1

1− P∞(F0)
. (A.3)

Since E∞[J ] <∞, and {ιj} is i.i.d., we can apply Wald’s identity:

E∞[κ] = E∞

[
J∑
j=1

ιj

]
= E∞[J ]E∞[ι]. (A.4)
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Substituting (A.3) into (A.4), we have (2.15).

Following the similar argument as above, we get

E1[κ] =
E1[ι]

1− P1(F0)
.

Denote Ik = ak − ak−1 as the time interval between two successive observations. It is

easy to see Ik’s are i.i.d. with geometric distribution. Its pmf is given as

P (I = i) = (1− p)i−1p,

and the average of the time interval between two successive observations is

Eν [I] =
1

p
.

For the average detection delay, we have

WADD(N,µ∗, τC)
(a)
= d1(N,µ∗, τC)

= Eν1[τC ]

= Eν1[aκ]

= Eν1

[
κ∑
k=1

Ik

]
(b)
= Eν [I]E1 [κ]

=
1

p
E1[κ]. (A.5)

Here, (a) is due to equalizer property, (b) is the Wald’s identity. Then (2.16) follows.
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A.3 Proof of Theorem 2.3.1

This proof relies on several supporting propositions and Theorem 1 of [44].

Proposition A.3.1. For an arbitrary but given sampling right utility µ, we have

lim
m→∞

esssupP ν
t

{
1

m
max

0<q≤m

t+q∑
i=t

l(Zi) ≥ (1 + ε)D1

∣∣∣∣∣Z1, . . . , Zt−1

}
→ 0

∀ε > 0, (A.6)

where D1 = pD(f1||f0).

Proof. We first show that the inequality

1

m

t+m−1∑
i=t

l(Zi) ≤ D1, as m→∞, (A.7)

holds almost surely under P ν
t for any t ≥ 1.

To show this, we first consider the immediate sampling right allocation µ∗, by the

strong law of large numbers, we have

1

m

t+m−1∑
i=t

µi =
m̂

m

a.s.→ p, as m→∞,

where m̂ is the amount of sampling right arrived from t to t + m − 1. In the immediate

allocation µ∗, m̂ equal to the number of nonzero elements in
{
µ∗t , . . . , µ

∗
t+m−1

}
. We also

have

1

m

λ+m−1∑
i=λ

l
(
X̃i

)
a.s.→ D(f1||f0), as m→∞,

in which λ is the quasi change-point defined in (A.1). Therefore, under µ∗, as m → ∞,
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we have

1

m

t+m−1∑
i=t

l(Zi) =
m̂

m

1

m̂

λ+m̂−1∑
i=λ

l
(
X̃i

)
a.s.→ pD(f1||f0) = D1. (A.8)

For an arbitrary sampling right allocation µ with lim supk→∞ µk = 1, the amount

of sampling right allocated from t to t + m − 1 is bounded by the amount of sampling

right arrived in this period plus the amount of sampling right left at time t. That is, m̃ ≤

m̂+Nt ≤ m̂+C, where m̃ denotes the number of nonzero elements in {µt, . . . , µt+m−1}.

Therefore, as m→∞,

1

m

t+m−1∑
i=t

l(Zi) =
m̃

m

1

m̃

λ+m̃−1∑
i=λ

l
(
X̃i

)
≤ m̂+ C

m

1

m̃

λ+m̃−1∑
i=λ

l
(
X̃i

)
a.s.→ pD(f1||f0).

For the sampling right allocation scheme µ with lim supk→∞ µk = 0, we have

lim
m→∞

1

m

t+m−1∑
i=t

l(Zi) = 0 ≤ pD(f1||f0).

Therefore, inequality (A.7) holds for any arbitrary µ. Note that i) (A.7) holds in the

almost sure sense, since (A.8) converges in the almost sure sense; and ii) (A.7) holds for

any realization of Z1, . . . , Zt−1.

For any ε > 0, define

T tε = sup

{
m ≥ 1

∣∣∣∣∣ 1

m

t+m−1∑
i=t

l(Zi) > (1 + ε)D1

}
.

Due to (A.7), we have

essinf P ν
t {T tε <∞|Z1, . . . , Zt−1} = 1,
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which indicates

lim
m→∞

esssupP ν
t

{
1

m
max

0<q≤m

t+q∑
i=t

l(Zi) ≥ (1 + ε)D1

∣∣∣∣∣Z1, . . . , Zt−1

}
→ 0.

Note that Proposition A.3.1 holds for every t ≥ 1, therefore

lim
m→∞

sup
t≥1

esssupP ν
t

{
1

m
max

0<q≤m

t+q∑
i=t

l(Zi) ≥ (1 + ε)D1

∣∣∣∣∣Z1, . . . , Zt−1

}
→ 0.

(A.9)

To prove Theorem 2.3.1, we need Theorem 1 in [44] , which is restated as follows:

Theorem A.3.2. ( [44]) Let {Zk} be a random variables sequence with a deterministic

but unknown change-point t. Under probability measure Pt, the conditional distribution

of Zk is f0(·|Zk−1
1 ) for k < t and is f1(·|Zk−1

1 ) for k ≥ t. Denote l(Zk) as

l(Zk) = log
f1(Zk|Zk−1

1 )

f0(Zk|Zk−1
1 )

.

If the condition

lim
m→∞

sup
t≥1

esssupPt

{
max

0<q≤m

t+q∑
i=t

l(Zi) ≥ D1(1 + ε)m
∣∣∣Z1, . . . , Zt−1

}
→ 0,

∀ε > 0 (A.10)
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holds for some constant D1. Then, as γ →∞,

inf

{
sup
t≥1

esssupEt[(τ − t+ 1)+|Ft−1] : E∞[τ ] ≥ γ

}
≥ inf

{
sup
t≥1

Et[τ − t|τ ≥ t] : E∞[τ ] ≥ γ

}
≥ (D−1

1 + o(1)) log γ.

Proof. Please refer to [44].

In our case, for any arbitrary but given sampling right allocation µ, the pre-change

conditional density of Zk is given as

f0(Zk|Zk−1
1 ) = f0(Xk)P

(
{µk = 1} |Zk−1

1

)
+ δ(φ)P

(
{µk = 0} |Zk−1

1

)
,

where δ(φ) is the Dirac delta function. Similarly, the post-change conditional density is

f1(Zk|Zk−1
1 ) = f1(Xk)P

(
{µk = 1} |Zk−1

1

)
+ δ(φ)P

(
{µk = 0} |Zk−1

1

)
.

Therefore, the log likelihood ratio in Theorem A.3.2

l(Zk) = log
f1(Zk|Zk−1

1 )

f0(Zk|Zk−1
1 )

=

 log f1(Zk)
f0(Zk)

, if µk = 1

0, if µk = 0
,

which is consistent with the definition in (2.12). Moreover, (A.9) indicates that, for any

arbitrary sampling right utility, (A.10) holds for the constantD1 = pD(f1||f0). Therefore,
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the conclusion in Theorem A.3.2 indicates the result for our case:

inf{WADD(N,µ, τ) : Eν∞[τ ] ≥ γ}

≥ inf {CADD(N,µ, τ) : Eν∞[τ ] ≥ γ}

≥ (D−1
1 + o(1)) log γ.

A.4 Proof of Theorem 2.4.2

We first prove the asymptotic optimality of (µ̃∗, τC) for problem Setup II. The proof relies

on some supporting propositions and Theorem 4 of [44].

Proposition A.4.1. For the sampling right utility µ̃∗, we have

lim
m→∞

sup
k≥t≥1

esssupP ν
t

{
1

m

k+m∑
i=k

l(Zi) ≤ p̃D(f1||f0)− δ

∣∣∣∣∣Z1, . . . , Zk−1

}
→ 0

∀δ > 0. (A.11)

Proof. As we have shown in Proposition A.3.1, for any realization of Z1, . . . , Zk−1, and

∀k ≥ t, under the sampling right utility µ̃∗, we have

1

m

k+m−1∑
i=k

l(Zi)
a.s.→ p̃D(f1||f0), m→∞.

Then

lim
m→∞

esssupP ν
t

{∣∣∣∣∣ 1

m

k+m∑
i=k

l(Zi)− p̃D(f1||f0)

∣∣∣∣∣ ≥ δ

∣∣∣∣∣Z1, . . . , Zk−1

}
→ 0

∀δ > 0,
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for all k ≥ t. Therefore

lim
m→∞

esssupP ν
t

{
1

m

k+m∑
i=k

l(Zi) ≤ p̃D(f1||f0)− δ

∣∣∣∣∣Z1, . . . , Zk−1

}
→ 0

because the above expression holds for every k ≥ t. Then the proposition follows.

Proposition A.4.2. Under the sampling right utility µ̃∗, Page’s stopping time τC satisfies

sup
k≥1

P ν
∞(k ≤ τC < k +mα) ≤ α, (A.12)

where

lim inf
mα

| logα|
> (p̃D(f1||f0))−1,

but

logmα = o(logα) as α→ 0.
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Proof. For any k,

P ν
∞(k ≤ τC < k +mα)

=
k+mα−1∑
k̂=k

P ν
∞(τC = k̂)

≤
k+mα−1∑
k̂=k

P ν
∞


k̂∏

i=k̂−j

L(Zi) ≥ B, ∃0 ≤ j ≤ k̂ − 1


(a)
=

k+mα−1∑
k̂=k

P∞

{
k′∏

i′=k′−j′
L(X̃i′) ≥ B, ∃0 ≤ j′ ≤ k′ − 1

}

(b)
=

k+mα−1∑
k̂=k

P∞

{
k′′∏
i′=1

L(X̃i′) ≥ B, ∃0 ≤ k′′ ≤ k′

}
(c)

≤
k+mα−1∑
k̂=k

exp(− logB)

= mα exp(− logB). (A.13)

Here, (a) is true because the likelihood ratio of {Zi} and that of
{
X̃i

}
are the same. Then

we substitute {Zi}with
{
X̃i

}
, and change the probability measure correspondingly. i′, k′

and j′ are the new indices in
{
X̃i

}
corresponding to the original i, k̂ and j in {Zi}. (b)

holds because under P∞,
{
X̃i

}
are i.i.d., then we reverse the sequence. (c) is due to

Doob’s martingale inequality (see, for example, Theorem 3.6 in [100]), since under P∞,{
L(X̃i)

}
is a martingale with expectation 1.

By (A.13), we can simply choose mα = | logα|(p̃D(f1||f0))−1 + δ, and choose B,

the threshold of CUSUM, such that mα exp(− logB) = α.

To prove Theorem 2.4.2, we need Theorem 4 ii) of [44] , which is restated as follows:

Theorem A.4.3. ( [44]) Let {Zk} be a random variables sequence with a deterministic

but unknown change-point t. Under probability measure Pt, the conditional distribution
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of Zk is f0(·|Zk−1
1 ) for k < t and is f1(·|Zk−1

1 ) for k ≥ t. Denote l(Zk) as

l(Zk) = log
f1(Zk|Zk−1

1 )

f0(Zk|Zk−1
1 )

.

Denote ec as the threshold used in Page’s stopping time. Then

E∞[τC ] ≥ ec.

If ∀δ > 0, the condition

lim
m→∞

sup
k≥t≥1

esssupPt

{
1

m

k+m∑
i=k

l(Zi) ≤ D1 − δ

∣∣∣∣∣Z1, . . . , Zk−1

}
→ 0

holds for some constant D1, and as α → 0, there exists some mα which dependents only

on α such that

sup
k≥1

P∞(k ≤ τC ≤ k +mα) ≤ α,

where

lim inf
mα

| logα|
> D−1

1 ,

but,

logmα = o(logα) as α→ 0.

Then,

sup
t≥1

esssupEt
[
(τ − t+ 1)+|Z1, . . . , Zt−1

]
≤ (D−1

1 + o(1))c as c→∞.
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Proof. Please refer to [44].

By Proportion A.4.1 and A.4.2, (µ̃∗, τC) is a strategy that satisfies the conditions in

Theorem A.4.3. Hence, if we choose c = log γ and D1 = p̃D(f1||f0) in the theorem, it is

easy to verify that WADD(N, µ̃∗, τC) ≤ ((p̃D(f1||f0))−1 + o(1))| log γ| with Eν∞[τC ] ≥

γ. Therefore, (µ̃∗, τC) is asymptotically optimal for Setup II.

Then we show the asymptotic optimality of (µ̃∗, τC) for Setup III.

Lemma A.4.4.

sup
t≥1

Eνt [τC − t|τC ≥ t] ∼ 1

p̃

| log γ|
D(f1||f0)

. (A.14)

Proof. Follow the similar argument in the proof of Lemma 2.3.4, we have

Eνt [τC − t|τC ≥ t] ≤ Eνt [τs,t − 1|τC ≥ t]

= Eνt [τs,t]− 1. (A.15)

We claim that

Eνt [τs,t|Nt = i] ≤ Eνt [τs,t|Nt = 0] , for i = 1, . . . , C,

that is, at the change-point t, if there are any sampling rights left, the average detection

delay tends to be smaller than that of the case with no sampling right left. Hence we have

Eνt [τs,t|Nt = 0] ≥ Eνt [Eνt [τs,t|Nt]] = Eνt [τs,t]. Then we have

Eνt [τC − t|τC ≥ t] ≤ Eνt [τs,t|Nt = 0]− 1.
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Let B = γ, we have

τs,t = inf

{
m ≥ 1

∣∣∣∣∣
t+m∑
i=t

l(Zi) ≥ log γ

}
.

We define a sequence of stopping times {τ (1)
s,t , . . . , τ

(k)
s,t , . . .} in the following manner:

1. Set Nt = 0. Define

τ
(1)
s,t = inf

{
m ≥ 1

∣∣∣∣∣
t+m∑
i=t

l(Zi) ≥ log γ

}
.

2. Set N
τ
(k−1)
s,t

= 0. Define

τ
(k)
s,t = inf

m ≥ 1

∣∣∣∣∣
τ
(k−1)
s,t +m∑

i=τ
(k−1)
s,t +1

l(Zi) ≥ log γ

 .

That is, at change-point t, we discard all sampling rights and then start a SPRT under

the sampling right allocation µ̃∗. When the previous SPRT stops, we clean all sampling

rights again, and start a new SPRT immediately. Then, this sequence of stopping time

{τ (1)
s,t , . . . , τ

(k)
s,t , . . . , } are independent with the same distribution of τs,t under Nt = 0.

Therefore, by the strong LLN, for an K that large enough, we have

TK
K

=
τ

(1)
s,t + τ

(2)
s,t + · · ·+ τ

(K)
s,t

K

a.s.→ Eνt [τs,t|Nt = 0],

where TK =
∑K

i=1 τ
(i)
s,t . Since we have

t+TK∑
i=t

l(Zi) ≥ K log γ,
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as γ →∞, TK →∞, then

1

TK

t+M∑
i=t

l(Zi) ≥
K

TK
log γ,

that is

p̃D(f1||f0) ≥ K

TK
log γ or

TK
K
≥ | log γ|
p̃D(f1||f0)

.

If we ignore the overshoot, we will have

Eνt [τs,t|Et = 0] ∼ | log γ|
p̃D(f1||f0)

.

Then, we have

Eνt [τC − t|τC ≥ t] ≤ | log γ|
p̃D(f1||f0)

(1 + o(1)).
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Appendix B

Proofs in Section 3

B.1 Proof of Lemma 3.2.2

Let µ = (b1, · · · , bκ) be a sampling strategy and τ = bs be a stopping time such bs > bκ

and κ < N . Note that b1, · · · , bκ are time instances at which observations are taken,

and bs is the time instance at which no sample is taken but the observer announces that a

change has occurred. Since κ < N , meaning that there is at least one sampling right left,

we construct another strategy µ̃ = (b1, · · · , bκ, bs) and τ̃ = bs+m∗, in which we will take

another observation at time bs and then claim that a change has occurred at time bs +m∗.

Here m∗ is chosen as

m∗ = argminm≥0H(πbs ,m),

in which

H(π,m) := Eπ

[
c
m−1∑
k=0

πk + 1− πm

]
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with

π0 = π,

πk = π +
k∑
i=1

(1− π)ρ(1− ρ)i−1

= π + (1− π)[1− (1− ρ)k], k = 1, . . .m.

Then, we have

U(π,N, µ̃, τ̃) = Eπ

[
c
bs+m∗−1∑
k=0

πk + 1− πbs+m∗
]

= Eπ

[
c
bs−1∑
k=0

πk +H(πbs ,m
∗)

]

≤ Eπ

[
c
bs−1∑
k=0

πk +H(πbs , 0)

]

= Eπ

[
c
bs−1∑
k=0

πk + 1− πbs

]
= U(π,N, µ, τ).

Hence, by taking one more observation at time bs and then deciding whether a change has

occurred or not can reduce the cost. This implies that if there are sampling rights left, it

is not optimal to claim a change without first taking a sample.

B.2 Proof of Theorem 3.2.4

We show this theorem by induction: it is clear that J(π, 0) = V0(π). Suppose J(π, n −

1) = Vn−1(π), we show that J(π, n) = Vn(π).

Firstly, we show that J(π, n) ≥ Vn(π). If the optimal sampling strategy for (3.12) is

bκ = 0, then the optimal stopping time is τ = 0 by Corollary 3.2.3. In this case, it is
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easy to verify that J(π, n) = Vn(π) = 1 − π. Hence the conclusion J(π, n) ≥ Vn(π)

holds trivially. If the optimal strategy bκ 6= 0, then any given strategy µ = {b1, · · · , bκ}

with b1 = 0 is not optimal, since it simply reduces the set of admissible strategies without

bringing any benefit. In the following we consider the sampling strategy with bκ 6= 0 and

b1 6= 0.

Let µ = {b1, · · · , bκ} be any sampling strategy with b1 6= 0 in Un, then we construct

another sampling strategy µ̃ via µ̃ = {b2, · · · , bκ}, which is in Un−1. We have

U(π, n, µ, τ) = Eπ

[
1− πτ + c

τ−1∑
k=0

πk

]

= Eπ

[
c

b1−1∑
k=0

πk + 1− πτ + c
τ−1∑
k=b1

πk

]

= Eπ

[
c

b1−1∑
k=0

πk + U(πb1 , n− 1, µ̃, τ)

]

≥ Eπ

[
c

b1−1∑
k=0

πk + J(πb1 , n− 1)

]

≥ inf
m≥1

Eπ

[
c
m−1∑
k=0

πk + Vn−1(πm)

]

≥ min

{
1− π, inf

m≥1
Eπ

[
c
m−1∑
k=0

πk + Vn−1(πm)

]}
. (B.1)

Since this is true for any µ ∈ Un with b1 6= 0, and we also know that the strategy µ

with b1 = 0 could not be optimal unless bκ = 0, then we have

J(π, n) = inf
µ
U(π, n, µ, τ) ≥ GVn−1(π) = Vn(π).

Secondly, we show that J(π, n) ≤ Vn(π). Assume the optimal sampling strategy

is µ∗ = {b∗1, b∗2, . . . , b∗κ∗} ∈ Un and the optimal stopping time is τ ∗, another strategy is

denoted as µ = {b1, b̃2, . . . , b̃κ} with stopping time τ̃ , where b1 is an arbitrary sampling
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time, µ̃ = {b̃2, . . . , b̃n} with τ̃ is the optimal strategy achieves J(πb1 , n−1) = U(πb1 , n−

1, µ̃, τ̃). We have

J(π, n) ≤ Eπ

[
c

b1−1∑
k=0

πk + J(πb1 , n− 1)

]

because (µ, τ̃) is not optimal. Since the above inequality holds for every b1, we have

J(π, n) ≤ inf
m≥0

Eπ

[
c
m−1∑
k=0

πk + Vn−1(πm)

]

≤ inf
m≥1

Eπ

[
c
m−1∑
k=0

πk + Vn−1(πm)

]
.

Moveover, we have

J(π, n)
(a)

≤ J(π, 0) = inf
τ
Eπ

[
1− πτ + c

τ−1∑
k=0

πk

]
(b)

≤ 1− π,

in which (a) is true because the admissible strategy set of J(π, n) is larger than that of

J(π, 0), and (b) is true because τ = 0 is not necessarily optimal for J(π, 0). Therefore,

we have

J(π, n) ≤ min

{
1− π, inf

m≥1
Eπ

[
c
m−1∑
k=0

πk + Vn−1(πm)

]}
= Vn(π).

Then we can conclude that J(π, n) = Vn(π).

The optimality of (3.16) can be verified by putting it into (B.1), whose inequalities

will then become equalities. Further, we can obtain

VN−n(πb∗n) = min

1− πb∗n ,Eπb∗n

c b∗n+1−1∑
k=0

πk + VN−n−1(πb∗n+1
)

 .
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Note that {πb∗n} is a Markov chain, hence (3.17) can be immediately obtained by the

Markov optimal stopping theorem. By Corollary 3.2.3, on {κ∗ < N} we have τ ∗ = b∗κ∗ .

On {κ∗ = N}, by (3.14) it is easy to verify that

τ ∗ − b∗κ∗ = argminm≥0 Eπb∗
N

[
c
m−1∑
k=0

πk + 1− πm

]
.

Let

m∗ = argminm≥0 Eπb∗
N

[
c

m−1∑
k=0

πk + 1− πm

]
,

then

τ ∗ = (b∗κ∗ +m∗)1{κ∗=N} + b∗κ∗1{κ∗<N}

= b∗κ∗ +m∗1{κ∗=N}.

B.3 Proof of Theorem 3.2.7

It is easy to see that 0 ≤ Vn(π) ≤ 1 for any n ≤ N , and Vn(1) = 0. We next prove the

concavity of Vn(π) by inductive arguments. Clearly V0(πk) is a concave function of πk

and V0(1) = 0. Suppose Vn−1(πk) is a concave function of πk, we show that Vn(πk) is a

concave function.

We denote

An(π) = Eπ[Vn−1(πm)],

and we show that An(π) is a concave function.
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Let π1
k ∈ [0, 1] and π2

k ∈ [0, 1] and θ ∈ [0, 1], then for any fixed m, we have

θAn(π1
k) + (1− θ)An(π2

k) = θEπ1
k
[Vn−1(π1

k+m)] + (1− θ)Eπ2
k
[Vn−1(π2

k+m)]

=

∫
(θVn−1(π1

k+m)f(xk+m|π1
k,m)

+(1− θ)Vn−1(π2
k+m)f(xk+m|π2

k,m))dxk+m

=

∫
[ϑVn−1(π1

k+m) + (1− ϑ)Vn−1(π2
k+m)]

[θf(xk+m|π1
k,m) + (1− θ)f(xk+m|π2

k,m)]dxk+m

(a)

≤
∫
Vn−1(ϑπ1

k+m + (1− ϑ)π2
k+m)

[θf(xk+m|π1
k,m) + (1− θ)f(xk+m|π2

k,m)]dxk+m

in which

ϑ =
θf(xk+m|π1

k,m)

θf(xk+m|π1
k,m) + (1− θ)f(xk+m|π2

k,m)
,

and (a) is due to the inductive assumption that Vn−1(·) is a concave function. Now, define

π3
k = θπ1

k + (1− θ)π2
k,

we can verify that

π3
k+m =

[1− (1− π3
k)(1− ρ)m]f1(Yk+m)

[1− (1− π3
k)(1− ρ)m]f1(Yk+m) + (1− π3

k)(1− ρ)mf1(Yk+m)

= ϑπ1
k+m + (1− ϑ)π2

k+m.

At the same time, we have

θf(xk+m|π1
k,m) + (1− θ)f(xk+m|π2

k,m) = f(xk+m|π3
k,m).
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Hence,

θAn(π1
k) + (1− θ)An(π2

k) ≤ Eπ3
k

[
Vn−1(π3

k+m)
]

= An(π3
k).

Therefore,An(π) = Eπ [Vn−1(πm)] is a concave function. As the result, infm {Eπ [Vn−1(πm)]}

is also concave since it is the minimum of concave function. Then,

c

(
m− π̄k

ρ
(1− ρ̄m)

)
+ inf

m≥1
Eπk [Vn−1(πk+m)] (B.2)

is also a concave function of πk. Further, Vn(πk) is a concave function of πk since it is the

minimum of two concave functions.

By the fact that {Vn(π), n = 1, . . . , N} is a family of concave functions, {Vn(π), n =

1, . . . , N} are dominated by 1 − π and Vn(1) = 0, we immediately conclude that τ is a

threshold rule. By Corollary 3.2.3 and Theorem 3.2.4, we can easily obtain (3.23) and

(3.25).

B.4 Proof of Proposition 3.2.9

In the proof, we assume π0 = 0. This assumption will not affect the asymptotic result but

will simplify the mathematical derivation.

We consider a uniform sampling scheme with sample interval ς . Since it is not optimal

for the observer to take an observation every ς time slots, ADD of the uniform sampling

scheme is larger than that of the optimal strategy. Define

λ := min{n|nς ≥ t}. (B.3)

The random variable λ acts as the change-point when there is uniform sampling, since
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from observing {Xς , X2ς , . . .}, we cannot tell whether the change happens at t or at λς .

In the following, we derive the average detection delay when we use {Xkς} to detect λ,

and we use the following stopping rule

κ̄ = min{n|πnς > 1− α}. (B.4)

In the first step, we relax the condition (3.27) and consider that N =∞. We note that

the problem of detecting λ based on {Xkς} is still under the Bayesian framework. The

distribution of λ is given as

q0 = P (λ = 0) = 0,

qk = P (λ = k) = (1− ρ)(k−1)ς [1− (1− ρ)ς ] .

From (2.6) and (3.1) in [47], we have

d = lim
k→∞

− logP (λ ≥ k + 1)

k
= ς| log(1− ρ)|.

On the event {λ = k}

1

n

k+n−1∑
i=k

l(Xiς)→ D(f1||f0) as n→∞,

where l(Xiς) = log f1(Xiς)/f0(Xiς) is the log-likelihood ratio. Then, by Theorem 3

in [47], we have

E [κ̄− λ|κ̄ ≥ λ] ≤ | logα|
D(f1||f0) + ς| log(1− ρ)|

(1 + o(1)). (B.5)

In the second step, we take (3.27) into consideration and we show that P (N ≥ κ̄)→ 1
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as α → 0. This result indicates that (3.27) can guarantee that the observer has enough

sampling rights so that she can always stop with some sampling rights left. Therefore,

(B.5) still holds with probability 1 when we take the constraint (3.27) into consideration.

By (3.27), we have

(
1

1− ρ

)Nς
≥ 1

α
or (1− ρ)Nς ≤ α. (B.6)

Therefore,

P (λ ≥ N) =
∞∑

n=N+1

P (λ = n) = (1− ρ)Nς < α,

and it is clear that P (λ ≥ N)→ 0 when α→ 0.

In the following, we show P (κ̄ > N > λ)→ 0 as α→ 0. Note that

{κ̄ > N} ⇔ {max{π0, . . . , πNς} < 1− α}

⇔ ∩Ni=0{πiς < 1− α}.

Following (3.7) in [51], we can rewrite πi as

πiς =
Rρ,i

Rρ,i + 1
1−(1−ρ)ς

, (B.7)

in which

Rρ,i :=
i∑

k=1

i∏
j=k

[
1

(1− ρ)ς
L(Xjς)

]
, (B.8)

where L(Xjς) =
f1(Xjς)

f0(Xjς)
is the likelihood ratio. One can show (B.7) and (B.8) by inductive
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argument using (3.20) and Rρ,i = (1 +Rρ,i−1) 1
(1−ρ)ς

L(Xiς). Therefore, we have

Rρ,N =
N∑
k=1

N∏
j=k

[
1

(1− ρ)ς
L(Xjς)

]

=

[
1

(1− ρ)ς

]N N∑
k=1

[(1− ρ)ς ]k−1

N∏
j=k

L(Xjς)

≥ 1

α

N∑
k=1

[(1− ρ)ς ]k−1

N∏
j=k

L(Xjς).

Finally, we have

P (κ̄ > N > λ) ≤ P (κ̄ > N)

= P
(
∩Ni=0{πiς < 1− α}

)
≤ P (πNς < 1− α)

= P

(
Rρ,N <

1− α
α

1

1− (1− ρ)ς

)
≤ P

(
N∑
k=1

qk

N∏
j=k

L(Xjς) < 1− α

)
. (B.9)

By (3.27) we have N →∞ when α→ 0, hence

N∑
k=1

qk

N∏
j=k

L(Xjς)→
∞∑
k=1

qk

∞∏
j=k

L(Xjς) = Eπ

[
∞∏
k=λ

L(Xkς)

]
=∞.

Therefore

P (κ̄ > N > λ) ≤ P (κ̄ > N)→ 0.
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Then

P (N ≥ κ̄) = 1− P (λ ≥ N)− P (κ̄ > N > λ)

→ 1. (B.10)

As α→ 0, we have

Eπ [κ̄− λ|κ̄ ≥ λ] =
Eπ [(κ̄− λ)+]

1− P (κ̄ < λ)
→ Eπ

[
(κ̄− λ)+

]
.

Let τ := inf{nς : πnς > 1− α} = κ̄ς . Since 0 ≤ λς − t ≤ ς − 1 and ς <∞, we obtain

Eπ
[
(τ − t)+

]
≤ | logα|ς

D(f1||f0) + | log(1− ρ)|ς
(1 + o(1)) + (ς − 1).

=
| logα|ς

D(f1||f0) + | log(1− ρ)|ς
(1 + o(1)). (B.11)

Since the uniform sampling scheme and the stopping time τ are not optimal, the detection

delay of the optimal strategy (µ∗, τ ∗) is less than Eπ [(τ − t)+]. Hence the conclusion of

Proposition 3.2.9 holds.

B.5 Proof of Theorem 3.3.1

We show this theorem by induction: it is easy to see that JTT (πT , NT ) = V T
T (πT , NT ).

Suppose that JTk+1(πk+1, Nk+1) = V T
k+1(πk+1, Nk+1), we show JTk (πk, Nk) = V T

k (πk, Nk).

We immediately obtain that JTk (πk, Nk) ≤ V T
k (πk, Nk) since JTk (πk, Nk) is defined

as the minimum cost over T Tk and UTk+1. In the following, we show that JTk (πk, Nk) ≥

V T
k (πk, Nk).
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By the recursive formulaes of V T
k and W T

k+1, we can obtain

V T
k (πk, Nk)

= min
{

1− πk, cπk + Eν [W T
k+1(πk, Nk, νk+1)]

}
= min

{
1− πk, cπk +

∞∑
j=0

pjW
T
k+1(πk, Nk, j)

}
= min {1− πk,

cπk +
∞∑
j=0

pj min
{
Eνπk [V

T
k+1(πk+1, Nk+1)|νk+1 = j, µk+1 = 0],

Eνπk [V
T
k+1(πk+1, Nk+1)|νk+1 = j, µk+1 = 1]

}}
. (B.12)

On the other hand, for JTk (πk, Nk) we have

JTk (πk, Nk)

= inf
µTk+1∈U

T
k+1,τ∈T

T
k

Eνπk

[
1− πτ + c

τ−1∑
i=k

πi

]

= inf
µTk+1∈U

T
k+1,τ∈T

T
k

[
Eνπk

[
1− πτ + c

τ−1∑
i=k

πi

]
1{τ=k}

+Eνπk

[
1− πτ + c

τ−1∑
i=k

πi

]
1{τ≥k+1}

]
= inf

µTk+1∈U
T
k+1,τ∈T

T
k

[
(1− πk)1{τ=k}

+Eνπk

[
1− πτ + cπk + c

τ−1∑
i=k+1

πi

]
1{τ≥k+1}

]

= min

{
1− πk, cπk + inf

µTk+1∈U
T
k+1,τ∈T

T
k+1

Eνπk

[
1− πT + c

T−1∑
i=k+1

πi

]}

= min

{
1− πk, cπk + inf

µTk+1∈U
T
k+1,τ∈T

T
k+1

Eνπk

[
Eνπk+1

[
1− πT + c

T−1∑
i=k+1

πi

]]}

= min

{
1− πk, cπk + inf

µTk+1∈U
T
k+1,τ∈T

T
k+1

Eνπk
[
U(πk+1, Nk+1, τ, µ

T
k+2)

]}
. (B.13)

107



At the same time, we have

Eνπk
[
U(πk+1, Nk+1, τ, µ

T
k+2)

]
=

∞∑
j=0

pjEνπk

[
U(πk+1, Nk+1, τ, µ

T
k+2)

∣∣∣∣∣νk+1 = j

]
(a)

≥
∞∑
j=0

pj min

{
Eνπk

[
U(πk+1, Nk+1, τ, µ

T
k+2)

∣∣∣∣∣νk+1 = j, µk+1 = 0

]
,

Eνπk

[
U(πk+1, Nk+1, τ, µ

T
k+2)

∣∣∣∣∣νk+1 = j, µk+1 = 1

]}
, (B.14)

in which (a) holds because Eνπk
[
U(πk+1, Nk+1, µ

T
k+2, τ)|νk+1 = j

]
is a linear combination

of Eνπk
[
U(πk+1, Nk+1, µ

T
k+2, τ)|νk+1 = j, µk+1 = i

]
for i = 0, 1. Substituting (B.14) into

(B.13), and using inequalities inf(a+b) ≥ inf a+inf b, inf min{a, b} ≥ min{inf a, inf b}

and inf E[·] ≥ E[inf(·)], we obtain

JTk (πk, Nk)

≥ min

{
1− πk, cπk +

∞∑
j=0

pj min{
Eνπk

[
inf

µTk+1∈U
T
k+1,T∈T

T
k+1

U(πk+1, Nk+1, τ, µ
T
k+2)

∣∣∣∣∣νk+1 = j, µk+1 = 0

]
,

Eνπk

[
inf

µTk+1∈U
T
k+1,T∈T

T
k+1

U(πk+1, Nk+1, τ, µ
T
k+2)

∣∣∣∣∣νk+1 = j, µk+1 = 1

]}

=
∞∑
j=0

pj min

{
Eνπk

[
JTk+1(πk+1, Nk+1)

∣∣∣∣∣νk+1 = j, µk+1 = 0

]
,

Eνπk

[
JTk+1(πk+1, Nk+1)

∣∣∣∣∣νk+1 = j, µk+1 = 1

]}
. (B.15)

Since we assume that JTk+1(πk+1, Nk+1) = V T
k+1(πk+1, Nk+1), by (B.12) and (B.15) we

can obtain JTk (πk, Nk) ≥ V T
k (πk, Nk).
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B.6 Proof of Theorem 3.3.4

In this proof, we can consider the case that N0 = C, i.e., the observer has a maximum

amount of sampling rights at the beginning. The lower bound for ADD of this case will

certainly be the lower bound for ADD of the case with N0 < C. The proof of Theorem

3.3.4 requires several supporting propositions and Theorem 1 in [47], which are presented

as follows.

Proposition B.6.1. Given t = k, we have

lim
m→∞

P ν
k

{
1

m
max

0<q≤m

k+q∑
i=k

l(Zi) ≥ (1 + ε)D1

}
→ 0 ∀ε > 0, (B.16)

where D1 = p̃D(f1||f0) and p̃ = E[µ̃∗].

Proof. Follow Lemma 2.4.1, we can show that E[µ̃∗] exists and 0 ≤ E[µ̃∗] ≤ 1.

Following the proof of Lemma 2.3.1, on the event {t = k}, we have

1

m

m+k−1∑
i=k

l(Zi) ≤ p̃D(f1||f0) =: D1, as m→∞, (B.17)

holds almost surely under P ν
k for any k ≥ 1.

For any ε > 0, define

T kε := sup

{
m ≥ 1

∣∣∣∣∣ 1

m

k+m−1∑
i=k

l(Zi) > D1

}
.

Due to (B.17), we have

P ν
k

{
T kε <∞

}
= 1,
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which indicates

lim
m→∞

P ν
k

{
1

m
max

0<q≤m

k+q∑
i=k

l(Zi) ≥ (1 + ε)p̃D(f1||f0)

}
→ 0.

From (2.6) in [47] we have

d = − lim
k→∞

logP (t ≥ k + 1)

k
= | log(1− ρ)|. (B.18)

To prove Theorem 3.3.4, we need Theorem 1 in [47] , which is restated as follows:

Lemma B.6.2. ( [47], Theorem 1) Let {Zi} be a sequence of random variables with a

random change-point t. Under {t = k}, the conditional distribution of Zi is f0(·|Zi−1
1 )

for i < k and is f1(·|Zi−1
1 ) for i ≥ k. Denote P∞ as the probability measure under

{t =∞}. Denote l(Zi) as

l(Zi) = log
f1(Zi|Zi−1

1 )

f0(Zi|Zi−1
1 )

.

Let

d = − lim
k→∞

logP (t ≥ k + 1)

k
.

If the condition

lim
m→∞

Pk

{
1

m
max

0<q≤m

m+q∑
i=k

l(Zi) ≥ (1 + ε)D1

}
→ 0, ∀ε > 0 and ∀k ≥ 1 (B.19)
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holds for some constant D1 > 0. Denote qd = D1 + d. Then, for all r > 0 as α→ 0,

inf
τ
Ek[(τ − k)r|τ ≥ k] ≥

(
| logα|
qd

)r
(1 + o(1)).

inf
τ
Eπ[(τ − t)r|τ ≥ t] ≥

(
| logα|
qd

)r
(1 + o(1)).

Proof. Please refer to [47].

In our case, for any arbitrary but given sampling strategy µ, the conditional density

f0(Zi|Zi−1
1 ) = f0(Xi)P ({µi = 1}) + δ(φ)P ({µi = 0}) ,

f1(Zi|Zi−1
1 ) = f1(Xi)P ({µi = 1}) + δ(φ)P ({µi = 0}) ,

where δ(φ) is the Dirac delta function. Therefore, the log likelihood ratio in Theorem

B.6.2 is

l(Zi) = log
f1(Zi|Zi−1

1 )

f0(Zi|Zi−1
1 )

=

 log f1(Zi)
f0(Zi)

, if µi = 1

0, if µi = 0
,

which is consistent with the definition in (3.35). Moreover, for any sampling strategy,

(B.19) holds for the constant D1 = p̃D(f1||f0). Therefore, by choosing r = 1, and

combining Lemma B.6.2 with Propositions B.6.1, we have:

inf
µ∈U ,τ∈T

Eνπ[τ − t|τ ≥ t] ≥ | logα|
p̃D(f1||f0) + | log(1− ρ)|

(1 + o(1)).

Since

Eνπ[τ − t|τ ≥ t] =
Eνπ[(τ − t)+]

1− P ν
π (τ < t)

≤ Eνπ[(τ − t)+]

1− α
,
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as α→ 0, we have

inf
µ∈U ,τ∈T

Eνπ[(τ − t)+] ≥ | logα|
p̃D(f1||f0) + | log(1− ρ)|

(1 + o(1)).

B.7 Proof of Theorem 3.3.5

In this appendix we prove that the proposed strategy (τ̃ ∗, µ̃∗) can achieve the lower bound

presented in Theorem 3.3.4. In this proof, we can consider the case that N0 = 0, i.e., the

observer does not have any sampling rights at the beginning. If the lower bound of the

ADD can be achieved by this case, then it must be achievable for the case with N0 > 0.

With a little abuse of notation, let

Rρ,i :=
πi

1− πi
. (B.20)

Comparing with (1.16), we note that the statistic defined in (B.20) is the statistic in (1.12)

diminished by the factor of ρ.

The proposed stopping rule can be expressed in terms of Rk,ρ as

τ̃ ∗ = inf

{
i ≥ 0

∣∣∣ logRρ,i ≥ log
1− α
α

}
.

Let B := log 1−α
α

. As α→ 0, we have B = | logα|(1 + o(1)).

By (3.9), (3.10), (3.11) and (3.35), it is easy to verify that

logRρ,i = logRρ,i−1 + l(Zi) + | log(1− ρ)|+ log

(
1 + ρ

1− πi−1

πi−1

)
.
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Using this recursive formula repeatedly, we obtain

logRρ,i =
i∑

j=1

l(Zj) + i| log(1− ρ)|+ log

(
π0

1− π0

+ ρ

)

+
k∑
j=2

log

(
1 + ρ

1− πj−1

πj−1

)
. (B.21)

We note that the third item in the above expression is a constant. Since the threshold b in

the proposed stopping rule will go to infinity as α→ 0, this constant item can be ignored

in the asymptotic analysis. For simplicity, we assume log( π0
1−π0 +ρ) = 0 in the rest of this

appendix.

Let

Si :=
i∑

j=1

l(Zj) + i| log(1− ρ)|,

τs := inf{i ≥ 0|Si ≥ b}. (B.22)

It is easy to see τ̃ ∗ ≤ τs since logRi,ρ ≥ Si. The following proposition indicates that

τs can achieve the lower bound presented in Theorem 3.3.4, hence τ̃ ∗ is asymptotically

optimal.

Proposition B.7.1. As B →∞,

Eνπ[τs − t|τs ≥ t] ≤ B

p̃D(f1||f0) + | log(1− ρ)|
(1 + o(1)). (B.23)

Proof. On the event {t = k}, we can decompose Sn into two parts if n ≥ k:

Sn = Sk−1
1 + Snk , (B.24)
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where

Sk−1
1 :=

k−1∑
j=1

l(Zj) + (k − 1)| log(1− ρ)|,

Snk :=
n∑
j=k

l(Zj) + (n− k + 1)| log(1− ρ)|.

We first show that as m→∞

1

m
Sk+m−1
k

a.s.→ p̃D(f1||f0) + | log(1− ρ)|. (B.25)

Let m̂ be the number of non-zero elements in {µk, µk+1, . . . , µk+m−1}, then as m → ∞,

we have

m̂

m
=

1

m

k+m−1∑
i=k

µi
a.s.→ E[µ] = p̃.

Let {b1, . . . , bm̂} be a sequence of time slots in which the observer takes observations

after k. That is, k ≤ b1 < . . . < bm̂ ≤ k +m− 1 and µbi = 1. By the strong law of large

numbers, as m̂→∞

1

m̂

m̂∑
j=1

l(Xbj)
a.s.→ D(f1||f0).

Then we have

1

m
Sk+m−1
k =

1

m

[
k+m−1∑
j=k

l(Zj) +m| log(1− ρ)|

]

=
m̂

m

1

m̂

m̂∑
j=1

l(Xbj) + | log(1− ρ)|

a.s.→ p̃D(f1||f0) + | log(1− ρ)|.
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In the following, we denote qd = p̃D(f1||f0) + | log(1− ρ)|.

By (B.24), we can rewrite τs as

τs = inf
{
n > 0|Snk ≥ B − Sk−1

1

}
.

Hence,

Sτs−1
k < B − Sk−1

1 . (B.26)

Define the random variable

T̃ kε := sup
{
n ≥ 1||n−1Sk+n

k − qd| > ε
}
.

By (B.25), we have T̃ kε < ∞ almost surely. By (3.37) and (3.38), it is easy to verify that

Eνk[T̃ kε ] <∞ and Eνπ[T̃ tε ] <∞.

On the event
{
τs > T̃ kε + (k − 1)

}
, we have

Sτs−1
k > (τs − k + 1)(qd − ε),

hence

τs − k + 1 <
Sτs−1
k

qd − ε
<
B − Sk−1

1

qd − ε
. (B.27)

Then we have

τs − k + 1 <
B − Sk−1

1

qd − ε
1{τs>T̃kε +(k−1)} + T̃ kε 1{τs≤T̃kε +(k−1)}

<
B − Sk−1

1

qd − ε
+ T̃ kε .
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Taking the conditional expectation on both sides, since T̃ kε <∞, then as α→ 0 (B →∞)

we have

Eνk[τs − k|τs ≥ k] ≤ B

qd − ε
− Eνk[S

k−1
1 |τs ≥ k]

qd − ε
+ Eνk[T̃ kε |τs ≥ k]

=
B

qd − ε
(1 + o(1))− Eνk[S

k−1
1 |τs ≥ k]

qd − ε
.

Therefore,

Eνπ[τs − t|τs ≥ t]

=
1

P ν
π (τs ≥ t)

Eνπ[τs − t; τs ≥ t]

=
1

P ν
π (τs ≥ t)

∞∑
k=1

P (t = k)Eνk[τs − k|τs ≥ k]P ν
k (τs ≥ k)

≤ B

qd − ε
−

Eνπ
[
St−1

1 |τs ≥ t
]

qd − ε
+ Eνπ[T̃ tε |τs ≥ t]

=
B

qd − ε
(1 + o(1))−

Eνπ
[
St−1

1 |τs ≥ t
]

qd − ε
. (B.28)

In the following, we show that Eνπ[St−1
1 |τs ≥ t] is finite. Let m̃ be the number of nonzero

elements in {µ1, . . . , µk−1}, and denote {b1, . . . , bm̃} as the time slots that the observer

takes observation before k, we have

Eνk
[
Sk−1

1

] (a)
= Eν∞

[
Sk−1

1

]
= Eν∞

[
k−1∑
j=1

l(Zj)

]
+ (k − 1)| log(1− ρ)|

= E∞

[
m̃∑
j=1

l(Xbj)

]
+ (k − 1)| log(1− ρ)|

= −m̃D(f0||f1) + (k − 1)| log(1− ρ)|,

where (a) is true because P ν
∞ and P ν

k are the same for observations taken before k. Since
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m̃ < k and D(f0||f1) ≥ 0, we have

−kD(f0||f1) < Eνk
[
Sk−1

1

]
< k| log(1− ρ)|.

Since

Eνπ[St−1
1 ] =

∞∑
k=1

Eνk
[
Sk−1

1

]
P (t = k),

we have

−D(f0||f1)

1− ρ
< Eνπ

[
St−1

1

]
<
| log(1− ρ)|

1− ρ
.

Therefore, Eνπ[Sk−1
1 ] is bounded. We note that as α → 0, {τs ≥ t} approaches to an

almost sure event. Then

Eνπ
[
St−1

1 |τs ≥ t
]
→ Eνπ

[
St−1

1

]
as α→ 0.

By (B.28) we obtain

Eνπ[τs − t|τs ≥ t] ≤ B

qd − ε
(1 + o(1)). (B.29)

Since the above equation holds for any ε > 0, then

Eνπ[τs − t|τs ≥ t] ≤ B

qd
(1 + o(1)).
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Using the above proposition and the fact τ̃ ∗ ≤ τs, we have

Eνπ
[
(τ̃ ∗ − t)+

]
≤ Eνπ

[
(τs − t)+

]
= Eνπ[τs − t|τs ≥ t][1− P (τs < t)]

≤ B

qd
(1− α)(1 + o(1))

=
B

qd
(1 + o(1)).
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Appendix C

Proofs in Section 4

C.1 Proof of the Theorem 4.1.3

Given {ξ = ξi}, from Theorem 2.4.1 we know that a lower bound of the detection delay,

for both Lorden’s setup and Pollak’s setups, is | log γ|(p̃D(fξi ||fξ0))−1(1 + o(1)). From

Theorem 2.4.2, the detection delay incurred by the greedy sampling right allocation µ̃∗

and τ̃C,i defined in (4.14) is

WADDξi(µ̃∗, τ̃C,i) ∼ CADDξi(µ̃∗, τ̃C,i) ∼
| logMγ|
p̃D(fξi ||fξ0)

∼ | log γ|
p̃D(fξi ||fξ0)

. (C.1)

By definition, we have τ̃MC ≤ τ̃C,i; Hence, the detection delay of (µ̃∗, τ̃MC) achieves

the lower bound. Therefore, we only need to show that (µ̃∗, τ̃MC) satisfies the ARL

constraint, i.e., Eν∞[τ̃MC ] ≥ γ. To this end, we denote κMC as the sample size of non-

trivial observations taken before τ̃MC . Since the interval between two successive non-

trivial observations is no less than 1, we have

ARLs(µ̃
∗, τ̃C,i) = Eν∞[τ̃MC ] ≥ E∞[κMC ]. (C.2)
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As trivial observations have no contribution to the CUSUM statistic, κMC can be equiva-

lently defined as

κMC := inf

{
n ≥ 0

∣∣∣∣∣max
i

max
1≤q≤n

n∏
j=1

L(X̃j; ξi, ξ0) ≥ B

}
. (C.3)

We further define

κ1 = inf

{
n > 0

∣∣∣∣∣ max
1≤q≤n

max
i

n∏
j=q

L(X̃j; ξi, ξ0) /∈ [1, B]

}
,

κm = inf

{
n > κm−1

∣∣∣∣∣ max
κm−1≤q≤n

max
i

n∏
j=q

L(X̃j; ξi, ξ0) /∈ [1, B]

}
.

Hence κ1, κ2, . . . , κm, . . . are i.i.d distributed. Let κK be the first time that B is exceeded,

then we have

κMC ≥ κK ≥ K. (C.4)

The first inequality holds because the maximum in (C.3) is taken over all observations,

while κK consists of K segments and each segment contains a maximum operator. The

second inequality holds because κm − κm−1 ≥ 1 for m = 1, . . . , K.

Let

L̃k := max
i

n∏
j=n−k

L(X̃j; ξi, ξ0) = max
i

n∏
j=n−k

fξi(X̃j)

fξ0(X̃j)
. (C.5)

It is easy to verify that
{
L̃k

}n−1

k=0
is a submartigale under the probability measure P∞.

Moreover, we have for all 1 ≤ k ≤ n

E∞[L̃n−k] = E∞

[
max
i

n∏
j=k

fξi(X̃j)

fξ0(X̃j)

]
≤ E∞

[
M∑
i=1

n∏
j=k

fξi(X̃j)

fξ0(X̃j)

]
= M. (C.6)
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By Doob’s submartingale inequality, we have

P∞

(
max

κk−1≤q≤n
L̃n−q ≥ B

∣∣∣Fκk−1

)
= P∞

(
max

0≤k≤n−κk−1

L̃k ≥ B
∣∣∣Fκk−1

)

≤
E∞
[
L̃n−κk−1

]
B

≤ M

B
. (C.7)

Note that conditioned on Fκk−1
, the event

{
maxκk−1≤q≤n L̃n−q ≥ B

}
is equivalent to

{K = k}. Therefore

P∞(K > k|Fκk−1
) = 1− P∞(K = k|Fκk−1

) ≥ 1− M

B
.

Hence

E∞[K] ≥
∞∑
k=0

P∞(K > k)

=
∞∑
k=0

E∞[1{K≥k+1}1{K≥k}]

=
∞∑
k=0

E∞[E∞[1{K≥k+1}|Fκk−1
]1{K≥k}]

=
∞∑
k=0

E∞[P∞[K ≥ k + 1|Fκk ]1{K≥k}]

≥
∞∑
k=0

(
1− M

B

)
P (K > k − 1)

≥
∞∑
k=0

(
1− M

B

)k
=

B

M
= γ. (C.8)

Combining (C.2),(C.4) and (C.8), we have ARLs ≥ γ. Hence (µ̃∗, τ̃MC) satisfies the

ARL constraint.
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C.2 Proof of the Theorem 4.2.2

Lemma C.2.1. For any constants L and B, we have

Pπ,ξi(τ − t > L) ≥ Pπ,ξi(t ≤ τ <∞)− Pπ,ξi

(
sup
n≤t+L

Λn,i > B

)
− eB

$i
Pπ,$(τ < t). (C.9)

Proof. We note that

Pπ,$(ξ = ξi; t ≤ τ <∞) = Pπ,$(ξ = ξi; t+ L < τ <∞)

+Pπ,$(ξ = ξi; t ≤ τ ≤ t+ L; Λτ,i < B) + Pπ,$(ξ = ξi; t ≤ τ ≤ t+ L; Λτ,i ≥ B).

(C.10)

For the last item in the above equality, we have

Pπ,$(ξ = ξi; t ≤ τ ≤ t+ L; Λτ,i ≥ B) ≤ Pπ,$(ξ = ξi; τ ≤ t+ L; Λτ,i ≥ B)

≤ Pπ,$(ξ = ξi; τ ≤ t+ L; sup
τ≤t+L

Λτ,i ≥ B)

≤ Pπ,$(ξ = ξi; sup
n≤t+L

Λn,i ≥ B). (C.11)

In addition, from Lemma 4.2.1 we have

Pπ,$(τ < t) = $iEπ,ξi
[
1{t≤τ<∞}e

−Λτ,i
]

= Eπ,$
[
1{ξ=ξi,t≤τ<∞}e

−Λτ,i
]

≥ Eπ,$
[
1{ξ=ξi,t≤τ<∞,Λτ,i<B}e

−Λτ,i
]

≥ e−BEπ,$
[
1{ξ=ξi,t≤τ<∞,Λτ,i<B}

]
= e−BPπ,$(ξ = ξi, t ≤ τ <∞,Λτ,i < B)

≥ e−BPπ,$(ξ = ξi, t ≤ τ < t+ L,Λτ,i < B), (C.12)
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which provides a bound for the second item in (C.10). Therefore, we have

Pπ,$(ξ = ξi; t ≤ τ <∞)

≤ Pπ,$(ξ = ξi; t+ L < τ <∞) + eBPπ,$(τ < t) + Pπ,$(ξ = ξi; sup
n≤t+L

Λn,i ≥ B).

Then, the conclusion can be obtained by rearranging the items in the above inequality.

By imposing the false alarm constraint to Lemma C.2.1

Pπ,$(τ < t) =
M∑
i=1

$iPπ,ξi(τ < t) = α ⇒ Pπ,ξi(τ < t) ≤ α

$i

, (C.13)

we have

Pπ,ξi(τ − t > L) ≥ 1− α

$i

− Pπ,ξi
(

sup
n≤t+L

Λn,i > B

)
− eB

$i

α. (C.14)

Since it holds for all stopping times, we have

inf
τ
Pπ,ξi(τ − t > L) ≥ 1− α

$i

− Pπ,ξi
(

sup
n≤t+L

Λn,i > B

)
− eB

$i

α. (C.15)

Recall the convergence result of the Shiryaev statistic

lim
n→∞

1

n
Λn,i = lim

n→∞

1

n
logRρ,n,i = D(fξi ||fξ0) + | log(1− ρ)| =: qi,d. Pπ,ξi -a.s. (C.16)

In our context, we make the following selection:

L = δ
| logα|
qi,d

,

B = cLqi,d = cδ| logα|, (C.17)

for constants c > 1 and 0 < δ < 1. By the convergence result in (C.16), we can find a
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finite random variable Kc such that supn>Kc
Λ+
n,i

n
= supn>Kc

Λn,i
n

< (1 + (c − 1)/2)qi,d,

Pπ,ξi-a.s. Moreover,

Pπ,ξi

(
sup
n≤t+L

Λn,i > B

)
= Pπ,ξi

(
sup
n≤t+L

Λn,i > cLqi,d

)
≤ Pπ,ξi

(
sup
n≤t+L

Λ+
n,i > cLqi,d

)
≤ Pπ,ξi

(
sup
n≤Kc

Λ+
n,i + sup

Kc<n≤t+L
n

Λ+
n,i

n
> cLqi,d

)

≤ Pπ,ξi

(
sup
n≤Kc

Λ+
n,i + (t+ L) sup

Kc<n≤t+L

Λ+
n,i

n
> cLqi,d

)

= Pπ,ξi

(
supn≤Kc Λ+

n,i

L
+

(t+ L)

L
sup

Kc<n≤t+L

Λ+
n,i

n
> cqi,d

)

≤ Pπ,ξi

(
supn≤Kc Λ+

n,i

L
+

(t+ L)

L
sup
n>Kc

Λ+
n,i

n
> cqi,d

)
. (C.18)

Since both Kc and t are Pi-a.s. finite, we have

lim
L→∞

[
supn≤Kc Λ+

n,i

L
+

(t+ L)

L
sup
n>Kc

Λ+
n,i

n

]

= sup
n>Kc

Λ+
n,i

n
<

(
1 +

c− 1

2

)
qi,d < cqi,d, (C.19)

which implies

lim
L→∞

Pπ,ξi

(
sup
n≤t+L

Λn,i > B

)
= 0. (C.20)

In addition, we have

lim
L→∞

α

$i

eB = lim
α→0

α

$i

ecδ| logα| =
α1−cδ

$i

. (C.21)

Hence, as long as 1 < c < 1
δ
, the above limit goes to zero.
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Theorem C.2.2. As α→ 0, we have

inf
τ
Eπ,ξi [(τ − t)+] ≥ | logα|

D(fi||f0) + | log(1− ρ)|
(1 + o(1))

Proof. Using Markov’s inequality, for any 0 < δ < 1, we have

Eπ,ξi
[

(τ − t)+

L

]
≥ δPπ,ξi

(
(τ − t)+

L
≥ δ

)
= δPπ,ξi((τ − t)+ ≥ δL)

≥ inf
τ
δPπ,ξi((τ − t)+ ≥ δL). (C.22)

Hence

inf
τ
Eπ,ξi

[
(τ − t)+

L

]
≥ inf

τ
δPπ,ξi((τ − t)+ ≥ δL)

(a)

≥ δ (C.23)

where (a) follows from (C.15), (C.20) and (C.21). Since δ is an arbitrary number smaller

than 1, we have

inf
τ
Eπ,ξi

[
(τ − t)+

]
≥ L(1 + o(1)), (C.24)

where L is selected in (C.17).

Remark C.2.3. We emphasize that Lemma C.2.1 and (C.15) do not depend on the as-

sumption of the (conditional) independency of the observation sequences {Xk}. Hence,

these conclusions will be used again in Appendix C.3 when we provide a lower bound of

the detection delay with the stochastic sampling right constraint.
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C.3 Proof of the Theorem 4.2.5

As mentioned in Remark C.2.3, Lemma C.2.1 and (C.15) do not depend on the indepen-

dency of the observation sequence; hence, by replacing {Xi} with {Zi} and updating the

corresponding measures, we obtain a result similar to (C.15):

inf
τ
P ν
π,ξi

(τ − t > L) ≥ 1− α

$i

− P ν
π,ξi

(
sup
n≤t+L

Λn,i > B

)
− eB

$i

α. (C.25)

Λn,i in the above inequality is defined as

Λn,i = log$iρ+ logRρ,n,i, (C.26)

Rρ,n,i :=
n∑
k=1

n∏
j=k

1

1− ρ
L(Zj; ξi, ξ0). (C.27)

Since {Zj} is not conditionally i.i.d, (C.16) does not hold in this context. Therefore, we

replace (C.16) by a weaker condition:

Proposition C.3.1. Let qi,d = p̃D(fξi ||fξ0) + | log(1− ρ)|, as L→∞, we have

P ν
π,ξi

(
1

L
sup

0≤n<L
Λn,i ≥ (1 + ε)qi,d

)
→ 0 (C.28)

for all ε > 0.

Proof. It is easy to verify that Rρ,n,i has the following recursive formula

Rρ,n,i =
1

1− ρ
L(Zn; ξi, ξ0)(1 +Rρ,n−1,i). (C.29)
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Hence, we have

logRρ,n,i = | log(1− ρ)|+ l(Zn; ξi, ξ0) + logRρ,n−1,i + log

(
1 +

1

Rρ,n−1,i

)
= n| log(1− ρ)|+

n∑
j=1

l(Zj ; ξi, ξ0) +
n−1∑
j=1

log

(
1 +

1

Rρ,j,i

)
.

Hence

1

n
logRρ,n,i = | log(1− ρ)|+ 1

n

n∑
j=1

l(Zj ; ξi, ξ0) +
1

n

n−1∑
j=1

log

(
1 +

1

Rρ,j,i

)
. (C.30)

We consider the case when n → ∞. As we discussed in (A.8) in Appendix A.3 and

(B.17) in Appendix B.6, we have

lim
n→∞

1

n

t+n∑
j=t

l(Zj; ξi, ξ0) ≤ p̃D(fξi ||fξ0) P ν
π,ξi
− almost sure. (C.31)

Moreover, since t is a finite random variable, we have

lim
n→∞

1

n

t∑
j=1

l(Zj; ξi, ξ0)→ 0 P ν
π,ξi
− almost sure. (C.32)

Hence, we have

0 ≤ lim
n→∞

1

n

n∑
j=1

l(Zj; ξi, ξ0) ≤ p̃D(fξi ||fξ0) P ν
π,ξi
− almost sure. (C.33)

Therefore, by (C.30) and (C.33) we have

1

n
logRρ,n,i ≥ | log(1− ρ)|, (C.34)
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which indicates that Rρ,n,i →∞ almost surely under P ν
π,ξi

as n→∞. Therefore

log

(
1 +

1

Rρ,n,i

)
→ 0 P ν

π,ξi
− almost sure.

Therefore
{

log
(

1 + 1
Rρ,j,i

)}∞
j=1

are Cesaro summable and has Cesaro sum of zero. Thus,

the last item in (C.30) goes to zero almost surely. Using (C.30) and (C.33) again, we have

1

n
logRρ,n,i ≤ | log(1− ρ)|+ p̃D(fξi ||fξ0) = qi,d as n→∞. (C.35)

Note that the above inequality holds P ν
π,ξi

almost surely. Using the fact that 1
n
Λn,i =

1
n

logRρ,n,i, we have

P ν
π,ξi

(
1

L
sup

0≤n<L
Λn,i ≥ (1 + ε)qi,d

)
→ 0. (C.36)

In our context, we choose

L = δ
| logα|
qi,d

,

B = cLqi,d = cδ| logα|,

for constants c > 1 and 0 < δ < 1. Consider the third item in the right hand side of

inequality (C.25), by Proposition C.3.1, we have

P ν
π,ξi

(
sup
n≤t+L

Λn,i > B

)
= P ν

π,ξi

(
sup
n≤t+L

Λn,i > cLqi,d

)
= P ν

π,ξi

(
1

L
sup
n≤t+L

Λn,i > cqi,d

)
→ 0. (C.37)
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In addition, we have

lim
L→∞

α

$i

eB = lim
α→0

α

$i

ecδ| logα| =
α1−cδ

$i

. (C.38)

Hence, as long as 1 < c < 1
δ
, we can have above limit goes to zero. Then, the lower

bound of the average detection delay can be proved by the same argument used in the

proof of Theorem C.2.2.

C.4 Proof of the Theorem 4.2.6

We first show that τ̃MS satisfies the false alarm constraint. Let

π̃i,k := P (t ≤ k, ξ = ξi|Fk),

π̃0,k := P (t > k|Fk) = 1−
M∑
i=1

π̃i,k,

where Fk is the σ-field generated by Z1, . . . , Zk. Replacing πi,n and π0,n with π̃i,n and

π̃0,n, respectively, in the proof of Lemma 4.2.1, one can obtain a similar result:

P ν
π,$(F ∩ {τ < t}) = $iEνπ,ξi

[
1F∩{t≤τ<∞}e

−Λτ,i
]
. (C.39)

Then, one can show that τ̃MS satisfies the false alarm constraint by using the same argu-

ment in (4.30) and (4.31).

In the following, we show that (µ̃∗, τ̃MS) achieves the lower bound of detection delay.

As τ̃MS < τ̃S,i by (4.34), it is sufficient for us to show that

Eνπ,ξi
[
(τ̃i − t)+

]
≤ | logα|
p̃D(fξi ||fξ0) + | log(1− ρ)|

(1 + o(1)). (C.40)
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We first have the following result

Proposition C.4.1.

lim
n→∞

1

n
Λn,i ≥ p̃D(fξi ||fξ0) + | log(1− ρ)| (C.41)

holds P ν
π,ξi

almost surely.

Proof. By (4.35), we have

Λn,i = log$iρ+ logRρ,n,i. (C.42)

Using the recursive relation presented in (C.30), we have

1

n
logRρ,n,i = | log(1− ρ)|+ 1

n

n∑
j=1

l(Zj; ξi, ξ0) +
1

n

n−1∑
j=1

log

(
1 +

1

Rρ,j,i

)
.

≥ | log(1− ρ)|+ 1

n

t−1∑
j=1

l(Zj; ξi, ξ0) +
1

n

n∑
j=t

l(Zj; ξi, ξ0) (C.43)

As t is a finite random variable, we have 1
n

∑t−1
j=1 l(Zj; ξi, ξ0) → 0 almost surely. In

addition, we have

1

n

n∑
j=t

l(Zj; ξi, ξ0) =
n− t+ 1

n

1

n− t+ 1

n∑
j=t

l(Zj; ξi, ξ0)→ p̃D(fξi ||f0)

almost surely. Since 1
n

log ρ→ 0, then we have

lim
n→∞

1

n
logRρ,n,i ≥ p̃D(fξi ||fξ0) + | log(1− ρ)|. (C.44)

Since we consider the performance of τ̃S,i under the probability measure P ν
π,ξi

, then
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the problem is reduced to the case with known post-change parameter. In particular, let

Sn :=
n∑
j=1

l(Zj; ξi, ξ0) + n| log(1− ρ)|,

τs := inf{n ≥ 0|Sn ≥ logB}. (C.45)

It can be observed that (C.45) and (B.22) are essentially the same. Hence following

the same proof of Proposition B.7.1 along with the arguments afterwards, (C.40) can be

obtained.
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