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Abstract

Recent advances in sensor technology and declining computing costs have con-

tributed to the rising adoption of intelligent assisted driving systems. These systems

complement human efforts in vehicle navigation across various aspects of personal

mobility including passenger vehicles, wheelchairs, and mobile telepresence robots.

Shared autonomy (SA) formalizes this approach of synergistic collaboration of both

the human and autonomous agent to achieve a common navigation task. Haptic

shared autonomy (HSA) is a form of SA where both agents “blend” their control

inputs by applying forces on a force-enabled control interface (such as a motorized

steering wheel or haptic joystick). Existing research shows that HSA systems lead

to improved driving task performance, increased situational awareness and reduced

workload for the human. However, these systems still struggle with issues around

control authority arbitration and intent misalignment which lead to undesirable con-

flict between the human and the autonomous agent, resulting in user dissatisfaction

and, oftentimes, abandonment of the system altogether.

This dissertation presents a human-centered design approach with four proposed

contributions to address these open challenges of haptic shared autonomy in assisted

driving. The first contribution provides a better understanding of the implications of

anticipation uncertainty on human motor control in force-based interactions. The

second contribution is SocNavAssist, a multimodal (haptic + visual) shared au-

tonomy framework that provides intuitive and intelligent navigation assistance for

teleoperated mobile robots in human environments. The third is an extension to

SocNavAssist to enable socially-aware assistance adaptation to different driving ob-

jectives/styles when navigating in dense, human-populated environments. Lastly,



a novel approach for modeling and simulating human driver control behavior for

improved driving assistance system design is proposed.
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Chapter 1

Introduction

1.1 Motivation

The vehicles of today have more autonomous capabilities than ever before. Recent

advances in sensor and computing technologies, coupled with the reduction in their

costs, have contributed to this rise in vehicle autonomy. Increasingly, mobility sys-

tems (e.g. passenger vehicles, smart wheelchairs, mobile robots, drones, etc.) are

being equipped with autonomous features that enable them to navigate in human

environments either fully or semi-autonomously in a safe and reliable manner. The

introduction of these autonomous features has the potential to alleviate some of the

challenges of manual control in mobility systems, including minimizing accidents

caused by human errors, eliminating the physical and cognitive strain of driving,

and allowing individuals with physical or cognitive impairments greater autonomy.

However, these fully autonomous systems are yet to be fully reliable under all

operational conditions. They remain prone to system malfunction caused by sensor

failures and inaccuracies in traffic behavior prediction, etc., especially in safety-

critical scenarios, requiring human intervention [4]. Moreover, researchers have
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shown that factors such as a personal sense of control and limited trust in autonomy

also contribute to humans’ preference for staying in the control loop [5, 6].

A hybrid of full autonomy and manual control is shared autonomy, where humans

and autonomous agents work collaboratively to accomplish navigation tasks, e.g.,

driving a passenger vehicle on a highway or operating a mobile telepresence robot

across a hallway.

Shared autonomy enables the synergistic blending of the joint capabilities of

the human and the autonomous agent leading to improved overall performance and

reduced workload for the human [7]. However, open questions remain in shared

autonomy around control authority arbitration i.e., “Who has final control authority

and how to blend control inputs?” and shared intent misalignment, which leads to

conflict and system abandonment by the human [8]. Oftentimes, these systems are

designed with a focus on the technology (machine-centered approach) while limited

attention is given to the crucial physical, cognitive, and social dimensions of the

human operator which leads to poor overall performance as they interact with the

system.

The alternative is to take a human-centered approach to the design of human-

automation systems. The principles of human-centered design ensure that the con-

siderations of human factors such as transparency, human supervision, and situation

awareness are emphasized [8, 9]. Direct (or haptic) shared autonomy, where both

agents “blend” their input commands by applying forces on a force-enabled control

interface, is the framework favored in human-centered design because it provides a

continuous feedback channel for the human and sustains situation awareness [8]. Ex-

isting research shows that human-centered shared autonomy systems lead to higher

user acceptance, lower overreliance, reduced user workload, etc. [1, 10]. However,

some challenges remain within the human-centered approach such as how to:
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• improve robot-to-human intent transparency

• extend assistive driving applications from static environments to dynamic en-

vironments with social constraints,

• better model and understand human-vehicle interaction dynamics.

This dissertation is motivated by these challenges and contributes to the area of

haptic shared autonomy by proposing solutions grounded in human-centered design

principles.

1.2 Problem Statement and Research Objectives

This dissertation focuses on the following theme: “How to design shared auton-

omy frameworks for assistive driving systems considering human-centered factors?”

Specifically, I examine the following research questions with the goal of understand-

ing and improving the design of human-centered shared autonomy systems:

R1 What are the implications of anticipation uncertainty on aligned intent and

how can they be mitigated in force-based interactions?

Mutual understanding is at the center of teamwork. This is not only true for

human-human teams, but also human-robot teams as well. Transparency is

crucial for maintaining mutual understanding between agents in a team [9].

In a human-centered shared autonomy system, the operator should be aware

of and continuously updated on the system’s actions; implying that the au-

tonomous agent’s actions should be understandable and predictable. This re-

quirement is particularly relevant in haptic shared autonomy systems, where

a haptic-enabled control device (e.g. motorized steering wheel) serves as the
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shared control interface between the human and autonomous agent [1, 7].

Unanticipated haptic feedback forces on the control interface may adversely

affect the human operator’s response and thereby degrade task performance

and driving safety [11]. Therefore, it is crucial to understand the effect of force

anticipation uncertainty on human response and motor control in force-based

interactions as it sheds light on the impact of system transparency on shared

human-robot systems.

R2 How to design human-centered socially-aware navigation assistance with im-

proved system transparency?

Given the insights on how force anticipation impacts human task performance,

it is important to explore how to design human-centered shared autonomy

systems that enhance mutual understanding and cooperation by improving

system transparency. In this work, I consider the context of socially-aware

navigation assistance, i.e., enabling non-intrusive, safe, and comfortable robot

navigation around humans [12]. While research suggests that humans op-

erating mobility systems (either proximally or remotely) would benefit from

navigation assistance in dynamic, cluttered environments (e.g., at a busy con-

ference hall, etc.), existing work on shared autonomy for navigation has focused

on static environments or single moving pedestrian avoidance [6, 13]. An ex-

tension of existing approaches to the more realistic case of multi-pedestrian

interaction is needed. In order to achieve effective navigation assistance in

dynamic, multi-pedestrian scenarios, two questions arise: (i) How to plan and

generate safe, socially-aware navigation paths within dynamic human envi-

ronments? (ii) What interaction modalities (e.g. visual, haptic, auditory,

etc.) work best to communicate the generated guidance cues to the human
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operator in an intuitive and transparent manner? This dissertation proposes a

multi-modal shared autonomy approach and evaluates its impact on improving

system transparency, cooperation, and user preferences.

R3 How to achieve assistance adaptation to distinct driving objectives/styles and

how would this impact driving performance and human-automation coopera-

tion?

In real-world co-driving scenarios, the ability of autonomous agents to adapt

to human characteristics, tasks, and/or environmental conditions is essen-

tial for enhancing alignment of control strategies and reducing conflict within

shared tasks [14]. Additionally, adaptive support in assisted driving can lead

to improved driving task performance over static, one-size-fits-all support [15].

Existing adaptation factors include risk, level of trust and confidence [16], task

and skill level [17, 18], etc. Again, there has been limited work in the area of

navigation assistance in dynamic human environments that takes user driving

objectives and styles into account. It is important to explore approaches to

adaptive navigation assistance in this context and how, if at all, they impact

on driving performance and human-automation cooperation.

R4 How to model and render complex human driver behavior in simulation to

advance our understanding of human driver-vehicle interaction and improve

the design of driver assistance systems?

Increasing levels of autonomy in today’s vehicles have impacted the way drivers

interact, adapt, and respond to vehicle systems during shared driving. Having

a thorough understanding of human driving behaviour is necessary for design-

ing Assistive Driving Systems (ADS) that ensure safety and comfort when

driving. ADS-driver interactions have traditionally been evaluated using sim-
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ulated or real-world human driver experiments [19, 20], which have limited

ability to provide objective evaluation of the dynamic interactions, and the

control workload on the driver. An alternative approach is to use digital hu-

man driver models, since they enable accurate simulation of human behavior

and dynamics, as well as providing access to hard-to-measure internal workload

variables [21]. Yet, little work has been done on developing active digital hu-

man driver models and simulations to aid in the design of the next generation

of commercial advanced driving assistance systems (ADAS). This dissertation

examines how to model and simulate complex human driver behavior as well

as how using digital driver models may open new horizons in model-based

design and evaluation of human-centered ADAS.

1.3 Dissertation Structure and Research Contri-

butions

The structure and contributions of this dissertation as well as the associated publi-

cations (published, under-review, or in preparation) are as follows:

• Chapter 2 provides a brief review of the state of the art covering shared

autonomy frameworks, haptics and human-centered design considerations for

assistive autonomy in mobility applications.

• Chapter 3 addresses Research Question R1 by studying the impact of antic-

ipation uncertainty and transparency on human motor control in force-based

tasks. A simple pushing experiment was developed and conducted with ten

participants to investigate this effect. Findings indicate that force anticipa-
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tion, including the expected workload, affects human control strategy, such as

whether feedforward- versus feedback-dominant control is used. The results

also revealed that humans rely on internal predictive models for motor con-

trol, which is updated iteratively through interactions. The present findings

shed light on the importance of transparency and anticipation in force-based

interactions, such as haptic shared autonomy. The work in this chapter was

first presented in:

– [22] H. Kimpara, K. C. Mbanisi, Z. Li, K. L. Troy, D. Prokhorov, and

M. A. Gennert, “Force Anticipation and its Potential Implications on

Feedforward and Feedback Human Motor Control,” Human Factors, Mar.

2020

• Chapter 4 addresses Research Question R2 by presenting SocNavAssist, a

multimodal shared autonomy approach, leveraging visual and haptic guidance,

to provide intuitive and transparent navigation assistance for mobile telepres-

ence robots in dynamic human environments. The proposed framework uses a

modified form of reciprocal velocity obstacles for generating safe control inputs

while taking social proxemics constraints into account. Two different visual

guidance designs, as well as haptic force rendering, were proposed to convey

safe control input to the operator. I conducted a user study, with fifteen par-

ticipants, to compare the merits and limitations of the multimodal approach

to haptic or visual assistance alone in a shared navigation task. The key find-

ings are that participants preferred multimodal assistance with visual guidance

trajectory over haptic or visual modalities. Additionally, results also revealed

that visual guidance trajectories conveyed a higher degree of understanding

and cooperation than equivalent haptic cues in a navigation task. The work
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in this chapter was first presented in:

– [23] K.C. Mbanisi, M. A. Gennert, Z. Li, “SocNavAssist: A Haptic

Shared Autonomy Framework for Social Navigation Assistance of Mo-

bile Telepresence Robots”, IEEE International Conference on Human-

Machine Systems (ICHMS), 2021

– [24] K. C. Mbanisi, M. A. Gennert, “Multimodal Shared Autonomy for

Social Navigation Assistance of Telepresence Robots”, in submission to

IEEE Transactions on Human-Machine Systems (THMS)

• Chapter 5 addresses Research Question R3 by presenting an extension to

SocNavAssist that enables adaptive assistance to different driving objectives

or styles while navigating in dense, human environments. This is accomplished

by incorporating socially-relevant objective functions which reflect the dis-

tinct driving objectives. In particular, two assistance policies, safety-aligned

and goal-aligned assistance, were designed and evaluated in autonomous mode

using four typical navigation scenarios. An exploratory study, with five par-

ticipants, was conducted to determine how adaptive assistance affects driving

performance (efficiency and safety), human-automation cooperation and user

preferences in shared navigation. The key findings are that, while assistance

adaptation did not have a significant impact on driving performance, par-

ticipants preferred safety-aligned assistance mode under both cautious and

assertive driving objectives. This study provides a preliminary evaluation of

how remote operators interact with different navigation assistance modes in

response to typical driving behaviors in social navigation. The work in this

chapter is under preparation for submission to:

8



– [25] K.C. Mbanisi, M. A. Gennert, “Adaptive SocNavAssist: Assistance

Adaptation to Driving Objectives in Social Navigation”, to be submitted

to IEEE/ACM International Conference on Human-Robot Interaction

(HRI 2023)

• Chapter 6 addresses Research Question R4 by presenting a novel approach

for modeling and simulating human driver control behavior for improved driv-

ing assistance system design. Our simulation framework, Human Model-based

Active Driving System (HuMADS), integrates a human driver model and a

vehicle dynamics model to provide a high-fidelity simulation of driver-vehicle

interaction. To generate human-like driver control motions on the digital hu-

man driver model, a learning-based approach is employed. Specifically, we

recruited eight experienced drivers and recorded their vehicle control motions

on a fixed-base driving simulation test bed. We further extracted a set of

characteristic driver control styles (i.e. steering handling and pedal switch-

ing styles) from the demonstration data. Using a combination of imitation

learning methods, we extracted the regularity and variability of driver control

styles across participants, and modeled them as motion primitives that can

be used for motion reproduction in simulation. The work in this chapter was

first presented in:

– [26] K. C. Mbanisi, H. Kimpara, Z. Li, and M. A. Gennert, “Learning

Coordinated Vehicle Maneuver Motion Primitives from Human Demon-

stration,” 2018 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), Madrid, Italy, 2018, pp. 6560-6565.

– [22] H. Kimpara, K. C. Mbanisi, J. Fu, Z. Li, D. Prokhorov, and M.

A. Gennert, “Human model-based active driving system in vehicular dy-
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namic simulation,” IEEE Transactions on Intelligent Transportation Sys-

tems, vol. 21, no. 5, pp. 1903-1914, May 2020.

– [27] K. C. Mbanisi, H. Kimpara, Z. Li, and M. A. Gennert, “Analysis

and Learning of Natural Driver Control Motion Primitives for Computa-

tional Human Driver Modeling”, to be submitted to IEEE Transactions

on Intelligent Vehicles (TIV)

– [28] K. C. Mbanisi, H. Kimpara, Z. Li, D. Prokhorov and M. A. Gennert,

“Human Model-based Evaluation of Driver Control Workloads in Driver

Assistance Systems”, in submission to IEEE Transactions on Human-

Machine Systems (THMS)

• Chapter 7 concludes this thesis with a summary of contributions, insights

into broader societal impacts, and a discussion of possible future directions

from the work that I have presented.
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Chapter 2

Background

2.1 Shared Autonomy Frameworks

Shared autonomy lies in the middle of the autonomy spectrum, with manual control

and full autonomy at opposing ends [29] (Fig. 2.1). Abbink et al. [8] described

shared autonomy (also known as shared control) as a scenario where “humans and

robots are interacting congruently in a perception-action cycle to perform a dynamic

task that either the human or the robot could execute individually under ideal

circumstances”. Petermeijer [30] considers shared control as “teamwork or joint

action between human(s) and machines or robots in a shared task.”

Therefore, as opposed to manual control (where the human is solely responsi-

ble for task execution) and full autonomy (where the autonomous agent is solely

responsible), shared autonomy enables the cooperative sharing of responsibility for

task execution between the human partner(s) and the robot (Fig. 2.1). Shared

autonomy is a promising approach because it has to been shown to improve task

performance and reduce the amount of operational workload for humans [7], while

keeping humans in the loop for supervision and high-level decision making.
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Figure 2.1: Spectrum of autonomy in human-machine systems

Existing approaches for shared autonomy (SA) can be defined into two categories

based on how the task allocation and execution are performed: task-level SA and

servo-level SA [31, 32] (Fig. 2.2). At the task-level, the human may assign a

subtask completely to the machine/robot with precise task specifications, and then

act in a solely supervisory role. As an example of task-level shared autonomy,

consider the cruise control system in a passenger vehicle. The driver first assigns

the longitudinal vehicle speed control (subtask) to the vehicle system by engaging the

cruise control and setting the desired reference speed (task specification). Following

that, the vehicle takes over longitudinal speed control entirely from the driver, who

serves as a supervisor and decides when to disengage the cruise control and assume

responsibility for the subtask. This level of shared autonomy is discrete in nature

with only one agent handling low-level continuous control at any given time. When

only the human is able to assign control authority, as described above, the system is

considered to be human-initiated (HI) [33]. A mixed-initiative (MI) scenario occurs

when both agents are able to assign control authority, i.e. both human and agent

can request as well as relinquish control at different times [33].

Shared autonomy at the servo-level, on the other hand, refers to situations
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(a)

(b)

Figure 2.2: Taxonomy of shared autonomy based on task allocation and execution.
a) Task-level SA; b) Servo-level SA.

in which both the human and the machine jointly control a given task and the

final control commands combine the inputs of both agents. The weighted allocation

function is a common blending approach in literature that adjusts the proportion

of human and machine/robot input in the final command [32,34]. A good example

of servo-level SA is lane-keeping assistance in ADAS. Here, both the driver and the

ADAS jointly contribute to the lateral steering control of the vehicle. Both agents

must actively engage in the perception-action cycle and apply their control inputs

on the steering wheel [7, 35]. This level of shared autonomy is continuous as both

human and the autonomous agent must remain engaged in the control loop.

13



Two modalities of servo-level shared autonomy are prevalent in the literature

based on how the control inputs of the agents are blended together: direct and in-

direct shared autonomy [7]. In direct or haptic shared autonomy, the autonomous

agent and the human jointly apply their control inputs as forces on a force-based

control interface (such as a motorized steering wheel or a haptic joystick) such that

the human can directly negotiate the final control inputs to the vehicle by applying

more or less force on the interface [7,35]. The advantage of haptic shared autonomy

is that it enables the human to directly modulate their level of control authority

based on the amount of force exerted on the shared control interface. However, one

drawback is with control conflict and the resulting increased forces and physical

workload on the human. We will discuss the subject of conflict in haptic shared

autonomy further later in this chapter.

The second modality is indirect shared autonomy, also known as input-mixing.

Here, no physical interaction or coupling exists between the human and the au-

tonomous agent, but the human applies their input commands onto the control

interface (such as a joystick or keyboard) and the autonomous agent is responsible

for blending that command to reach a final command which is sent to the vehicle.

This results in the autonomous agent retaining final control authority on the vehicle

motion [35, 36]. Although entrusting the autonomous agent with final authority is

useful in certain situations where human performance may be impaired (e.g., by

drowsiness, low visibility, or presence of blind spots), it generally leads to lower

situation awareness and sense of control for the human agent.

2.1.1 Haptics and Haptic Shared Autonomy

The haptic sensation is one of the five broad human senses; it refers to our sense

of touch and plays a crucial role in how humans interact with and experience the
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tangible world [37]. Haptic sensing can be divided into two general categories based

on the physiological mechanisms used: tactile (or cutaneous) sensation and kines-

thetic sensation. Tactile (or cutaneous) sensation refers to the deformations of the

skin as a result of pressure, vibration or shear sensed by mechanoreceptor cells in

the skin. Kinesthetic sensation is an internal perception of forces and torques, pro-

cessed by sensory receptors in muscles, tendons, and joints [37, 38]. Researchers in

the haptics field have explored how artificial haptic sensations can be applied when

the traditional sense of touch is lost (e.g., due to remote or virtual interaction) or

where it is needed as a communication medium (e.g., in human-robot interaction

scenarios) [37, 39]. In robot-assisted surgery, the sense of touch can be restored

using kinesthetic haptic feedback. This force feedback enables the surgeon to feel

the interaction forces in real time while performing surgical tasks remotely with

a leader-follower robot teleoperation system. [38]. Haptic feedback has also been

applied, along with visual and auditory feedback, as a means to enable explicit

communication and interaction between humans and machines (or robots). Vibro-

tactile cues on wearable or handheld tactile feedback devices can be used to provide

guidance information between the human and a robot [39,40].

In the context of shared autonomy, haptic feedback (primarily kinesthetic feed-

back) has been applied extensively in assistive navigation of unmanned aerial vehi-

cles (UAVs), unmanned ground vehicles (UGVs), and passenger vehicles in order to

provide navigation guidance cues to the human operator (e.g., for obstacle avoid-

ance, path tracking, etc) as well as to augment perceptual awareness that may be

lost in remote driving scenarios. Research has shown that haptic shared autonomy

systems in assisted navigation: (i) improves driving task performance [10], (ii) en-

hances driver’s situation awareness [8], (iii) enables the driver retain final control

authority as a safety measure (as opposed to indirect shared autonomy described
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above) [7,35]. However, as highlighted earlier, these systems struggle with the issue

of conflict between the human and the autonomous agent. Itoh et al. [11] defined

conflict in haptic shared autonomy as “occurring as long as the human control in-

put is inconsistent with the expected control input of the intelligent machine”. This

control mismatch results from a lack of intent alignment or control strategy among

cooperating agents, which typically leads to increased control forces and torques

as the human struggles to exert their control over the vehicle. The occurrence of

mild conflicts—where the human can forcefully maintain control of the vehicle—can

result in reduced user satisfaction and, sometimes, the abandonment of the shared

autonomy system in favor of manual control [8,41]. A severe conflict, however, where

the autonomous agent’s control overwhelms the human operator, could significantly

compromise vehicle safety, especially when the conflict is caused by a system fail-

ure. The tragic Boeing 737-MAX crashes in 2018 and 2019 [42] are one example of

this. In this dissertation, we explore human-centered design approaches to conflict

resolution.

Two broad approaches exist for haptic shared autonomy based on the type of

haptic cue provided to the human: Trajectory-tracking and Guidance forces from

forbidden regions [7].

Trajectory-Tracking: This is simply haptic guidance along a desired (or refer-

ence) trajectory and is well suited to scenarios where a reference trajectory is known

(e.g. lane following on a road). The autonomous agent renders a restorative force

to the interface to guide the human back if they veer off the reference trajectory.

This approach has been extensively applied in advanced driver assistance systems

(ADAS) for passenger vehicles for tasks including lane-keeping, curve negotiation

and collision avoidance (for a review, see [10]). The guiding force or torque is gen-
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erally estimated as proportional to the error between the current trajectory and

the reference trajectory [7, 10, 43]. A major consideration in this approach is how

to determine the reference trajectory for a given task [44]. In the automotive do-

main, a human-compatible reference trajectory is derived from a simplified driver

model that characterizes driver steering behavior [45]. However, in other free-form

navigation scenarios, reference trajectories would prove harder to retrieve [46].

Guidance forces from forbidden regions: This is a general case of haptic

guidance that incorporates scenarios in which the driving task is not constrained

to a reference trajectory. In this approach, haptic forces are applied to guide the

human away from collision-bound motions or operational boundaries [7]. Virtual

fixtures method was one of the earliest instances of this approach where repulsive

forces are applied in different geometric directions to restrict motion in forbidden re-

gions [47,48]. Force field-based approaches have also been proposed in the literature.

Artificial potential fields (APF) have been used to estimate repulsive force feedback

to guide the human away from obstacles in the environment [49]. Extending the

APF approach, Lam et al [50] proposed parametric risk fields (PRF) which further

generates repulsive forces based on the estimated risk of the maneuver. Predictive

planning techniques such as model predictive control (MPC) have been used to plan

collision-free maneuvers over a horizon, guiding the operator to the optimal maneu-

ver [46, 51]. A recent study further explored control-theoretic maneuver selection

by using control barrier functions (CBF) to bring maneuvers as close as possible to

the operator’s command (i.e., reducing conflict) and also ensuring safety [52]. The

previous approaches have achieved improved navigation performance (e.g., reduced

collision, faster completion times) but only in situations where the forbidden regions

are static and unchanging in the environment. Limited work has explored haptic
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guidance in the midst of dynamic obstacles. Battisti et al [53] proposed a velocity-

obstacle-based approach to filter out collision-bound velocity commands and guide

the operator towards collision-free maneuvers using haptic forces. This dissertation

explores the use of haptic guidance in dynamic scenarios in the context of social

navigation around pedestrians.

2.1.2 Human-centered Design Considerations for Shared Au-

tonomy

Higher levels of autonomy and intelligence in mobility systems promises to enhance

driving safety and efficiency and allow disabled and elderly people to travel inde-

pendently. However, as long as these mobile systems do not possess robust failure

detection and recovery capabilities and are not fully reliable across a wide range

of drive conditions, humans will have to share the driving responsibilities while the

system is in operation, whether that means operating at the task level, servo level

or a combination of both [4]. So it is crucial to design these automated driving

systems in a way that is human-compatible, ensuring cooperation between humans

and machines. For highly automated systems to be reliable, safe, and trustworthy,

Shneiderman [54] contends that both agents need to maintain a high level of con-

trol and involvement. To achieve this, a human-centered design approach must be

considered in the design of human-automation systems.

Billings [9] formulated one of the earliest human-centered principles for the design

of human-automation systems in the aviation industry. Recently, similar principles

have been formulated to guide the design of human-automation collaboration strate-

gies and interfaces for semi-autonomous vehicles [1, 7]. Human-centered principles

converge on the following axioms (Fig. 2.3):
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Figure 2.3: Human-centered design principles for shared autonomy systems [1]

1. Mutual understanding: “Both agents should be able to understand each

other’s control actions.”

Mutual understanding within a team is typically achieved via shared mental

models of the collaborating agents [30]. A mental model is a description of the

internal mental representation of how an agent (e.g. the autonomous agent)

behaves in certain conditions. It is crucial for the human to have an accurate

mental model of the autonomous agent, i.e. the capabilities, limitations and

the intent of the autonomous agent [55]. With this knowledge, the human will

be able to better understand the “what” and “why” of the autonomous agent’s

behavior and make predictions on what its future actions would be. We see

evidence that humans use internal predictive models in their motor control,

and that these models are constructed iteratively through interactions [56].
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Inaccurate mental models lead to misjudgement of the autonomous agent’s

actions, over- or underreliance on the system, and unnecessary control con-

flicts [30]. In the context of shared autonomy, this question remains: how can

the human be best informed of the autonomous agent’s intent to maintain an

accurate mental model?

On the other hand, a mental model of the human’s behavior is also crucial if the

autonomous agent is to accurately estimate the human’s intent and provide

synergistic assistance [1]. Various approaches to modeling driver behavior

have been explored both at the operational level (such as steering, braking,

or preference models) and the tactical level (including task intent inference,

driver state, or skill models). See [1, 57] for a review on this topic.

2. Mutual communication: “Both agents should be able to communicate the

intent behind their respective actions.”

To achieve effective communication between two entities, it is key to ensure

that the right type of information is conveyed at the right time and in the

right way. This will ensure that the human does not suffer from information

overload, making it difficult for the human to interpret the task state and con-

text [58]. Therefore, two crucial questions must be addressed in this context:

(i) what information to communicate, (ii) how to communicate the informa-

tion? Deciding what to communicate may be scenario- and task-dependent

and would vary based on particular contexts and application. In their review

paper, Petermeijer et al. [30] outlined the following information as candidates

of what to communicate in a shared driving context: “(i) the current automa-

tion mode, (ii) time budgets to foreseen events, (iii) reasons for changes in

automation models, (iv) reasons for planned maneuvers, etc.”
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Regarding how to communicate the information, it may be achieved via im-

plicit (or indirect) communication or through explicit communication. Implicit

communication is applied extensively in social human-robot interaction where

robot posture, head or gaze movements are used to communicate the intent

or the emotional state of the robot agent [59]. Explicit communication strate-

gies are more prevalent in shared autonomy applications. Information can

be communicated to the human agent through the different sensory modali-

ties: visual channel (e.g. visual overlay display, virtual or augmented reality

display, etc.) [60–62], the haptic channel (e.g. both kinesthetic and tactile

feedback) [40, 52, 63] or the auditory channel (e.g. warning sounds, descrip-

tive voice prompts, etc.) [64, 65]. Communication can occur through one or

a combination of these channels. This dissertation investigates what interac-

tion modalities are most effective for communicating the intent of autonomous

agents to humans in a shared social navigation task.

3. Adaptive evaluation: “Both agents should be able to monitor and adapt to

the actions of the other agent in a cooperative fashion.”

Adaptation is vital to maintaining robust team synergy in the face of changing

environmental conditions, task specifications and agent states [14]. As an

example, in shared driving, the autonomous agent would need to be able to

adapt to and handle different driving objectives or styles, or changes in driver

states (e.g., fatigue, distraction, etc.) that could impair drivers’ performance

and impact safety. The concept of adaptation is discussed in more detail later

in this chapter.

Research has shown that haptic shared autonomy systems designed under human-

centered principles are able to minimize human-automation conflict, and thus, im-
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prove cooperation, user satisfaction and trust in the automation [1,15,41]. Following

the axioms described above, two main factors are considered in the human-centered

approach to conflict resolution are (i) system transparency, (ii) autonomy adapta-

tion.

Transparency as Predictability

Transparency takes on different definitions in the literature when considering human-

automation interaction [66], but here we explicitly consider the case of transparency

as predictability, i.e., as the human and autonomy agent share a task, how pre-

dictable is the intent and action of the autonomous agent to the human operator.

This is also called robot-to-human transparency [66]. The converse case, human-

to-robot transparency, addresses how the agent understands the intent and actions

of the human. Though it is also an important topic, in this dissertation we con-

centrate on the robot-to-human component. Transparency as predictability derives

from the mutual understanding and communication axioms of human-centered de-

sign. In haptic shared autonomy, when the human cannot understand or anticipate

what the autonomous agent is “doing” (action) or “trying to achieve” (intent), they

may fight back over the force-based interface, hence generating resistive forces which

increase workload and also lead to safety concerns in the navigation task.

Several methods have been proposed to improve the predictability of the au-

tonomous agent’s actions and intent. Balachandran et al [51] proposed an approach

using haptic cues on the steering wheel to gradually communicate the autonomous

agent’s intent to steer away from a frontal collision. It is natural to consider using

the shared haptic channel for intent communication as it elicits fast reflex responses

to stimuli [67]. However, it is limited in the ability to convey contextual informa-

tion such as the state of the task or future actions of the autonomous agent [68].
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Because of this limitation in the haptic channel, researchers have favored visualiza-

tion to augment haptic cues in intent communication. The human visual channel is

significantly slower in processing stimuli than the haptic channel, but its trade-off is

more bandwidth to convey richer information [69]. Hence, several works have been

proposed to use visualization to communicate the intent of the autonomous agent in

human-automation interaction. Augmented reality visualization has been applied

for wheelchair navigation assistance [61], assisted telemanipulation to communicate

the agent’s estimate of the desired goal [70]. Visual feedback has been applied in

advanced driver assistance systems (ADAS) for warning support (e.g., lane depar-

ture warning) as well as in action suggestion (e.g., recommended route display) [71].

Visualization of predicted trajectories was proposed to assist in a collision avoidance

task in static environments [19,68].

Research has also considered multimodal feedback combining visual and haptic

modalities to improve system transparency and intent understanding. Vreugdenhil

et al. [68] found that multimodal assistance improved user acceptance over haptic

feedback alone. Berg [72] showed that compensating haptic forces with a visual-

ization increased task performance in an industrial application. In a UAV collision

avoidance task experiment, Ho et al. [73] evaluated two visualization designs com-

bined with haptic feedback. They reported that participants preferred the visual

design that showed a 1:1 representation of haptic forces. However, multimodal feed-

back may not always improve performance and may be dependent on the complexity

of the task [74]. In Chapter 4, I investigate the effects of our multimodal approach

in comparison with haptic or visual assistance alone on system transparency, coop-

eration and user preference in a shared social navigation task.
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Autonomy Adaptation

The second human-centered design factor considered in this dissertation is adapta-

tion. Adaptive automation systems do not remain “static” but can adjust to the

task requirements, individual characteristics or preferences of the human operator.

There are two modalities of robot adaptation explored in the literature: adaptive

and adaptable systems. In adaptive systems, changes to the system’s behavior are

initiated by the system itself through monitoring of the task and the human behav-

ior. Whereas in adaptable systems, the human is responsible for initiating changes to

the system’s behavior [7]. In this thesis, we consider adaptive automation because

it designates the responsibility of adaptation to the autonomous agent. thereby

reducing the human’s cognitive demand

Research has shown that adaptive assistance policies tend to outperform con-

stant assistance policies in both overall task performance and human-automation

cooperation [75]. Adaptation can be designed to occur along several dimensions,

and we review a few of them below.

• Risk-based adaptation [43, 76]: This is analogous to an assist-as-needed ap-

proach where the level of haptic authority is low when the risk measure is low,

but the level of haptic authority increases when the risk level is high. This

approach ensures that conflict only occurs when they are desirable, i.e., when

the risk is high and the vehicle is in a safety-critical situation.

• Trust-based adaptation [16]: Here, the intensity of the haptic feedback cues

are regulated by the estimated level of trust the autonomous agent has in

the human partner (robot-to-human trust). That is, when robot-to-human

trust is high, the guidance forces on the control interface are reduced which

leads to reduced physical workload. This approach differs from the risk-based
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approach in that it formulates a computation model of mutual trust in the

human-automation team.

• Skill-based adaptation [17]: In this approach, the adaptation occurs based on

the operator’s level of expertise in the task. This is often a latent variable

that must be inferred by reasoning over the human’s control inputs in task

execution. The idea is that novice and expert human operators require various

levels of support and a misalignment in the form of support may lead to conflict

or task degradation.

• Adaptation via personalization [15, 41, 77]: In this approach, a model of the

human operator is integrated into the control loop of the autonomous agent

which allows for online adaptation of model parameters to individual users.

This approach works well when human behavior and task specifications can

be modeled quantitatively but may not scale to more general scenarios where

human behaviors are very complex and hard to model.

• Task-based adaptation [18]: The approaches above assume a fixed task intent

and adapt to it. The task-based adaptation relaxes this assumption by explic-

itly estimating the human partner’s intent from control inputs and contextual

information and provides the appropriate policy to maximize task performance

and cooperation.

Chapter 5 explores the adaptation of navigation assistance to various operator

driving objectives/styles and assesses the impact of the adaptation on human-

automation cooperation and user preference.
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2.2 Driving Assistance in Pedestrian-Rich Envi-

ronments

Navigating a vehicle safely in a dynamic crowded environment can be challenging

for humans, especially in remote teleoperation scenarios (e.g. driving a mobile telep-

resence robot) where situational awareness is limited and their field of view is nar-

row [78]. Therefore, shared autonomy with driving assistance is needed to support

the operator in safe navigation around humans, not only in a physically safe way,

but also in a comfortable, natural and socially consistent manner [12,79]. Real-world

applications include smart wheelchair mobility, mobile telepresence robots and semi-

autonomous parcel delivery robots. To achieve socially-aware navigation assistance,

the autonomous agent must continuously execute the perception-planning-action

control cycle while considering social constraints. However, there is limited work in

this area as existing work has focused on navigation assistance in static environments

alone [6,61,80]. The motion planning strategies employed in existing work [6,61,80]

do not extend well beyond static environments. It is therefore necessary to develop

driving assistance systems that are able to cope with dynamic obstacles and take

social, cultural norms into consideration.

The topic of autonomous socially-aware robot navigation has drawn consider-

able attention in recent years (for reviews, see [81, 82]). Mavrogiannis et al [81]

decomposes the problem of social navigation into two main components: prediction

(i.e., estimating where the pedestrian(s) would be in the future) and planning (i.e.,

constructing a collision-free path to goal considering the predicted future states).

These two components hinge on our understanding and modeling of human social

and navigation behavior. Hall [83] pioneered the proxemics theory in the field of hu-

man psychology, which formalizes how humans manage their interpersonal spaces in
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social contexts. Recent work in robotics has adapted this theory to reasoning about

social constraints in motion planning around humans [12]. Several socially-aware

planning approaches have been proposed in the literature and the prominent cate-

gories include sampling-based (e.g., RiskRRT [84]), model-based (e.g., social force

model (SFM) [85], velocity-obstacles (VO) [86]) and learning-based methods (e.g.,

interacting Gaussian processes [87], SA-CADRL [88]).

However, there has been limited application of these methods to driving assis-

tance, where the human is in the loop. In [13], Narayanan et al. formulated a semi-

autonomous navigation framework for smart wheelchair assistance using RiskRRT.

Kretzschmar et al. [89] took a different approach of learning the social constraints in

navigation from human demonstration using inverse reinforcement learning and then

deployed this trained policy as an assistive autonomy agent on a wheelchair. These

works applied the indirect shared autonomy approach, and only considered either

single pedestrian interactions or static group interactions. The work presented in

this dissertation will consider a multimodal (haptic+visual) shared control frame-

work for navigation assistance and extend the scenario from single pedestrian to

multi-pedestrian interaction which is a more generalized and realistic problem.

2.3 Driving Assistance in Passenger Vehicles

Advances in sensor technology and the declining cost of computing hardware have

accelerated the penetration of automated driving systems (ADS) in passenger vehi-

cles. A taxonomy of driving automation levels (Levels 0-5) defined by the Society

of Automotive Engineers International (SAE) [90], indicates that with higher au-

tonomy levels, the human transfers increasing levels of driving responsibility and

control authority to the automated driving system. However, as mentioned earlier,
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systems with higher levels of autonomy (e.g. Levels 3-5) have yet to reach the level

of robustness and reliability necessary for widespread deployment. Therefore, Level

2 systems which provide driver assistance while also keeping the driver in the loop,

commonly known as advanced driver-assistance systems (ADAS), remain vital for

driving safety [4]. ADAS can be classified in two broad categories: (i) based on the

form of support and (ii) based on the driving task involved. For the former, driver-

assistance systems can be passive in the form of a warning such as lane departure

warning, or can be active such as automatic braking system [91]. For the latter,

these systems can be classified into lateral control features such as lane-keeping as-

sist or longitudinal control features such as adaptive cruise control [92]. It is hoped

that these systems will reduce auto accidents and enhance driving experience by

reducing human error [92].

Accurate computational driver models are crucial in the design of ADAS either

in their operation, to define the appropriate complementary control actions to take

in assisting the human [93], or to serve as surrogate models in place of human drivers

in the testing and validation of the systems [94]. Cognitive driver models approxi-

mate driver behaviors in the context of driving task reasoning and decision-making

which have been applied in developing and validating ADAS such as lane departure

warning [95], collision avoidance [96], and steering assistance [93]. On the other

hand, physical driver models are able to render human-like postures and movements

in driving-related contexts and have been applied to analyzing in-vehicle tasks [97],

ergonomics and vehicle occupant package design [98, 99], and driver assistance sys-

tems [100,101].

However, limited work has been done on the development of an integrated phys-

ical driver model capable of rendering realistic driver control motions in normative

driving scenarios. Such a surrogate driver model would provide new opportunities
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for the evaluation of haptic-based ADAS, especially in the area of driver control

workload. Conflict scenarios often arise between ADAS and the driver as a result

of mismatches in situation awareness, intent, and task execution [11], as outlined

in Section 2.1.1. This leads to higher interaction forces on the driver, which in-

creases their physical workload and lowers their acceptance of the system. Existing

studies assess the impact of haptic-based ADAS designs on driver control workload

and physical stress by using one of two methods. Most studies rely on subjective

evaluations of human subjects in simulated driving experiments to assess workload

measures [102, 103]. Alternatively, some studies use suitably instrumented human

subjects and/or vehicle control devices in driving studies to identify force interac-

tions and the resulting internal dynamics of the human driver [20, 104, 105]. This

dissertation presents the use of surrogate human driver models as a third approach

since they enable the simulation of human behavior and dynamic characteristics as

well as provide access to hard-to-measure internal workload variables.
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Chapter 3

Role of Anticipation Uncertainty

on Human Response in

Force-based Tasks

3.1 Introduction & Background

In designing effective human-automation systems, mutual understanding through

system transparency and predictability remains a crucial factor [1]. Predictability,

in this context, suggests that the human has sufficient knowledge of the system

capabilities and intentions to accurately anticipate its actions and react accordingly.

Existing research on human motor control supports the fact that humans utilize both

anticipatory (or feedforward) and compensatory (feedback) strategies to achieve fast

and adaptive motions. [106]. These anticipatory behaviors in humans rely on internal

predictive models learned over time [56]. It is important to better understand how

human anticipatory behavior relates to human response in force-based tasks.

Several studies have examined the nature and effects of this anticipatory behavior
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in a variety of scenarios. Serrien et al [107] recorded motion, grip, and load forces as

subjects performed a task to pull open a drawer using precision grip on the handle.

They observed a proactive increase in the grip force as the drawer approached the

mechanical stop and concluded that this anticipatory behavior occurred to avoid

slipping of the handle due to the emergent impact force. In manipulation tasks

involving lifting objects of different weights, several experiments have demonstrated

that humans predictively scale their lift-grip force according to their expectation of

the object’s weight [108]. The expected object weight may derive from internal mod-

els built for the object based on its mechanical properties or prior experience [109].

An extension of existing research is needed to consider the effect of correct and incor-

rect anticipation of force interaction during the execution of a force-based task. This

finds relevance in the force-based interaction between a human and an autonomous

agent over a shared haptic-enabled interface. Consider a scenario where a human

driver and an advanced driving assistance system (ADAS) are jointly controlling a

vehicle using haptic feedback on a steering wheel. A goal conflict between the driver

and the ADAS can lead to sudden, unexpected haptic forces being applied by the

ADAS on the steering wheel, which may affect the driver’s response and compromise

driving safety.

The goal of this chapter is to investigate the characteristics and effects of force

anticipation uncertainty on human motor control in force-based interactions. To

do so, a novel experimental study is designed and conducted to investigate human

motion and force responses to a simple load pushing task in both expected and

unexpected conditions. The hypotheses are that incorrect anticipation will lead

to reduced task performance whereas when correct anticipation is sustained, task

performance would be improved. Understanding how internal predictive models

interact with anticipatory behavior and influence human motion are crucial to the
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human-centered design of haptic shared autonomy systems.

This chapter is organized as follows: the experimentation and analysis methods

are described in Section 3.2. The experiment results are presented and discussed in

Sections 3.3 and 3.4, while concluding remarks are presented in Section 3.5. The

work in this chapter was summarized in [22].

3.2 Experimental Design

3.2.1 Participants

Ten participants (9 males) participated in the study (age: 25.8 ± 2.5 years; height:

172.5 ± 5.3cm; mass: 70.6 ± 12.2kg). Data from one male participant who did not

perform the tasks within the specified time period were excluded from the analysis.

Participants with limited upper limb function due to injury, pre-existing condition,

or disease were excluded from this study.

3.2.2 Experimental Setup and Task Description

With the participant seated in the experimental setup (as shown in Fig. 3.1), they

performed a pushing task using their dominant arm. The handling plate contacted

the loading plate through a uni-axial load cell (LCM300; FUTEK, CA) that was

attached to the loading plate. The load cell measures the contact force as the

handling plate pushes against the loading plate during the task. The participant

pushed the handling plate directly, to move both plates forward along low-friction

linear sliders (SRS15GMU; THK, Japan) until they come into contact with rubber

stoppers. The initial positions of the loading and handling plates were established on

the test bench using rubber stoppers. The loading plate was connected to different
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Figure 3.1: Experimental configurations of pushing task with a test-bench.

weights via a cable attached to a fixed pulley in order to establish the workload in a

particular pushing trial. Loads were selected evenly along a log10 scale and included

Heavy (5kg), Medium (1kg) and Light (0.2kg). A black curtain a set up to prevent

participants from seeing the weights on the loading plate.

Linear sliders with low friction allowed the handling plate to slide easily. Because

the handling plate was separated from the loading plate, if a participant pushed too

hard anticipating a heavy workload, the displacement overshoot of the loading plate

could not be corrected. Thus, undershooting was not included in the outcome of

the loading plate displacement, and only pushing was possible.

3.2.3 Experimental Procedure

Upon arrival to the study, participants signed the IRB-approved informed consent

form. The experiment comprised three sessions: training session (14 trials x 3
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workload conditions = 42 trials), checking (2 trials x 3 workload conditions = 6

trials) and testing sessions (15 trials) in this order. The experimenter informed the

participant of the type of workload prior to each trial, i.e. Heavy, Medium, or Light

on the board display. A 3-s count-down was provided leading up to each pushing

task. After the countdown reached ”start”, the participant was asked to immediately

push the handle plate quickly and accurately with his/her hand. The instructions

were to push the handling plate 10 cm in under one second while keeping the hand

in contact with the plate. Breaks of 3–5 minutes were provided to the participant

between each session.

The training and checking sessions were designed to calibrate the workload an-

ticipation of the participants. In the training session, participants performed 14

pushing tasks with each workload setup and were informed of the correct workload

before each trial. This was designed to familiarize participants with the workloads

and to train their corresponding motion and force responses. Next, the participant

performed six trials on the checking session with informed workloads matching the

actual workloads. A participant was considered “trained” if they completed four out

of six trials within 1 second with an error less than 2 cm for each workload condi-

tion in the checking trials. Additionally, the participant also verbally expressed that

they were familiar with each workload. If a participant was unable to complete the

checking session accurately, more training sessions were held until the participant

met the requirement.

The testing session involved the participants performing 15 trials of the push-

ing task while the informed workload may or may not have reflected the actual

workload. It was explained to participants that both the correct and incorrect in-

formation would be displayed during the test, but that they should rely on the

displayed information. The sequencing of the actual workload and the matching of
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Trial Case Actual Informed Condition

LL Light Light Correct
LM Light Medium Over
LH Light Heavy Over
ML Medium Light Under
MM Medium Medium Correct
MH Medium Heavy Over
HL Heavy Light Under
HM Heavy Medium Under
HH Heavy Heavy Correct

Table 3.1: Possible cases of the actual and informed workload in the experiment

the informed workload were both random. The 15 trials included 3 mismatching

trials related to over-anticipation (i.e., the informed workload was greater than the

actual workload) and 2 mismatching trials related to under-anticipation. Table 3.1

presents nine examples of the actual and informed workload setups experienced by

participants during the testing session. The trials could be categorized into correct

anticipation, under-anticipation, and over-anticipation. Our experiment required

the handling plate displacement from the push to be 10 cm. With reference to this

requirement, a trial may fall into the categories of “acceptable,” “overshoot,” and

“undershoot.” Specifically, the “maximum displacement” of each trial was normal-

ized with respect to the average displacement in the “MM” trials for each partici-

pant. The performance of a trial was “acceptable” if the normalized displacement

was within the range of 80%–120%. Displacement above 120% and under 80% was

considered to be “overshoot” and “undershoot,” respectively.
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3.2.4 Data Collection

Wireless surface electromyography (sEMG) sensors were used to monitor the elec-

trical activities of the relevant muscles on the participant’s upper extremities. Our

setup consisted of 14 channels of Delsys Trigno Avanti EMG sensors (Delsys, MA)

attached to the anterior, middle, and posterior deltoid, biceps, triceps, brachioradi-

alis, and trapezius muscles of both the left and right upper extremities. The signals

were sampled at 1,111Hz using Delsys EMGWorks Acquisition Software (Delsys,

MA). The sEMG recordings were normalized by the peak contraction value for each

muscle from the maximal voluntary contraction (MVC) test [110]. A motion capture

system (VICON Vero, 10 cameras) was used to track the arm and upper body mo-

tions of the participants at 100Hz. The pushing force was measured using a uni-axial

load cell (LCM300, FUTEK, CA) at 1,111Hz. All data channels were synchronized

together.

3.2.5 Data and Statistical Analysis

All recorded data were analyzed and processed using MATLAB (MathWorks, MA).

The raw EMG signal was high-pass filtered at 35 Hz (second-order, zero-lag But-

terworth filter), DC offset, rectified, and low-pass filtered at 40 Hz (second-order,

zero-lag Butterworth filter), then resampled at 1,000 Hz [111]. Force and handling

plate displacement data were resampled at 1,000 Hz and low-pass filtered at 40 Hz

(second-order, zero-lag Butterworth filter). Figure 3.2 displays the synchronized

displacement, force, and sEMG data for a single pushing trial from a representative

participant. When the pushing task was performed, the anterior deltoid muscle,

which is the dominant muscle involved in shoulder elevation, was the only mus-

cle that demonstrated an initial spike in its EMG signal before the onset of force.
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Therefore, the EMG signals from other muscles were excluded from our analysis.

A composite plot of force, displacement, and EMG for a single trial of the push-

ing task is shown in Figure 3.3. Seven landmark points were identified for force

anticipation analysis, which included EMG onset, force onset, displacement onset,

the first force peak, the minimal point of the first force peak, maximum force, and

maximum displacement. Since the EMG onset can be interpreted as the start of

actuation, the lead time is expressed as the time interval between EMG onset and

displacement onset. Also, the pushing task is completed when the loading plate

reaches the maximum displacement. Accordingly, the task duration is defined as

the interval from the onset of the EMG to the instant of maximum displacement.

The force onset time was defined as the first instant the force exceeded 3 N and

continuously increased.

The first and second peak forces were measured as local maxima occurring after

onset. Displacement onset time was defined as the time after force onset, at which

the loading plate displaced more than 5 mm from its initial position. To identify

EMG onset time, a threshold was set equal to 1.2 times the maximum resting EMG

value (from the beginning to 0.3 s prior to the instant of force onset). The EMG

onset time was defined as the first instant the EMG signal exceeded this value.

Initial velocity of the handling plate was calculated as the average velocity obtained

from a displacement between the 5 and 10 mm marks. Our data preprocessing first

normalized the EMG signals of a participant with respect to the MVC and the EMG

magnitudes recorded in the “MM” trial of each participant (Table 3.1).

The time delays were calculated using the timings of the EMG onset, force onset,

and displacement onset. Initial analyses compared force and displacement variables

using ANOVA and Bonferroni-corrected post hoc t-tests in order to determine the

main effects of actual versus informed workload. In the next step, the trials were
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Figure 3.2: Recorded displacement and force data along with EMG signals from the
deltoid (anterior, middle, and posterior), biceps, triceps, and brachioradialis muscles
for a single pushing trial.
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Figure 3.3: Force, displacement, and EMG data for a single trial, with the features
for force anticipation analysis.

classified into feedforward-dominant and feedback-dominant cases based on the rel-

ative time delays between the force and displacement. To determine whether trials

classified as feedforward-dominant were different from those classified as feedback-

dominant, a Student’s t-test was used to compare the first peak force, initial velocity,

lead time, and task duration. In addition, to determine whether overshoot trials were

different than acceptable trials, a Student’s t-test was used to compare the normal-

ized maximum first peak EMG, normalized integrated first peak EMG, first peak

force, and initial velocity. Finally, to evaluate the effect of perceived weight from

the preceding trial on performance of the current trial, one-way ANOVA was used

to compare time delays and pushing performance for HH trials that followed various

preceding conditions. Because of the limited sample size, the effect size (Cohen’s d

or η2 , as appropriate) for the analyses were also calculated for differences.
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3.3 Results

Accuracy of Motion Responses

When the correct information was provided to participants, nearly 80% of them

were able to accurately hit the target distance of 10 cm, with the remaining 20%

overshooting. The distribution was similar for cases of underanticipation (when in-

correctly Light workloads were displayed). However, when incorrectly Heavy work-

loads were displayed (overanticipation trials), approximately 80% participants over-

shot the target. Due to the design of the task, undershooting was not possible.

Figure 3.4 shows the distribution of participant responses with correct, under-, and

overanticipation of task workload by their normalized displacement. Significant in-

formed/actual workload interactions were observed in the displacement, with actual

Light and Medium workloads being most affected by informed workload.

Figure 3.5 shows the mean and standard deviation of the normalized maximum

displacement of the handling plate across all nine trial cases. When the actual work-

load was Light, the responses to the various informed workload cases mostly resulted

in an overshoot. And, with Light workloads, the normalized maximum displacement

increased with the workload anticipation (p < .001). When the actual workload was

Medium, overshoot only occurred with a Heavy anticipated workload case, and dis-

placements were different between ML and MM versus MH cases (p < .037). When

the actual workload was Heavy, the normalized maximum displacement of all the

trials remained within the acceptable error range, i.e. no overshoot was observed

(see Figure 3.5). The task performance with heavier actual workloads was more

consistent than with lighter workloads. Specifically, the standard deviations for HL,

HM, HH were ±9.97, ±14.08, ±17.64, respectively, while the standard deviations

for LL, LM, LH is ±31.15, ±57.35, ±79.49, respectively.
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Figure 3.4: Distribution of displacement response across the three trial conditions:
correct, over-, and underanticipation, in percentages.
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Figure 3.6: Mean and standard deviation of the first peak force magnitudes across
all nine trial cases.

Effects of Informed Anticipation

By comparing the first force peak between two conditions, one can observe the effects

of workload anticipation uncertainty. In general, the force profiles had a single pulse

in the cases of overanticipation (LM, LH, and MH) and two pulses in the cases of

underanticipation. Figure 3.6 shows the mean and standard deviation of the first

force peak value of the force profiles across all the participants, for each trial case.

Overall, the first force peak value increased as a function of both the actual and

informed workload. However, the first force peak was only significantly different

between informed conditions within the Light actual workload cases (p = .028,

η2 = .13). Light actual workloads had significantly lower first peak forces than

Heavy workloads (33.9 (19.7) N vs. 50.0 (41.2) N, p = .04 from post hoc Bonferroni-

corrected t-test). The effects of the informed workload were also reflected in the

initial velocity of loading plate and task durations. Significant differences in initial

velocity due to informed workload magnitudes were only observed in Light actual

workload cases (p = .046, η2 = .12). Task durations were significantly affected by
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Figure 3.7: Force and displacement profiles in the first peak dominant (feedforward-
dominant) cases (left) and the secondary force dominant (feedback-dominant) cases
(right) for Heavy trials.

the actual, but not the informed workloads (p < .001, η2 = .14). Specifically, Heavy

actual workloads took longer to move than Light or Medium ones (p < .001).

Feedforward- and Feedback-Dominant Controls

By comparing the relative time delays between the first minimal point and the dis-

placement onset, responses were classified as either feedforward or feedback-driven.

Figure 3.7 presents the two types of force responses observed among participants

when the actual workload was Heavy. The displacement onset (point c in Figure 3.3)

may occur before or after the minimal point of the first force peak when comparing

the displacement profile with the force profile. The end of the first peak force pulse

may indicate that the participant has switched from feedforward to feedback force

control, based on the perceived workload being heavier than anticipated. This is an

important feature that may indicate whether a participant’s force response is more

or less dependent on the informed workload. Accordingly, it is proposed that feed-

forward dominant cases are those where the plate moves before the minimal point

of the first peak force, whereas feedback dominant cases are those where the plate
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Figure 3.8: Comparison of the effect of feedforward/feedback controls on the first
peak force, initial velocity, lead time, and task duration for Heavy load trial cases.
a) First peak force; b) Initial velocity; c) Lead time; d) Task duration.

does not move until the first peak force has ended.

Based on this classification scheme, 44% of trials were classified as feedforward-

dominant and 56% were classified as feedback-dominant with the Heavy actual

workload cases. Feedback-dominant behaviors were not observed with the Light

or Medium actual workload cases. Next, the force, motion, and EMG responses

were compared between feedforward- and feedback-dominant responses. The results

showed that, for the trials of Heavy actual workload, the feedforward-dominant re-

sponses had significantly higher first force pulse amplitude (p < .001, d = 1.43)

and initial velocity (p < .001, d = 1.64) versus feedback-dominant responses (Fig-

ure 3.8). They also had significantly shorter lead time (the time from EMG onset

44



p < 0.01

p < 0.01

Figure 3.9: Time delays from EMG onset to the force onset, the first peak force,
and the minimal point of force.

to displacement displacement onset) and task duration (p < .001, d = 1.34, and

p < .01, d = .86, respectively). All responses, regardless of whether they were

classified as feedforward or feedback, had similar time delays. These include time

delays of (1) the force onset (156 ± 48 ms), (2) the first peak force (195 ± 48 ms),

and (3) the first minimal point (265 ± 79 ms) from EMG onset. Each of these time

delays were significantly different from each other (Figure 3.9) and occurred in a

fixed sequence. The time duration of the first peak force (109 ± 63 ms) was an

invariant parameter in the pushing task across all subjects and conditions, and was

not different between trials classified as feedback or feedforward.

Effects on EMG Responses

EMG responses differed both between feed-forward- and feedback-dominant re-

sponses and as a function of overshoot. Shown in Figure 3.3, the EMG response of

the anterior deltoid muscle typically had two bursts, with the first corresponding to

the first peak of force response and feedforward control, based on the anticipated

workload. With the normalized EMG data, it was observed that: compared to the
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(d)

Figure 3.10: Comparison of maximum value and time integrated value of nor-
malized initial burst EMG, first peak force, and initial velocity based on over-
shoot/acceptable task results in Light load trials. a) Maximum value of normalized
initial burst of EMG signal; b) Time integrated value of normalized initial burst of
EMG signal; c) First peak force; d) Initial velocity.

trials of acceptable motion accuracy, the trials of motion overshoot had significantly

larger values for (1) the first peak value of the normalized EMG signal (p = .005,

d = .72, Figure 3.10(a)) and (2) the time integrated value of the initial burst of

normalized EMG signal (p = .006, d = .72, Figure 3.10(b)). These observations are

consistent with the significant differences found by comparing the first peak force

(p = .001, d = .83) and initial velocity (p = .002, d = .83) between overshoot and

acceptable motion accuracy (Figure 3.10(c–d)).
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Effect of Preceding Trial

HH performance was moderately affected by the condition of the trial immediately

preceding the HH task. Actual workload in preceding trials affected first peak force

(p = .077, η2 = .18), initial velocity (p = .057, η2 = .20), lead time (p = .005, η2 =

.33), and task duration (p = .029, η2 = .24; Figure 3.11). Post hoc t-tests showed

that Light actual workloads significantly increased the lead time of the current HH

trial (p < .01). Furthermore, a preceding trial of Light workload increased the

task duration compared to a preceding Heavy workload (p < .05). We found no

significant effect of preceding trials of Light versus Medium workload.
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(d)

Figure 3.11: Comparing the effect of preceding trial workload on the first peak force,
initial velocity, lead time, and task duration of current trials of Heavy workload. a)
First peak force; b) Initial velocity; c) Lead time; d) Task duration.
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3.4 Discussion

This study compared human motion and force responses in a simple load pushing

task under workload anticipation uncertainty. Because pushing-only tasks do not

necessarily require hand deceleration to manage position control, they could pro-

duce unique behaviors, such as displacement overshoot. The results show that when

participants had the correct anticipation of the workload, they completed the task

more accurately compared to when they had an incorrect anticipation (especially

in over-anticipation cases) of the workload. This trend is consistent in the force

and EMG response as well. Both the first peak values of the force and normal-

ized EMG magnitude were significantly higher in these overshoot cases compared

to the acceptable cases. This suggests that participants trusted the informed work-

load and responded based on their pre-calibrated internal models of the task and

workload [56].

To investigate further, the extracted response features were used to classify the

responses into feedforward-dominant and feedback-dominant control based on the

phases of the responses. This classification is consistent with existing studies in

human motor control [56,112]. The results show that feedback-dominant control was

used more frequently when the actual workload was Heavy, while only feedforward-

dominant control was used (and usually sufficient) when the actual workload was

Light or Medium. It appeared that despite being properly informed of the actual

workload to expect, participants tended to underestimate the workload for Heavy

cases. The first peak force in the heavy trials were less than 50N (approximately the

actual load being moved). Because of this, a second force pulse was often required

in a feedback manner to overcome the perceived resistance and initiate movement

of the handling and loading plates.
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In evaluating response timings, it was found that the time delays for force re-

sponse is consistent with the time delays of feedback control (about 100ms) in the

task of balancing in the presence of floor perturbations [111]. The fast response

of force and tactile feedback is especially advantageous in continuous coupled co-

driving between a human and an autonomous system. The fast feedback loop allows

for tight coupling and information exchange [67, 113]. This is in contrast to other

feedback modalities such as visual and auditory feedback which are reported to be

much slower (0.18s and 0.3-0.4s respectively) in ideal conditions [114]. However, one

challenge with the haptic feedback channel is the limited bandwidth in communicat-

ing sufficient information to elicit the right response [69]. As previously highlighted

in Section 3.1, unexpected forces may occur due to conflicts in intent between driver

and assisted driving system [76]. Our results in this chapter suggest that these unex-

pected forces may result in high feedback forces from the human driver to resist the

unanticipated maneuver, leading to increased physical workload, degraded driving

performance and vehicle safety. A possible solution is to improve the transparency

(or predictability) of the system so that drivers have a better understanding of the

system’s intent, allowing them to anticipate and interpret interaction haptic forces.

The limitations of the study must also be acknowledged. The sample was small

and skewed heavily toward men. It is possible that the results are not generaliz-

able to other populations, especially those with neuromotor impairments. A small

sample size made it difficult to detect all of the effects of trial order and anticipa-

tion. However, performing additional conditions would have resulted in an exces-

sively long experimental protocol. Despite the small number of participants, the

repeated-measures design resulted in a study that was adequately powered to de-

tect differences in our dependent variables. Additionally, the measured effect sizes

were generally large (Cohen’s d > .5, η2 > .15), supporting the significance of the
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findings [115–117].

3.5 Chapter Summary

This study investigated the effects of correct and incorrect force anticipation on the

human performance of a simple pushing task. The main finding of the study is that

task anticipation, including expected workload, influences human control strategy,

particularly during force-based interactions. Specifically, the results show that the

first peak of the pushing force increases consistently with anticipated workload. This

suggests that with proper calibration of their internal model, humans can accurately

anticipate and predict force interactions. Also, overshooting was observed in the

case of over-anticipation (i.e., when the anticipated workload was greater than the

actual workload). Participants used feedforward-dominant control to achieve the

rapid task with Heavy workloads. In addition, when Heavy trials were preceded by

Light trials, participants tended to perform slower and with initially lower force.

These findings reveal how force anticipation affects task performance in motion

and force control, and how the workload of preceding tasks may influence the per-

formance of the current task. These considerations are crucial in understanding the

important role of transparency and anticipation in force-based interaction, such as in

haptic shared autonomy. The following chapters incorporate the findings from this

user study as design considerations for haptic shared autonomy. Specifically, Chap-

ter 4 discusses how to develop a more transparent and intuitive shared autonomy

system for assisted driving by using a multimodal interface approach.
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Chapter 4

SocNavAssist: Multimodal Shared

Autonomy for Social Navigation

Assistance of Mobile Telepresence

Robots

4.1 Introduction

We established in the previous chapter that the level of system transparency, i.e. the

ability to understand and anticipate the force cues in shared interaction, is crucial to

maintaining appropriate human responses and overall performance. This chapter,

therefore, examines how to design a human-centered haptic shared autonomy system

that enhances system transparency and cooperation between the human and the

assistive agent.

We consider the problem of navigation assistance in this chapter within the con-

text of remote driving of mobile telepresence robots (MTR). Mobile telepresence
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robots enable people to extend their presence to remote locations and provide new

opportunities for remote participation. Recent years have seen an increase in adop-

tion of these robots throughout various spheres of life. Today, MTRs make it possi-

ble for people to remotely participate in corporate meetings, academic conferences,

college classes, elder care visits, and even medical appointments [5, 78]. Advances

in immersive technologies (e.g. Virtual Reality (VR), Head-mounted displays), as

well as sensing and computing capabilities applied to telepresence robots continue

to improve their ease of use in navigation and overall user experience [118].

However, one of the challenges with MTRs is navigating around humans in clut-

tered environments without having a clear picture of the surroundings, due to their

limited situational awareness and narrow field of view [78]. As a result, it reduces

their ability to engage in non-navigational activities, such as interacting with others

or exploring the remote area. One way to address this challenge is to provide fully

autonomous features to handle the low-level navigation task. Considerable work

has been done on autonomous socially-aware navigation algorithms, such as robust

pedestrian motion prediction and tracking and dynamic collision avoidance [79,119].

However, these fully autonomous systems are yet to be fully reliable, especially in

safety or time-critical scenarios and may require human intervention in edge cases.

Moreover, research suggests that MTR operators may prefer to remain in the control

loop for reasons such as a sense of agency, control, and a limited level of trust in

autonomy [5,6]. Shared autonomy, which is a middle ground between full autonomy

and manual control, could, therefore, prove to be a promising approach for providing

navigation assistance to human operators of MTRs [6].

Studies have shown that haptic shared autonomy in assisted navigation improves

driving performance [10], as well as situation awareness [8]. Yet, these systems strug-

gle with the issue of conflict between the human and the autonomous agent often
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resulting from a lack of alignment of shared intent or control strategy among coop-

erating agents [11]. One way to mitigate this intent misalignment is by improving

system transparency, i.e. how well the human operator can understand the intent

and anticipate the actions of the autonomous agent [66]. The shared haptic channel

is a natural option for communicating intent as it leads to fast, reflexive responses.

However, due to limited bandwidth, it may only be applicable in situations where

the task is clear and unambiguous, requiring less descriptive information [67, 120].

As a result, researchers have favored visualization to augment haptic cues in intent

communication. While the visual channel is slower in processing stimuli than the

haptic channel, its trade-off is more bandwidth to convey richer, contextual infor-

mation [69]. Thus, several works have proposed using visualization to communicate

the intent of the autonomous agent in human-automation interaction. Augmented

reality visualization has been applied for wheelchair navigation assistance [61], as-

sisted telemanipulation to communicate the agent’s estimate of the desired goal [70].

Recent studies have explored the benefits of combining both haptic and visual in-

formation in a multi-modal fashion [68,72].

In this chapter, we present a multimodal shared autonomy approach for social

navigation assistance. Firstly, we present a method for socially-aware navigation

assistance using a modified reciprocal velocity obstacle (RVO) approach that gen-

erates safe control signals for the operator when navigating a telepresence robot in

dynamic environments. Consequently, we implement different modes of communi-

cating the generated control signals as guidance cues including haptic forces, visual

feedback, and a combination of both in a multimodal manner. We further con-

duct a user study experiment to investigate the effects of our multimodal approach

in comparison with haptic or visual assistance alone on navigation safety, system

transparency and cooperation as well as user preference.
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This chapter is organized as follows: the socially-aware navigation assistance

system design is described in Section 4.2 and the user study design is presented in

Section 4.3. Results from the user study experiment are presented and discussed in

Sections 4.4 and 4.5, while concluding remarks are presented in Section 4.6. The

work in this chapter was summarized in [23,24].

4.2 System Design

Our socially-aware navigation assistance approach incorporates three key elements:

(1) socially-aware collision avoidance via reciprocal velocity obstacles (SA-RVO),

(2) guidance using haptic forces, and (3) guidance using visual cues.

4.2.1 SA-RVO: Socially-aware collision avoidance via recip-

rocal velocity obstacles

To enable effective navigation assistance in dynamic environments, it is crucial to

generate safe control signals that can guide human operators towards socially ac-

ceptable and collision-free movements. We base our approach on the reciprocal ve-

locity obstacle (RVO) method [86]. RVO and its variants have been successfully im-

plemented in multi-robot systems and autonomous socially-aware navigation [121].

RVO is an extension of the classic velocity obstacle method of dynamic collision

avoidance, which guarantees collision- and oscillation-free motions in the presence

of moving obstacles (such as other robot agents). This is accomplished by planning

motions in the 2D velocity space of the robot and surrounding static or dynamic

obstacles. Specifically, the robot A measures the relative velocities of other agents

(i.e. pedestrian B) within its vicinity and constructs a collision cone (RV OA|B)

which is a region in the velocity space that would lead to a collision with the other
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Figure 4.1: Schematic describing the reciprocal velocity obstacles (RVO) formulation

agent [86] (Fig. 4.1).

In the original RVO formulation, the optimal velocity is calculated as the can-

didate velocity within the space of collision-free velocities (i.e. v /∈ RV OA|B) that

minimizes the distance to the maximum allowable velocity to the goal as follows:

voptimal
A (t) = argmin

v/∈RV OA|B

∥v(t)− vgoal(t)∥2 (4.1)

where vgoal(t) is the maximum velocity to the goal location [86].

We modify the search for optimum velocity by taking into account additional

factors for navigation assistance, resulting in a weighted sum of objective functions:

voptimal
A (t) = argmin

v/∈RV OA|B

n∑
i=1

wiGi(t) (4.2)

where wi and Gi are the ith weight and objective function respectively. In this

work, we consider three objective functions (n = 3), with G1 = ∥v(t) − vprefA (t)∥2

where vprefA represents the current input velocity command from the human operator.
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This objective looks for a velocity that is as close as possible to the operator’s

commanded velocity, preserving the original control intent of the operator. The

second objective, G2 = ∥v(t) − voptimal
A (t − 1)∥2, controls for change in consecutive

optimal velocities to enable smooth guidance cues to the operator. Finally, the third

objective compensates for goal-directed motion as in equation 4.1, G3 = ∥v(t) −

vgoal(t)∥2. This requires that the autonomous system is aware of the operator’s goal

either explicitly or by inference [122]. For this study, we assume that the operator’s

goal location is known.

The RVO formulation only accounts for disc-shaped objects, therefore, we per-

form a static obstacle avoidance step as a preprocessing step to the RVO, in order to

account for static obstacles in the environment such as walls and tables. Specifically,

using velocity sampling, we filter out velocities that would lead to collision over a

time horizon based on a pre-defined map of the environment. The resulting samples

of ‘statically’ safe velocities is then fed into the SA-RVO to account for dynamic

obstacles.

In addition, our proposed approach follows Truong et al. [121] by explicitly ac-

counting for social proxemics constraints. Based on the proxemics theory proposed

by Hall [83], an individual’s interpersonal space can be divided into concentric circles,

with the radius of the circles representing different levels of intimacy and comfort:

intimate space (<0.45m), personal space (0.45-1.2m) and then social space (>1.2m).

Hence, SA-RVO defines the collision cone for each pedestrian based on the radius

of their personal space, thus taking into account their social constraints.

Furthermore, in addition to the proxemics constraints imposed on single pedestri-

ans, we look at human group interactions and their corresponding social constraints.

Human groups are detected and tracked based on the multi-model multiple hypoth-

esis tracker (MHT) approach proposed by Linder and Arras [123]. The open-source
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ROS implementation 1 was used in this study.

4.2.2 Guidance using Haptic forces

The haptic guidance mode generates appropriate haptic feedback cues on the haptic

interface so that the operator’s control input can be guided towards alignment with

the optimal velocity command, voptimal
A (t), computed by SA-RVO. The haptic forces

are computed as proportional to the error between voptimal
A (t) and vprefA , which is the

current velocity command from the human operator:

F (t) = Kp(v
optimal
A (t)− vprefA (t)) (4.3)

where Kp is the fixed haptic gain. This value regulates the level of haptic authority

assigned to the autonomous agent. With a low haptic gain, the operator is able to

override low haptic guidance forces easily, thereby retaining control. A high haptic

gain, however, may make it difficult for the operator to counteract the haptic forces

being generated, leaving final control to the autonomous agent [7].

4.2.3 Guidance using Visual cues

Visual feedback in mobile telepresence robots typically serves two purposes. It

provides the operator with information about the remote environment in which the

robot operates, and it also enables audio-visual social interaction with the remote

individuals. However, existing studies have shown that augmented visualizations

on the visual feedback display can be used to provide guidance cues [61, 69] and

communicate the intent of the autonomous system to the human operator [60,124].

In this study, we examine two visual cue designs. First, a visual trajectory trace is

1https://github.com/spencer-project/spencer_people_tracking
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Figure 4.2: Illustration of the visual guidance cues. Top: visual guidance trajectory.
Bottom: visual steering bars. In both designs, the green trajectory trace presents
a feedback on the dynamics of the robot, while the guidance cues are in red. A
projection of the robot’s occupied space is in blue, and a speed indicator display is
in aqua on the bottom right.

presented as an overlay to communicate the predicted future states of robot based on

the instantaneous control input from the shared haptic interface as in [68]. Predicted

trajectories are computed using a simple kinematics model of the differential drive

robot, which propagates the current state by the control input. This helps the

operator form an improved mental model of the robot dynamics.

Secondly, we seek to provide visual cues on the visual display to guide the oper-

ator towards the optimal control input computed by SA-RVO and consistent with

the haptic guidance mode. To achieve this, we consider two visualization designs:

1. Visual guidance trajectory : Inspired by [68], we also present the visual guid-
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ance cue as a visual trajectory trace as above. In contrast to [68] however,

the predicted robot future states are computed based on the optimal con-

trol command computed by SA-RVO rather than the operator’s control input.

The result is a suggested path visualization that shows contextual information

about the direction the autonomous agent suggests the operator to go. Note

that we display the trajectory only when the difference between the operator’s

control input and the optimal control input exceeds a threshold, in order to

avoid display clutter.

2. Visual steering bars : Instead of showing a suggested path, this approach

presents steering magnitude bars on the left and right of the visual display

(Fig. 4.2). They indicate how much the robot needs to be steered in order

to align with SA-RVO’s optimal control inputs. In this design, instantaneous

steering corrections consistent with the haptic cues are communicated to the

operator over the visual display. This provides the operator with limited in-

formation about the suggested future states and may be viewed as a visual

representation of the haptic cues.

4.3 User Study Design

We conducted a user study with a within-subject repeated-measures design to com-

pare the effects of multimodal navigation assistance with single-modality (haptic and

visual) and no assistance cases, as a baseline, in terms of navigation safety, inter-

face transparency and user preference in a social navigation task. The study design

and procedure was duly approved by Worcester Polytechnic Institute’s Institutional

Review Board (IRB).

Our study hypotheses are as follows: First, we hypothesize that multimodal
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Figure 4.3: Simulated experiment setup. Left: Each participant controls a virtual
wheeled robot using a haptic joystick with visual feedback from the forward-facing
camera on the robot Right: Snapshot of the simulated social navigation task.

assistance will outperform both haptic and visual modalities alone in regards to

navigation safety, system transparency and cooperation, and user preference (H1).

Additionally, we anticipate that all guidance modes will outperform manual control

in navigation safety and user preference when considered as a baseline condition

(H2). Furthermore, we hypothesize that visual modality will lead to greater system

transparency and cooperation than haptic modality (H3).

4.3.1 Participants

Fifteen (15) participants (7 males and 8 females; age: 25.3 ± 4.1) were recruited for

the user study from the university student community. Twelve participants (80%)

reported to have no prior experience with a haptic device. Seven stated that they had

only 1-2 years of driving experience (47%), whereas 8 had more than three years

of driving experience (53%). Based on self-reported gaming experience (gaming

frequency, skill level and average gaming duration), we classified participants into

two categories: non-gamer (6, 40%), gamer (9, 60%).
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4.3.2 Experimental Setup

The user study was designed as a virtual social navigation task. Participants were

asked to control a simulated differential drive mobile telepresence robot in a dy-

namic, human-populated virtual environment to navigate from start position in a

hall to specified goal location in a safe and socially acceptable manner. The virtual

mobile robot and the populated environment were simulated using Gazebo Simu-

lator. Participants received visual feedback from a forward-facing camera mounted

on the virtual mobile robot through a 24-inch computer monitor (see Fig. 4.3). The

visual guidance methods were presented as a visual overlay on the camera display

using OpenCV.

The virtual environment was modeled after a conference hall with tables and

space for walking (see Fig. 4.3). Two different hall layouts were adopted and ran-

domly applied based on table positions to prevent participants from memorizing the

hall layout across trials. We modeled the virtual pedestrian motion using a Gazebo

actor plugin23 based on the social force model [85] to enable reactive navigation

behavior to obstacles and the robot. Three pedestrian motion configurations were

implemented in the study: (a) approach, (b) crossing, (c) random, to encompass a

wide variety of real-life crowd navigation scenarios.

Human control inputs and haptic guidance forces were applied through a com-

mercially available haptic-enabled device (Novint Falcon, Novint Technologies). To

provide 2D control inputs (linear and angular velocity) for robot control, only two

of the 3-DOFs on the haptic interface were mapped to the differential-drive robot

controller using a position-velocity mapping.

2https://github.com/robotics-upo/gazebo_sfm_plugin
3https://github.com/robotics-upo/lightsfm
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4.3.3 Evaluated Conditions

In the study, participants drove the virtual mobile robot in six control conditions

based on the presence and form of navigation assistance provided. They are as

followed:

1. Manual control (MC): No navigation assistance is provided to the partici-

pant in the task. This is our baseline condition in the study.

2. Single modal assistance:

(a) Haptic guidance (H): Navigation assistance is provided in the form of

haptic guidance forces on the haptic interface based on Section 4.2.

(b) Visual guidance trajectory (V-T): A suggested path visualization is

presented along with the predicted robot path based on the instantaneous

control input as described in Section 4.3.

(c) Visual steering bars (V-B): Steering correction cues are presented

along with the predicted robot path based on the instantaneous control

input as described in Section 4.3.

3. Multimodal assistance:

(a) Haptic + Visual trajectory (HV-T): Combines the haptic guidance

cues with the visual guidance trajectory cues.

(b) Haptic + Visual bars (HV-B): Combines the haptic guidance cues

with the visual steering bars.

4.3.4 Experimental Procedure

Upon arrival to the study, participants signed the IRB-approved informed consent

form. Thereafter, the study commenced with an introduction to the study procedure
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and how to control the virtual mobile robot. The study comprised three phases:

familiarization, learning, and testing phases.

Familiarization Phase: Here, participants were allowed to drive the virtual mo-

bile robot in an open space (with no obstacles or people) for up to 5-7 minutes to get

familiar with the robot controls. Participants held the haptic interface using their

preferred hand. This phase was completed in manual control (MC) condition, with-

out any navigation assistance. After participants report confidence in their control

of the robot, they are moved to the next phase.

Learning Phase: In this phase, the participants completed 12 trials of the navi-

gation task. In each trial, they were told to control the robot from its start location

in the virtual environment to a specified goal location within the hall while driving

in a socially-acceptable manner without colliding with moving pedestrians and ob-

stacles. A trial starts when the participant started the timer by pressing a button

on the haptic interface and ended once the robot reaches within a threshold distance

of the goal location. Each trial was randomly assigned an evaluated condition, re-

sulting in participants experiencing all six conditions at least twice. This allowed

participants to build familiarity with the assisted control conditions before the main

testing phase. A break time option was provided to avoid fatigue during the study.

Testing Phase: In this phase, the participants completed a block of three trials

for each control condition, resulting in six blocks and 18 trials in total. Each trial

block comprised the three pedestrian configurations described above. The order

of the conditions were randomized and counterbalanced to reduce learning effect,

recency bias and fatigue. After each block, participants completed a post-block

questionnaire to provide subjective responses to their experience. At the comple-

tion of all six trial blocks, participants completed a post-study questionnaire where

they provides subjective ranking of the six control conditions according to several
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criteria. Section 5.4.4 provided more details on the two questionnaires administered.

The entire user study took approximately 1.5 hours to complete, depending on the

participants.

4.3.5 Measures

Objective Measures

Three objective measures were computed to evaluate (i) the safety of the navigation,

and (ii) the level of agreement or cooperation between the human operator and the

navigation assistance.

1. Number of intimate and personal intrusions : We counted the number of in-

stances of both intimate and personal space intrusions per trial. An intrusion

occurs when the clearance between the robot and a pedestrian is below 0.45m

for the intimate space and below 1.2m for the personal space [125].

2. Mean disagreement : Following [52], this is measured as the mean of the norm

of the difference between the human operator’s velocity input and the optimal

velocity input from the navigation assistant.

Subjective Measures

Post-block Questionnaire: At the end of each trial block with each control

condition, participants completed the following questionnaire using a 7-point likert

scale to evaluate the condition:

1. System helpfuless and ease of use: (1 - Strongly disagree, 7 - Strongly agree)

• Helpfulness : “This interface condition was very helpful for completing

the navigation task.”
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• Ease of use: “I found this interface condition to be easy to use for navi-

gating the robot.”

2. System transparency : (1 - Understood nothing at all, 7 - Understood extremely

well)

• Intent understanding : “To what extent did you understand the intentions

of the navigation assistance?”

• Force anticipation: “To what extent could you anticipate the haptic forces

provided by the navigation assistance?”

3. Level of cooperation: “To what extent did you cooperate or agree with the

navigation assistance in the task?” (1 - Never agreed, 7 - Always agreed)

4. Sense of control : “To what extent did you feel you had control over the robot?”

(1 - No control, 7 - Complete control)

Post-study Questionnaire and Interview: After all six trial blocks were com-

pleted, participants completed the following questionnaire to reflect on their expe-

rience and rank each of the control conditions.

1. Skill confidence level : “How confident are you that you can complete the

task successfully without navigation assistance?” (1 - Not confident at all, 7 -

Extremely confident)

2. Rank the six conditions in terms of the most helpful in completing the tasks

successfully.

3. Rank the five assisted conditions in terms of the most intent understanding of

the navigation assistance.
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4. Rank the five assisted conditions in terms of the most cooperation (or agree-

ment) with the navigation assistance in the task.

5. Rank the six conditions in terms of the most preferred (considering all factors)

for completing the task.

At the end of the user study, we conducted a short, semi-structured interview for

each participant to understand the reasons for how they ranked the conditions and

other follow-up questions.

4.4 Results

All statistical analyses were performed in R [126]. Main effects across evaluated con-

ditions was analyzed using the Friedman test and significance levels were estimated

at p < 0.05 for statistical significance and p < 0.1 for marginal statistical signifi-

cance. Pair-wise comparisons were performed as post-hoc tests using the Wilcoxon

sign-test with Bonferroni correction for multiple comparisons. A summary of sta-

tistical results is shown in Table 4.1. We scored the subjective rankings using the

Borda count. The order of ranking across various criteria is presented in Table 4.2.

1. Navigation safety : In evaluating the impact of navigation assistance on navi-

gation safety, we found that control condition had no significant effect on the

number of intimate intrusions, χ2(5) = 6.741, p = 0.357, but had a marginally

significant effect on the number of personal intrusions, χ2(5) = 10.279, p =

0.067. Furthermore, no significant effects were found in pairwise comparison

between control conditions. It is noteworthy to mention that both safety mea-

sures had very high variability across conditions, further reflecting a lack of

substantial effect on safety.
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Conditions
Measures

MC H V-T V-B HV-T HV-B
Friedman Test

M 0.40 0.51 0.80 0.49 0.60 0.53 p = 0.240
Intimate intrusions−

SD 0.315 0.280 0.450 0.354 0.422 0.451 χ2(5) = 6.741

M 2.38 3.134 3.089 2.711 2.245 3.267 p = 0.067*
Personal intrusions−

SD 1.033 1.464 1.890 1.320 1.642 1.733 χ2(5) = 10.279

M - 0.37 0.28 0.30 0.30 0.28 p = 0.735
Mean disagreement−

SD - 0.186 0.121 0.152 0.183 0.112 χ2(4) = 2.000

M 5.33 4.27 5.73 5.20 5.40 5.40 p = 0.026
Interface helpfulness

SD 1.633 1.831 0.961 1.207 1.595 1.352 χ2(5) = 12.68

M 5.80 4.27 6.07 5.67 5.40 5.40 p = 0.012
Interface ease of use

SD 1.639 1.831 1.100 0.976 1.765 1.639 χ2(5) = 14.51

Intent understanding M - 3.73 5.80 5.40 5.33 5.47 p = 0.008
(Transparency) SD - 2.120 1.146 1.404 1.799 1.506 χ2(4) = 13.72

Force Anticipation M - 3.20 - - 3.93 4.47 p = 0.049
(Transparency) SD - 1.935 - - 1.710 1.922 χ2(2) = 6.00

M - 3.67 5.267 4.93 4.93 4.67 p = 0.019
Cooperation

SD - 1.345 0.961 1.280 1.580 1.345 χ2(4) = 11.76

M 6.47 4.80 6.33 6.27 5.47 5.40 p = 0.000
Sense of control

SD 0.915 1.474 0.724 0.704 1.125 1.29 χ2(5) = 27.89

Table 4.1: Means (M), standard deviations (SD) and statistical analysis results
for the objective and subjective measures across control conditions. The symbol −

denotes the measure is of negative scale.

2. System helpfulness and ease of use: The subjective ratings of helpfulness and

ease of use were compared across all six control conditions. We found statistical

significance for both helpfulness, χ2(5) = 12.68, p = 0.026, and ease of use,

χ2(5) = 14.51, p = 0.012 (Table 4.1, Fig. 4.4(a)). However, a post-hoc pairwise

comparison found no statistical significance between the conditions. V-T has

the highest mean rating for both helpfulness (M = 5.73) and ease of use (M =

6.07) among all the conditions. In the subjective ranking, HV-T was ranked

most helpful 8 times (53%), more than every other condition, leading to the

highest score on the borda ranked-order count (see Table 4.2). Additionally,

visual trajectory-based conditions (HV-T and V-T) were ranked most helpful

a combined 11 times (73%).
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Figure 4.4: Bar plots showing comparison of the different control conditions
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3. System transparency : Our analysis on the transparency measures revealed sta-

tistical significance in intent understanding, χ2(4) = 13.72, p = 0.008, across

the five assisted control conditions (H, V-T, V-B, HV-T, HV-B) and force

anticipation, χ2(2) = 6.0, p = 0.049, across the haptic-based control condi-

tions (H, HV-T, HV-B) (see Fig. 4.4(c–d)). Further post-hoc analysis found

marginal difference between V-T and H (p = 0.072) for intent understanding

and between HV-B and H (p = 0.051) for force anticipation. Other pairwise

comparisons were not statistically significant. In the subjective ranking, the

haptic (H) condition was ranked as hardest to understand 13 times (87%)

whereas HV-T (7 times) and V-T (5 times) were ranked easiest to understand

a combined 12 times (80%).

4. Cooperation and agreement : We measured the user’s subjective rating of the

level of cooperation with the navigation assistance. Our results show that the

assisted control condition type (H, V-T, V-B, HV-T, HV-B) had a significant

effect on the level of cooperation, χ2(4) = 11.76, p = 0.019 (see Fig. 4.4(b)). A

post-hoc test revealed that only V-T led to marginally significant effects over

H (p = 0.058). We assessed the mean disagreement metric and found that the

navigation assistance condition had no such effects across control conditions

(p = 0.738). In the subjective ranking, visual trajectory-based conditions

(HV-T and V-T) were ranked with most cooperation a combined 11 times

(73%), with HV-T topping the rank with 7 first place rankings (47%). Again,

the haptic (H) condition was ranked as least in cooperation 13 times (87%).

5. Sense of control : When evaluating the participant’s sense of control across

control conditions, we found a significant effect of control condition on re-

ported sense of control, χ2(5) = 27.89, p = 0.000 (Fig. 4.4(e)). A post-hoc test
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Borda Count Ranking 1st 2nd 3rd 4th 5th 6th

Helpfulness HV-T (73) V-T (63) HV-B (58) V-B (51) MC (49) H (21)
Intent Understanding HV-T (63) V-T (58) HV-B (45) V-B (40) H (19) -

Cooperation HV-T (57) V-T (55) V-B (48) HV-B (42) H (23) -
Overall Preference HV-T (68) V-T (66) V-B (55) HV-B (54) MC (50) H (22)

Table 4.2: Subjective ranking and calculated scores (in parentheses) of control con-
ditions based on Borda count method

demonstrated that MC (p = 0.054), V-T (p = 0.067) and V-B (p = 0.081) con-

ditions led to marginally significant increase in perception of control compared

to the H condition.

6. Overall preference: When asked to rank the control conditions in terms of

overall preference, six participants (40%) ranked HV-T condition in first place,

whereas three participants each ranked V-T, HV-B and MC conditions instead

(see Fig. 4.5). Haptic (H) condition was ranked least preferred 11 times (73%).

Table 4.2 shows the rank order and calculated scores for overall preference as

well as other subjective measures.

4.5 Discussion

In this study, our proposed multi-modal shared autonomy system for assisting in

social navigation was evaluated and compared with single-modality designs (haptic

or visual) and manual control (no assistance) as the baseline based on metrics such

as navigation safety, interface transparency, cooperation and user preference.

Effect on Navigation Safety

We hypothesized that multimodal assistance will lead to higher navigation safety

compared to single modal assistance (haptic and visual) and our baseline condi-
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Figure 4.5: Distribution of overall preference ranking across control conditions.

tion. However, we observed that neither the presence nor the type of assistance

modality had a significant effect on the navigation safety of the telepresence robot.

Furthermore, we observed large variance in the results across control conditions (see

Table 4.1). Previous studies on assisted navigation show evidence that visual and/or

haptic navigation assistance improves performance and reduces collisions [52, 127].

However, we note that these studies consider navigation in static and structured

environments. A recent study on telepresence navigation showed that navigation

assistance methods may not always improve navigation safety especially in dynamic

environments in interaction with people [128]. In our study, one possible explana-

tion for this may be with task difficulty. Kuiper et al. [69] found that navigation

assistance systems are more effective when the task is more difficult. However, in

our final questionnaire, participants reported high confidence in their skill to com-

plete the task without navigation assistance (M = 5.07, SD = 1.39). Also, a study

on automation usage by Lee et al. [129] noted that people use autonomous systems
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based on the difference between their trust in the system and their self-confidence

in performing the task. This may imply that, on average, participants did not rely

on the navigation assistance in the task. This warrants further investigations in

two directions. First, further experimental manipulations on the task difficulty may

be needed to provide more insight into its effects on shared navigation tasks. The

second direction is to investigate the effect of training and learning on operator trust

and reliance on the navigation assistance by manipulating practice duration.

Effect on System Transparency and Cooperation

Regarding system transparency and cooperation, we hypothesized that (i) multi-

modal assistance will result in higher rating than both single modal cases, and (ii)

visual modality will result in higher rating than the haptic modality. Our results

only partially support these hypotheses. In the case of intent understanding, our

results revealed that the control condition type significantly impacted the level of

intent understanding. Specifically, we found that visual cues delineate the intent of

the autonomous agent significantly more than the haptic cues alone. This is con-

sistent with existing work on the visual channel for intent communication [60,124].

However, we do not see a significant difference between visual-based single modal

conditions (V-T, V-B) and multi-modal conditions (HV-T, HV-B), i.e. the com-

bination of haptic and visual cues didn’t lead to higher intent understanding over

visual only conditions. A possible explanation for this is that due to the dynamic

nature of our task, the haptic guidance forces tended to be fast changing and some-

times caused a distraction. Some participants commented that they were unable to

understand why or what the haptic condition was trying to do.

Considering force anticipation, our results show that including visual information

significantly improved the force anticipation over haptic cues alone, especially when
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the visual cue is presented as steering magnitude bars (V-B). This is consistent with

the findings by Ho et al. [73]. V-B provided a more consistent interpretation of the

haptic forces than the suggested path visuals (V-T).

An interesting finding was the result showing the influence of video gaming ex-

perience on system transparency. Fig. 4.6 presents the participants’ rating of intent

understanding and force anticipation based on their gaming experience. Our results

showed that participants classified as gamers (i.e. based on self-reported gaming

frequency and skill level) reported higher ratings for intent understanding and force

anticipation across all control conditions. This suggests that prior video gaming

experience may have impacted the participant’s ability to understand, interpret

and anticipate the guidance cues. Takayama et al. [6] observed a similar influence

in a remote telepresence navigation study where gaming experience decreased the

perceived level of physical effort in the task and increased enjoyability.

Additionally, in considering human-automation cooperation and agreement, our

subjective results revealed that level of cooperation was significantly impacted by

assistance condition. Participants reported least cooperation for haptic only and

highest with V-T. This pattern is consistent with the intent understanding rat-

ing and in line with existing studies on mutual understanding on human-machine

cooperation [ref]. We must reflect on these results with caution as we found no

significant difference when objectively estimating the degree of agreement (via the

mean disagreement measure) between haptic only and visual conditions (see Ta-

ble 4.2). However, in the subjective ranking, we see that Borda score placed HV-T

over others consistently across all factors. Nine participants commented that visual

information helped them better understand the haptic forces. This is supported by

existing studies on multimodal feedback [68,72].
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Figure 4.6: Comparing the effect of gaming experience on the system transparency
across different control conditions

Effect on User Preferences

We hypothesized that multi-modal assistance will be preferred over single modality

assistance for both visual and haptic only cases. The results of our subjective

ranking only partially support this hypothesis. Participants ranked both multi-

modal assistance conditions, HV-T and HV-B, higher than H, with high Borda

score margins in both cases, 46 and 32 points respectively (see Table 4.2). In fact,

haptic only (H) condition was ranked last by 73% of participants in the study (11

times). This probably occurred because of the dynamic nature of the navigation

task. Though the haptic channel enables faster response through reflexes [67], it

suffers from low bandwidth limiting the amount of intent information that can be

communicated to the operator [69]. In our results, we found that providing guidance

information in visual form led to higher preferences. This is supported by existing

multimodal studies [68,72]. In the post-study interviews, nine participants reported

that visual information enabled them to better understand the haptic forces.

We additionally hypothesized that multi-modal assistance will be preferred over

visual only cases. Our results show only partial support for this. For visual trajec-
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tory case, although HV-T is ranked higher, it is with a weak margin (only 2 points)

(see Table 4.2). As for visual magnitude bars case, we see the reverse case with

V-B ranked higher in the overall preference by only 1 point. When asked why they

prefer multi-modal assistance over visual only assistance, participants reported that

though visual information helped with understanding, the haptic cues “served as a

reminder”, “pushed you a little when a person is behind you”, “moves you especially

in moments of confusion on where to go”.

Effect of Visual Guidance Design

In our study, we considered two designs for visual guidance: visual guidance trajec-

tory and visual steering bars, as described in Section 4.2.3. According to our results,

objective and subjective ratings did not differ significantly between both designs.

However, in analyzing the subjective rankings, we found that trajectory conditions

(V-T & HV-T) consistently had higher rank-score over steering bar conditions (V-

B & HV-B) (see Table 4.2). Specifically, visual trajectory conditions were ranked

most preferred 9 times (60%) compared to 3 times (20%) for visual steering bar

conditions. Five participants reported that the suggested path in V-T was easier to

match in terms of where to go. Also, one participant remarked that the suggested

path conveyed more information than the steering bars. This is consistent with the

operator display design paradigms in literature [60]. In [68], the authors suggest

that a predicted trajectory expressing an autonomous agent’s intent provides more

information about the driving context than just an instantaneous maneuver sug-

gestion (which reflects the haptic forces). Nevertheless, some participants reported

they preferred steering bars for two main reasons. First, some participants found the

steering bars easier to follow than the suggested path, possibly because it provided

specific correction on what control input to apply. The other reason involved visual
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attention and distraction. Three participants said that visual steering bars were

less invasive on the screen, leading to less visual distraction. These findings provide

insights for further research into human-centered visual design options in assistive

systems.

4.6 Chapter Summary

In this chapter, we presented a multi-modal shared autonomy approach for naviga-

tion assistance in dynamic, human-populated environments. This approach included

both active haptic guidance and passive visual feedback by using two distinct vi-

sualizations of the safe control input. We conducted a user study (n = 15) to

evaluate how our proposed multimodal approach affects navigation safety, interface

transparency, and user preference compared to single modality (haptic or visual

alone) and no assistance cases. Our results revealed that more operators preferred

multi-modal assistance (especially when visualization is in trajectory form) over

both visual or haptic only in the shared navigation task. While we did not find any

significant differences in navigation safety, we did find that visual cues significantly

increased participants’ understanding of intent and level of cooperation over haptic

guidance. In this chapter, we have made important advances towards our under-

standing of how to design navigation assistance systems within the complex context

of socially-aware navigation in cluttered environments. We conclude that further

research is needed to validate these findings in a real-world context.
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Chapter 5

Adaptive SocNavAssist:

Assistance Adaptation to Driving

Objectives in Social Navigation

5.1 Introduction

Assisted driving systems are increasingly relevant for supporting people in personal

mobility (such as passenger drivers, wheelchair users, mobile telepresence robots,

etc.) in order to relieve some of the physical and cognitive workload required for

safe navigation. However, due to mismatches in intent across various levels of infor-

mation processing [11], conflict occurs, which degrades trust and cooperation in the

human-automation system. Chapter 4 presented increasing system transparency as

one of the human-centered approaches to improve intent understanding and force

anticipation in a haptic shared autonomy framework. However, while improving

system transparency alone may positively impact shared driving in some scenarios,

it may not be adequate in resolving conflicts in different scenarios, environments and
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human states and factors. This is true of all “static” assistance systems that are

tailored to a specific operating condition. As described in Chapter 2, another crucial

factor for human-centered design is autonomy adaptation. Adaptive SA systems are

able to adjust their control level or strategy to better align with the human state

or behaviors, task and environment conditions. There’s growing body of work on

automation adaptation in the context of intelligent driving systems and and robot

teleoperation [16,17,76]. In recent work, Zwaan et al. [43] proposed a risk-adaptive

driving assistance system that reduces the level of haptic authority on the steering

wheel when the risk of collision is low, but increases it when the risk is high by

monitoring the environmental conditions. Luo et al. [130] monitored the level of

driver fatigue or workload and modulated the level of assistance to assist the driver

as needed.

While the above studies have modulated the level of assistance on a specific task

objective based on several factors, Gao [131] took a different approach to consider

task adaptation. In a navigation scenario, they showed that inferring and adapting

to the current navigation task objective executed by the operator such as doorway

crossing, object inspection or wall following led to improved task performance and

reduced overall workload. Our work in this chapter extends this task objective adap-

tive approach to the context of social navigation assistance by enabling adaptation

to specific context-dependent preference or objectives drivers may have in a naviga-

tion task. For instance, a telepresence robot operator or a wheelchair user may have

different objectives in mind while controlling the vehicle. If they are at a conference

hall, they may wish to get across a hall as quickly as possible to meet a deadline or

they may wish to drive as cautiously as possible so as not to distract other people.

Hence, we focus on the spectrum of driving behavior from cautious to assertive.

Numerous studies have identified these as distinct behaviors in how humans inter-
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act while walking through a crowd or driving a vehicle on a highway either tied to

personality traits or conditioned based on the task requirement [132–134].

In this chapter, two questions arise in exploring adaptive navigation assistance

in social navigation: (i) How to design socially-aware navigation assistance that

is adaptive to user driving objectives/styles?, (ii) Will such an adaptive system

impact task performance and human-robot cooperation, and if so, by how much? We

build on SA-RVO presented in the previous chapter by extending it to incorporate

further socially-relevant objective functions that characterize these distinct driving

objectives/styles. We further conduct a pilot user study experiment to evaluate the

impact of objective-aligned navigation assistance on driving performance, human-

robot cooperation and user preference in a social navigation task.

This chapter is organized as follows: the adaptive socially-aware navigation as-

sistance system design is described in Section 5.2. The two proposed assistance

policies are evaluated in Section 5.3. The pilot user study design is presented in

Section 5.4. We present and discuss the user study results in Section 5.5 and Sec-

tion 5.6 respectively. Finally, concluding remarks are presented in Section 5.7.

5.2 System Design

The adaptive socially-aware navigation assistance system comprises two main com-

ponents: (i) a modification of collision avoidance via socially-aware reciprocal ve-

locity obstacles (SA-RVO), (ii) a multimodal (haptic + visual) interface to provide

guidance cues to the operator.
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5.2.1 Adaptive SA-RVO: Socially-aware collision avoidance

via reciprocal velocity obstacles

The navigation assistance system proposed in this work builds on the SA-RVO

presented in Chapter 4. To recap, the SA-RVO approach is based on the reciprocal

velocity obstacle (RVO) method [86] which is a well studied approach for dynamic

collision avoidance in the presence of both static and dynamic obstacles by planning

for collision-free motions in the 2D velocity space of the robot. SA-RVO extends the

original RVO formulation by explicitly accounting for social proxemics constraints

by expanding the region of the pedestrian to cover their personal space [23]. In

the original RVO formulation, the optimal velocity is calculated as the candidate

velocity within the space of collision-free velocities (i.e. v /∈ RV OA|B) that minimizes

the distance to the maximum allowable velocity to the goal. SA-RVO modifies this

process by taking into account additional factors for navigation assistance while

evaluating candidate velocities, resulting in a weighted sum of objective functions:

voptimal
A (t) = argmin

v/∈RV OA|B

n∑
i=1

wiGi(t) (5.1)

where wi and Gi are the ith weight and objective function respectively. Three

objective functions were considered in Chapter 4:

1. Operator alignment cost : This objective function seeks to find a velocity that

is as close as possible to the operator’s commanded velocity vprefA thereby

preserving the operator’s original intent.

G1(t) = ∥v(t)− vprefA (t)∥2

2. Motion smoothness cost : This objective ensures smooth guidance cues to the
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operator by penalizing rapid changes in consecutive optimal velocities voptimal
A .

G2(t) = ∥v(t)− voptimal
A (t− 1)∥2

3. Goal-directed cost : This objective penalizes velocities that deviate from the

direction to goal ensuring the operator is guided towards the goal. To achieve

this, the autonomous system needs to know the goal of the operator either

explicitly or by inference [122]. In this study, we assume the location of the

operator’s goal is known.

G3(t) = ∥v(t)− vgoal(t)∥2

Three additional objective functions are included to the adaptive SA-RVO to

explicitly model different social navigation behaviors (Fig.5.1) including clearance

from static obstacles, clearance from pedestrians to maintain personal space, and

consideration for passing in in front of a moving pedestrian. To account for discrete

future poses of the robot over a finite time horizon tp, candidate trajectories are

computed using a constant velocity projection of the candidate velocities with time

delta, ∆t. The following objective/cost functions then evaluate each candidate

trajectory based on the criteria.

1. Static obstacle cost : This objective corresponds to the cumulative cost of the

candidate trajectory resulting from static obstacles in the environment. This

cost is computed using the static costmap generated from the environment

occupancy grid map which captures the static structures in the environment.

For this, we used the 2D costmap package 1 in the ROS (Robotics Operating

1http://wiki.ros.org/costmap_2d
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(a) Static obstacle cost (b) Social intrusion cost

(c) Frontal intrusion cost

Figure 5.1: Three additional objective/cost functions to model different social navi-
gation behaviors are included in SA-RVO. Using projections of candidate velocities,
candidate robot trajectories are generated and evaluated over a finite finite horizon.
The red future robot projection in (a-c) would be penalized since it would lead to
collision-bound or unsafe behavior.
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System) 2. The range of static cost Cstatic for the robot’s pose X t
r

′
, at time t

′

in the candidate trajectory is 0–255, where zero means the pose is in free-space

and hence, collision-free, while 255 means the robot will be in collision at that

pose. Fig. 5.1(a) shows an illustration of static obstacle costmap with inflation

region around obstacles (blue areas) for a robot showing Np = 2 trajectory

projection steps.

G4(t) =

t+Np∆t∑
t′=t+∆t

Cstatic(X
t
r

′
)

where t is the current time, t
′ ∈ [t, t + Np∆t] is the projected time in the

prediction horizon, ∆t is the prediction time step.

2. Social intrusion cost : This corresponds to the cumulative cost of the candidate

trajectory resulting from static and moving pedestrians in the environment. A

disc-shaped social costmap Csocial with radius corresponding to the proxemics

space, is defined around each pedestrian pose representing the cost of the robot

being at that position relative to the pedestrian (Fig. 5.1(b)). The cost value

is computed proportional to the distance to the pedestrian. To account for

dynamic pedestrians, the future poses of each pedestrian is predicted using a

simple constant velocity model based on their current pose and velocity. This

way, we can account for the dynamic costmaps of each of the pedestrians at

different times over the prediction time horizon, tp (see Fig. 5.1). As a result,

this objective prioritizes candidate trajectories with fewer intersections with

the costmaps of predicted pedestrian paths [135]. This is consistent with how

humans plan their motions around other moving entities in their proximity by

2http://wiki.ros.org
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anticipating their motions.

Csocial(Xr, Xped) =


ξ − ∥Xr −Xped∥2, if ∥Xr −Xped∥2 < ξ

0, otherwise.

G5(t) =

t+Np∆t∑
t′=t+∆t

max{Csocial(X
t
r

′
, X t′

ped,j),∀j ∈ [1, Nped]}

where X t
r

′
and X t′

ped,j are the predicted poses of the robot and j-th pedestrian

at time t
′
respectively, ξ is the distance threshold value and represents the

radius of the costmap, Nped is the total number of pedestrians and pedestrian

groups under consideration, Np is the number of trajectory projection steps.

3. Frontal intrusion cost : This objective corresponds to the cumulative cost of

the candidate trajectory resulting from frontal intrusion of pedestrians in the

environment. Inspired by [136], the frontal intrusion costmap Cfrontal is mod-

eled as a truncated 2D Gaussian function placed in front of each pedestrian

representing the cost of the robot being at that pose relative to the pedes-

trian (Fig. 5.1(c)). The shape of the truncated Gaussian function is asym-

metric and is defined by the two standard deviations, σfrontal = 1.2m and

σside = σfrontal/1.5 relating to the x and y axes respectively (in Fig. 5.1(c)).

The truncation occurs along the y-axis of the pedestrian ensuring only robot

poses in front of the robot are considered. As above, the future poses of each

pedestrian are predicted using a simple constant velocity model to enable dy-

namic costmaps at different times over the prediction time horizon.

G6(t) =

t+Np∆t∑
t′=t+∆t

max{Cfrontal(X
t
r

′
, X t′

ped,j),∀j ∈ [1, Nped]}
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Consistent with SA-RVO in Chapter 4, we perform a static obstacle avoidance

step as a preprocessing step in order to account for static obstacles in the envi-

ronment such as walls and tables. In particular, we filter out any velocities that

generate candidate trajectories that lead to collisions using the static costmap(see

Fig. 5.1(a)). The resulting samples of ‘statically’ safe velocities is then fed into the

SA-RVO in order to account for dynamic obstacles.

5.2.2 Multimodal Assistance Interface

Following the findings from Chapter 4, the multimodal (combining haptic and visual

channels) approach is adopted to provide guidance feedback cues to the operator.

The haptic channel generates appropriate force feedback cues on the control interface

(3 DOF haptic-enabled joystick) so that the operator’s control input can be guided

towards alignment with the optimal velocity command, voptimal
A (t), computed by

adaptive SA-RVO. As described in Section 4.2.2, the haptic forces are computed as

proportional to the error between voptimal
A (t) and vprefA , which is the current velocity

command from the human operator:

F (t) = Kp(v
optimal
A (t)− vprefA (t)) (5.2)

where Kp is the fixed haptic gain. This value regulates the level of haptic authority

assigned to the autonomous agent. Low haptic gain allows the operator to over-

ride low guidance forces easily, thereby maintaining control. However, high haptic

gain may hinder the operator from counteracting the haptic forces being generated,

leaving final control to the autonomous agent [7].

For visual feedback, two visual trajectory traces are displayed as overlays on

the display window as described in Section 4.2.3. The first trajectory trace (green
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dotted trace in Fig. 4.2(top)) communicates the predicted future states of the robot

based on the instantaneous velocity control input from the shared haptic interface

as in [68]. The second trajectory trace (red dotted trace in Fig. 4.2(top)) represent

the predicted future state of the robot based on the optimal velocity control com-

mand computed by adaptive SA-RVO rather than the operator’s control input. This

results in a suggested path visualization that shows contextual information about

the direction the autonomous agent suggests the operator to go.

5.3 Evaluation of Driving Objective-dependent As-

sistance Policies

Two navigation assistance policies—Safety-Aligned and Goal-Aligned—are consid-

ered in this study as they correspond to the two ends of the spectrum of driving

behaviors/styles found in literature, namely, cautious and assertive driving [134].

Both assistance policies were realized based on setting the weights of the objective

function described in Section 5.2.

The Safety-Aligned (SA) assistance policy corresponds to the cautious driving

behavior. Here, the static obstacle and social intrusion costs weights (w4 and w5) are

increased to penalize driving too close to pedestrians and obstacles. Additionally, a

high objective weight, w6, was set to the frontal intrusion cost function to penalize

robot trajectories that cross right in front of the pedestrian.

The Goal-Aligned (GA) assistance policy was designed to correspond to the

assertive driving behavior. Here, the social-related costs, w4−6, are reduced to make

cautious behavior to be less prominent while the goal-directed cost, w3, is increased

to prioritize driving along paths headed in direction of the goal. It is important

to note that this assertive, goal-oriented behavior does not jeopardize pedestrian
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safety as all collision-bound maneuvers are filtered out and excluded in the RVO

formulation.

We conducted a simulated experiment to evaluate the navigation performance

of the two assistance policies in 4 typical navigation scenarios: (i) one-on-one ap-

proach, (ii) two-person crossing, (iii) multi-pedestrian approach with obstacles and

(iv) multi-pedestrian crossing with obstacles. The experiment is conducted in the

same virtual environment using the same virtual differential drive mobile robot as

described in the previous chapter (see Section 4.3). The simulation trials were run

several times and the resulting trajectories were used to evaluate the navigation

performance (i.e., efficiency and safety) of the assistance policies using the following

objective metrics:

1. Path length (metres): Measured as the cumulative distance traveled from the

start to the goal location.

2. Task completion time (secs): Measured as time taken to reach the goal location

from the start position.

3. Average and minimum pedestrian clearance (metres): Measured as the average

and minimum distances between the robot and the closest pedestrian along

the path from start to the goal.

4. Proxemics space intrusions (%): Following [136], this measure categorizes the

robot’s proximity to the nearest pedestrian during each time step into one of

three proxemics spaces (based on the Proxemics theory proposed by Hall [83]):

Intimate, Personal, and Social, in order to determine the percentage of time

spent in each space. Both Intimate and Personal intrusions are considered in

this study which correspond to a clearance of below 0.45m and 1.2m respec-

tively.
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(a) One-to-one approach scenario (b) Two-person crossing scenario

Figure 5.2: Experimental scenarios 1 & 2 for evaluating the assistance policies

5.3.1 Scenario 1: One-to-One Approach

Fig. 5.2(a) shows the one-to-one approach scenario. The robot and one pedes-

trian are facing one another and moving in opposite directions towards each other

with the robot’s goal set behind the pedestrian. Table 5.1 summarizes the eval-

uation metrics (means and standard deviations) for both assistance policies. In

terms of navigation efficiency, both the path length and the completion time were

slightly lower for the goal-aligned (GA) policy compared to the safety-aligned (SA)

(Fig. 5.3(a-b)). Whereas, the safety-aligned assistance policy resulted in safer nav-

igation behavior with higher minimum pedestrian clearance and no personal space

intrusion (Fig. 5.3(c-d)). The wider clearance distance from the pedestrian can also

be seen from the trajectory plot in Fig. 5.4.

Table 5.1: Scenario 1: One-to-One Approach

Path Length (m) Completion Time (s) Avg. Ped. Clearance (m)

Safety-Aligned (SA) 11.31±1.21 8.34±0.04 4.20±0.03
Goal-Aligned (GA) 10.30±1.21 8.13±0.07 3.92±0.02
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% Intrusions
Min. Ped. Clearance (m) Intimate Space Personal Space

Safety-Aligned (SA) 1.70±0.01 0.00±0.00 0.00±0.00
Goal-Aligned (GA) 1.05±0.02 0.00±0.00 6.57±0.11
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Figure 5.3: Navigation performance metrics for safety-aligned (SA) and goal-aligned
(GA) assistance policies in the one-to-one approach scenario. SA results in a safer
navigation around the pedestrian (i.e., more clearance and no intrusion) at the
expense of slightly longer path.

(a) Safety-Aligned (SA) assistance policy (b) Goal-Aligned (GA) assistance policy

Figure 5.4: Time-lapse trajectory plots showing the difference in navigation behavior
between safety-aligned (SA) and goal-aligned (GA) assistance policies in the one-
to-one approach scenario.
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5.3.2 Scenario 2: Two-Person Crossing

Fig. 5.2(b) shows the two-person crossing scenario. One pedestrian starts at both

the left and right end the space walking towards a goal in the opposite direction

while the robot starts at the bottom middle of the space and would need to cross the

paths of the pedestrians to get to the goal ahead. Table 5.2 summarizes the evalu-

ation metrics (means and standard deviations) for both assistance policies. Similar

to Scenario 1, both the path length and the completion time were slightly lower for

the goal-aligned (GA) policy compared to the safety-aligned (SA) (Fig. 5.5(a-b)).

Likewise, the safety-aligned (SA) assistance policy resulted in safer navigation be-

havior with higher minimum pedestrian clearance and no personal space intrusion

(Fig. 5.5(c-d)). As can be seen from Fig. 5.6, frontal intrusion cost is in effect here,

and the assistance policy adjusts its trajectory to avoid close crossing in front of the

person 1.

Table 5.2: Scenario 2: Two-Person Crossing

Path Length (m) Completion Time (s) Avg. Ped. Clearance (m)

Safety-Aligned (SA) 11.49±1.15 8.78±0.1 2.76±0.05
Goal-Aligned (GA) 10.94±1.22 8.45±0.04 2.34±0.03

% Intrusions
Min. Ped. Clearance (m) Intimate Space Personal Space

Safety-Aligned (SA) 1.71±0.05 0.00±0.00 0.00±0.00
Goal-Aligned (GA) 0.97±0.01 0.00±0.00 11.34±0.54

90



SA GA0

2

4

6

8

10

12
m

et
re

s

(a) Path Length

SA GA0

2

4

6

8

se
cs

(b) Completion Time

SA GA0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

m
et

re
s

(c) Min. Pedestrian
Clearance

SA GA0

2

4

6

8

10

12

pe
rc

en
t (

%
)

(d) Personal Space In-
trusion

Figure 5.5: Navigation performance metrics for safety-aligned (SA) and goal-aligned
(GA) assistance policies in the two-person crossing scenario.

(a) Safety-aligned (SA) assistance policy (b) Goal-aligned (GA) assistance policy

Figure 5.6: Time-lapse trajectory plots showing the difference in navigation behavior
between safety-aligned (SA) and goal-aligned (GA) assistance policies in the two-
person crossing scenario.

5.3.3 Scenario 3: Multiple-Pedestrian Approach with Ob-

stacles

Fig. 5.7(a) shows the multiple-pedestrian approach scenario with obstacles. The

inclusion of static obstacles (e.g. tables) increases the complexity of the navigation

task requiring the assistance policy to plan collision-free motions around multiple
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(a) Scenario 3: Multiple-pedestrian ap-
proach with obstacles

(b) Scenario 4: Multiple-pedestrian
crossing with obstacles

Figure 5.7: Experimental scenarios 3 & 4 for evaluating the assistance policies

moving pedestrians while factoring obstacles in the environment.

The robot starts at one end of the hall while pedestrians are spawned at the

other end walking in the direction towards the robot. Table 5.3 summarizes the

evaluation metrics (means and standard deviations) for both assistance policies.

With regards to navigation efficiency, goal-aligned (GA) assistance policy achieve

much lower path length and completion time compared to the safety-aligned (SA)

(Fig. 5.8(a-b)). SA results in not only higher values for navigation efficiency, but

also with wide variance between trials.

Results for navigation safety show that even though SA had fewer personal space

intrusions on average, the minimum pedestrian clearance was slightly higher in some

trials than GA. This may be due to the robot getting stuck while negotiating a safe

maneuver between multiple pedestrians and the static obstacles (Fig. 5.8(c-d)).
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Table 5.3: Scenario 3: Multiple-Pedestrian Approach with Obstacles

Path Length (m) Completion Time (s) Avg. Ped. Clearance (m)

Safety-Aligned (SA) 20.62±6.87 24.91±6.67 3.32±0.38
Goal-Aligned (GA) 13.54±0.12 11.93±0.55 4.04±0.05

% Intrusions
Min. Ped. Clearance (m) Intimate Space Personal Space

Safety-Aligned (SA) 0.9±0.29 0.00±0.00 3.95±2.67
Goal-Aligned (GA) 1.00±0.00 0.00±0.00 9.94±0.54
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Figure 5.8: Navigation performance metrics for safety-aligned (SA) and goal-aligned
(GA) assistance policies in the multiple-pedestrian approach scenario with obstacles.

5.3.4 Scenario 4: Multiple-Pedestrian Crossing with Obsta-

cles

Fig. 5.7(b) shows the multiple-pedestrian crossing scenario with obstacles. The robot

starts at one end of the hall with its goal located at the other end while multiple

pedestrians cross in front of the robot from the left side of the hall to the right

and vice versa. Table 5.4 summarizes the evaluation metrics (means and standard

deviations) for both assistance policies. With regards to navigation efficiency, goal-

aligned (GA) assistance policy achieve much lower path length and completion time

compared to the safety-aligned (SA) (Fig. 5.9(a-b)). In terms of navigation safety,
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the safety-aligned (SA) assistance policy resulted in safer navigation behavior with

higher minimum pedestrian clearance and no personal space intrusion.

Table 5.4: Scenario 4: Multiple-Pedestrian Crossing with Obstacles

Path Length (m) Completion Time (s) Avg. Ped. Clearance (m)

Safety-Aligned (SA) 16.58±1.06 18.00±0.76 2.62±0.06
Goal-Aligned (GA) 14.12±0.34 12.38±1.00 2.36±0.06

% Intrusions
Min. Ped. Clearance (m) Intimate Space Personal Space

Safety-Aligned (SA) 1.67±0.03 0.00±0.00 0.00±0.00
Goal-Aligned (GA) 0.96±0.45 0.03±0.07 8.03±4.14
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Figure 5.9: Navigation performance metrics for safety-aligned (SA) and goal-aligned
(GA) assistance policies in the multiple-pedestrian crossing scenario with obstacles.

5.4 User Study Design

A within-subject repeated measures design was used to evaluate the impact of adap-

tive navigation assistance on driving performance, human-robot cooperation, and

user preference in a social navigation task. The Institutional Review Board (IRB)

at Worcester Polytechnic Institute approved the study design and procedure.
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The study hypotheses are as follows: First, we hypothesize that the objective-

aligned assistance mode will improve driving performance over the contrasting as-

sistance mode (H1). We also anticipate that participants will report considerably

higher levels of cooperation and preference for objective-aligned assistance mode

over contrasting assistance mode (H2). Furthermore, we hypothesize that the as-

sistance adaptation will have a greater impact in H1 and H2 when participants are

cognitively burdened with a secondary task (H3).

5.4.1 Experimental Setup

The pilot user study was designed as a virtual social navigation task just as in Chap-

ter 4. Five (5) participants (4 males and 1 female) were recruited for the user study

from the university student community. All participants stated that they had more

than four years of driving experience. Participants controlled a differential drive

mobile telepresence robot within a dynamic, human-populated virtual environment

to navigate from a starting point in a hall to a specified goal location in a safe

and socially acceptable manner. The populated environment and the virtual mobile

robot were simulated with Gazebo Simulator. A forward-facing camera mounted on

the mobile robot provided visual feedback to participants through a 24-inch com-

puter monitor (see Fig. 4.3 (left)). A visual overlay of the visual guidance methods

was displayed on the camera using OpenCV [137].

A conference hall style virtual environment was used with tables and walking

space (see Fig. 4.3 (right)). In order to prevent participants from memorizing the

hall layout across trials, two different layouts were adopted and randomly applied.

Based on the social force model [85], we modeled the virtual pedestrian motion using
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Figure 5.10: Pictorial description of the experimental conditions comprising 2 driv-
ing objectives, 2 assistance modes and 2 secondary task states (with or without).
Aligned and contrasting cases are color-coded with light grey and light blue respec-
tively.

a Gazebo actor plugin 3 4 to enable reactive navigation behavior. Human control

inputs and haptic guidance forces were applied through a commercially available

haptic-enabled device (Novint Falcon, Novint Technologies). For robot control, only

two of the 3-DOFs on the haptic interface are mapped to the differential-drive robot

controller using a position-velocity mapping.

5.4.2 Experimental Conditions

Eight (8) conditions were defined in this study based on three criteria: driving objec-

tive applied, assistance mode used and presence of a secondary task (see Fig. 5.10).

1. Driving Objectives: Two driving objectives—Cautious and Assertive driving—

were explored in this study to represent two common driving styles exhibited

3https://github.com/robotics-upo/gazebo_sfm_plugin
4https://github.com/robotics-upo/lightsfm
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by humans in interaction with others either while walking or driving a vehi-

cle [134].

(a) Cautious driving (CD): For this objective, participants were prompted

to drive “as cautiously as possible” around pedestrians. To induce this be-

havior, a proximity score, which increases based on the robot’s proximity

to surrounding pedestrians, is presented on the screen as a performance

feedback (see Fig 5.11).

(b) Assertive driving (AD): For this objective, participants were prompted

to drive with the intent to reach the goal as quickly as possible while

avoiding collisions or intrusions with pedestrians. Similarly, to induce

this behavior, a timer was presented on the screen to provide feedback

on their performance (see Fig 5.11).

2. Assistance Modes: The two navigation assistance policies—Safety-aligned

and Goal-aligned—defined and evaluated earlier in this chapter are applied as

the assistance modes in the pilot user study.

(a) Safety-aligned assistance (SA): This assistance mode corresponds to

the cautious driving behavior and prioritizes larger clearance from pedes-

trians and obstacles as well as penalizing frontal passing at the expense

of longer paths and completion time (See Section 5.3).

(b) Goal-aligned assistance (GA): This assistance mode corresponds to

the goal driving behavior and prioritizes goal-directed paths with just

enough deviation to avoid collision or intimate intrusion (See Section 5.3).

3. Secondary Task (ST): A cognitively demanding secondary task was in-

cluded to the experiment to purposefully distract the participant and increase
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their cognitive burden. Specifically, participants were asked to answer simple

arithmetic questions (addition and subtraction of two numbers) presented at

the bottom right corner of the visual display window (see Fig 5.11). The sim-

ple arithmetic questions are displayed at regular intervals (i.e., approx. six

seconds) and participants were required to provide their answer verbally. This

secondary task was used to simulate real-world scenarios where human oper-

ators may get both visually and cognitively distracted by social interaction or

environment inspection while driving a vehicle or robot.

Conditions were further categorized into aligned and contrasting assistance

cases based on the matching between the driving objective and the assistance mode.

For instance, a condition is considered aligned if the participant is asked to drive

cautiously (CA) (driving objective) while the assistance mode provided is safety-

aligned (SA) (assistance mode). This also applies with and without the secondary

task as can be seen with the color-coding in Fig. 5.10.

5.4.3 Experimental Procedure

Participants signed the IRB-approved informed consent form upon arrival at the

study site. Afterwards, we began the study with an explanation of the study pro-

cedure and how to operate the virtual mobile robot. There were four phases in the

study: familiarization, learning, validation, and testing.

Familiarization Phase: To get familiar with the robot controls, participants were

allowed to drive it for up to 5-7 minutes in an open space (with no obstacles or other

people). This phase was completed manually, without navigation assistance. After

the participants are confident controlling the robot, they are moved onto the next

step.
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Figure 5.11: Visual display window showing the camera feeds from the forward-
facing camera on the robot as well as other important visual features for the exper-
iment.

Learning Phase: During this phase, the participants underwent a standardized

training protocol in order to ensure they all reached a minimum skill level and were

familiar with the experimental conditions. First, participants practiced freestyle

driving towards a defined goal location in the virtual environment with only static

pedestrians. The two assistance modes (safety-aligned and goal-aligned assistance)

were introduced. They were then instructed to practice deliberate driving using

two driving objectives (cautious and assertive). Two scoring measures—proximity

score and timer score—provided immediate feedback to the participants on how

well they were driving cautiously and assertively respectively (see Fig. 5.11). Fi-

nally, participants were introduced to the secondary task. They first performed the

secondary task separately in order to obtain a baseline performance as suggested

in [138]. Thereafter, they practiced driving in both driving objectives while per-

forming the secondary task. In this phase, participants completed 24 driving trials,

each of which took approximately 20 seconds.

99



Validation Phase: Before moving on to the testing phase, each participant was

required to complete a validation phase. Participants in the validation phase were

required to score above a minimum threshold score for proximity and time with

no collision on at least four out of six driving trials. If they did not meet this

requirement, they were given more practice before re-validation.

Testing Phase: In this phase, participants drove in a total of eight (8) conditions:

2 driving objectives X 2 assistance modes X 2 (with or without) secondary task,

with two trials per condition, resulting in 16 trials in total. As shown in Fig. 5.10,

half of the conditions were aligned cases (i.e., CD+SA, AD+GA, CD+SA+ST,

AD+GA+ST), while the other half were contrasting cases (i.e., AD+SA, CD+GA,

AD+SA+ST, CD+GA+ST). In order to avoid ambiguity, participant were informed

what condition they were driving in through on-screen indicators (see Fig. 5.11).

The order of the conditions was randomized and counterbalanced in order to reduce

learning effect, recency bias, and fatigue. Break time options were provided in order

to prevent fatigue. After each condition, participants filled out a post-condition

questionnaire to provide subjective responses to their experience. Upon completion

of all eight conditions, participants completed a post-study questionnaire in which

they ranked the two assistance modes based on several criteria. The entire user

study took approximately 1.5 hours to complete, depending on the participants.

5.4.4 Measures

Objective Measures

The same four (4) objective measures used in Section 5.3 are computed to evaluate

the driving performance (both driving efficiency and safety) in the experiment. They

are as follows: (i) Path length (metres), (ii) Task completion time (secs), (iii) Average
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and minimum pedestrian clearance (metres), (iv) Proxemics space intrusions (%).

Subjective Measures

Post-condition Questionnaire: At the end of the two trials for each condition,

participants completed the following questionnaire using a 7-point likert scale to

evaluate the condition:

1. System helpfuless and ease of use: (1 - Strongly disagree, 7 - Strongly agree)

• Helpfulness : “This assistance mode was very helpful for achieving the

driving objective.”

• Ease of use: “I found this assistance mode to be easy to use for navigating

the robot.”

2. Level of cooperation: “To what extent did you cooperate or agree with the

assistance mode in the task?” (1 - Never agreed, 7 - Always agreed)

3. Level of difficulty : “How difficult did you feel this trial was in achieving your

driving objective?” (1 - Not difficult at all, 7 - Very difficult)

Post-block Questionnaire and Interview: After each participant completed a

driving objective using both assistance modes, they completed the following ques-

tionnaire to reflect on their experience and rank the assistance modes.

1. Rank the two assistance modes in terms of themost cooperation (or agreement)

with the navigation assistance in the task.

2. Rank the two assistance modes in terms of the most preferred for completing

the task.
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After the user study, we conducted a short, semi-structured interview with each

participant to learn why they ranked the assistance modes and other follow-up

questions.

5.5 Results

Objective Measures

For the cautious driving objective (CD), we evaluated the impact of aligned and

contrasting assistance by comparing the safety-related metrics between CD+SA

and CD+GA as well as in the secondary task cases, between CD+SA+ST and

CD+GA+ST. We found no significant effect on the minimum pedestrian clearance,

intimate intrusions and personal intrusion metrics (Table 5.5). Fig. 5.12 shows bar

plots of min. pedestrian clearance and personal space intrusions across the cautious

driving conditions. While plagued with high variability, we found a positive trend

in the personal space intrusion metric (Fig. 5.12(b)).

In particular, CD+SA (cautious driving with safety-aligned assistance) had the

lowest value of personal space intrusion, rising with CD+GA (cautious driving with

assertive-aligned assistance) and rising even more with the inclusion of the secondary

task. Interestingly, we found no significant effect of the secondary task (i.e., with or

without secondary task) on navigation safety, although we observe a positive trend

with secondary task conditions having higher rate of personal space intrusions.

For the assertive driving objective (AD), we evaluated the impact of aligned

and contrasting assistance by comparing the navigation efficiency-related metrics

between AD+SA and AD+GA as well as in the secondary task cases, between

AD+SA+ST and AD+GA+ST. As with the cautious driving cases, we found no

significant effect of assistance mode on the path length and completion time metrics
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Table 5.5: Cautious Driving

Measures
Secondary Task (ST)

CD+SA CD+GA CD+SA CD+GA

Objective Measures
Path Length (m) 15.34±0.93 17.58±3.37 19.52±4.59 16.71±3.35

Completion Time (s) 15.17±1.12 16.09±2.63 21.37±7.45 20.10±5.21
Avg. Ped. Clearance (m) 2.71±0.11 2.77±0.27 2.74±0.18 2.76±0.26
Min. Ped. Clearance (m) 1.44±0.23 1.31±0.24 1.31±0.17 1.24±0.16
Intimate Intrusions (%) 0.01±0.03 0.01±0.03 0.00±0.00 0.00±0.00
Personal Intrusions (%) 0.00±0.00 0.59±0.87 2.86±2.45 3.86±3.27

Subjective Measures
Helpfulness 4.80±1.48 4.80±1.79 4.80±1.92 5.60±0.89
Ease of Use 6.00±1.41 5.80±1.79 5.00±2.35 5.60±1.34
Cooperation 5.20±1.92 5.20±1.79 4.60±2.51 5.20±1.30

Level of Difficulty 2.20±0.84 2.80±1.79 5.80±1.30 4.60±2.07
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Figure 5.12: Comparison of two main safety metrics across Cautious driving
(CD) experimental conditions

(Table 5.6 and Fig. 5.13). We observed a slight increase (although not statisti-

cally significant) in the completion time between AD+SA (M = 14.75, SD = 2.24)

and AD+GA (M = 13.65, SD = 1.76) as well as between AD+SA+ST (M =

18.30, SD = 7.58) and AD+GA+ST (M = 16.42, SD = 4.57) (Fig. 5.13(b)).
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Table 5.6: Assertive Driving

Measures
Secondary Task (ST)

AD+SA AD+GA AD+SA AD+GA

Objective Measures
Path Length (m) 16.82±1.81 16.74±2.12 18.83±5.42 17.34±2.88

Completion Time (s) 14.75±2.24 13.65±1.79 18.30±7.58 16.42±4.57
Avg. Ped. Clearance (m) 2.66±0.14 2.55±0.14 2.58±0.30 2.46±0.23
Min. Ped. Clearance (m) 1.39±0.35 1.32±0.18 1.06±0.35 1.08±0.28
Intimate Intrusions (%) 0.00±0.00 0.00±0.00 0.01±0.03 0.00±0.00
Personal Intrusions (%) 1.62±3.10 2.65±2.56 6.47±6.95 5.83±4.14

Subjective Measures
Helpfulness 4.40±2.07 5.00±0.71 4.20±1.10 2.80±0.84
Ease of Use 6.00±1.00 5.80±1.10 5.20±1.30 4.20±1.92
Cooperation 5.00±1.87 4.80±0.84 5.00±0.71 3.60±0.55

Level of Difficulty 4.60±1.52 4.20±0.45 6.60±0.89 6.00±0.71
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Figure 5.13: Comparison of two main navigation efficiency metrics across Assertive
driving (AD) experimental conditions

Subjective Measures

We analyzed the subjective measures to evaluate the effects of aligned and contrast-

ing assistance on user perception of the assistance helpfulness, ease of use, level of

cooperation with the assistance and level of difficulty. Starting with the cautious

driving objective (CD), no significant effects of assistance mode were found across
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conditions and metrics (Table 5.5). However, we note a slight positive trend between

conditions with secondary task (CD+SA+ST and CD+GA+ST) across helpfulness,

ease of use and cooperation, with slightly higher values using goal-aligned assistance

(GA) over cautious-aligned assistance (CD). Additionally, participants reported the

secondary task cases to have higher level of difficulty than the non-secondary task

cases. This may serve as a manipulation check for the impact of the secondary task

on the participant’s workload and task difficulty.

For the assertive driving objective (AD), while no significant effects of assistance

mode were found in the non-secondary task case, we found assistance adaptation

had a marginal effect in the assistance helpfulness and cooperation ratings between

CD+SA+ST and CD+GA+ST, t(4) = 2.7, p = 0.052, for both helpfulness and

cooperation.

Fig. 5.14 shows the user preference ranking in both the non-secondary task and

secondary task cases. As can be seen, all participants reported to prefer SA as-

sistance in the cautious driving cases both with and without the secondary task.

Whereas 60% of participants preferred SA over GA in assertive driving cases for

non-secondary cases and 80% of participants preferred SA over GA with the sec-

ondary task.

5.6 Discussion

Our contribution in this chapter is to propose a socially aware navigation assis-

tance approach that is adaptable to different distinct driving behaviors. The study

considered two common driving behaviors: cautious driving and assertive driving.

Two assistance policies—Safety-aligned and Goal-aligned—were designed to corre-

spond to the cautious and assertive driving behaviors respectively. We subsequently
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(a) Non-secondary task cases (b) Secondary task cases

Figure 5.14: User preference ranking in both non-secondary task (a) and secondary
task cases (b).

evaluated their navigation performance in four typical navigation scenarios utiliz-

ing objective metrics related to path efficiency and safety during social navigation.

Using the social- and goal-related objective functions described in Section 5.2, we

found that our adaptive SA-RVO approach was able to capture distinct character-

istics of cautious and assertive driving. While the results show that hand-crafted

cost weights produced reasonable behaviors, future work should consider using a

learning-based approach to automatically determine the navigation cost weights

based on expert human demonstrations of various behaviors [135,136].

We further conducted an pilot user study to evaluate the impact of assistance

adaptation on driving performance, human-automation cooperation and user pref-

erence. We first hypothesized that the aligned assistance modes will improve driving

performance (both in efficiency and safety) over the contrasting assistance modes.

According to our results, however, we observed no significant effect of assistance

adaptation on driving performance, i.e., for efficiency in assertive driving, neither

path length nor completion time reduced significantly when using goal-aligned as-

sistance (GA) as opposed to safety-aligned assistance (SA). The same was observed
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for navigation safety in cautious driving (see Fig. 5.12 & 5.13). A possible reason

for this may be the actual driving behavior employed by the participants. While we

instructed and trained participants on how to drive both cautiously and assertively

in the learning phase, our analysis of their driving behavior in a manual case (i.e.,

without navigation assistance) showed that there was no significant difference in

their navigation efficiency or safety between their cautious driving and assertive

driving (AD) trials. Table 5.7 shows the mean and standard deviation values for

both CD and AD across the driving performance metrics. We observe large vari-

ability in the results across participants, further obscuring any significant difference

in driving behavior. Possible explanations for this may be that (i) participants de-

faulted to their normative driving style during the trials and thus didn’t exhibit

distinct behaviors, (ii) the variability in driving styles overpowered the limited sam-

ple size, (iii) the sample population—drawn primarily from young adults—tend to

generally have higher reaction times in driving [139] and do so consistently in a more

aggressive manner compared to older populations [140]. A few directions for future

investigation can be considered. First, we consider streamlining the navigation task

in order to focus more on single, pairwise social interactions where remote driv-

ing behaviors may be more distinct and easier to manipulate. Secondly, we could

explore recruiting a more diverse participant pool across age groups in our future

experiments. Furthermore, we can explore comparing different control interface de-

vices in the pilot user study to ensure that the interface device currently in use is

not introducing a limitation on the ability of participants to control the robot.

Table 5.7: Manual Driving: Comparison between Cautious and Assertive Driving

Path Length (m) Completion Time (s) Avg. Ped. Clearance (m)

Cautious Driving (CD) 16.96±3.42 21.23±8.00 2.57±0.47
Assertive Driving (AD) 18.36±5.23 16.49±6.38 2.53±0.34
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% Intrusions
Min. Ped. Clearance (m) Intimate Space Personal Space

Cautious Driving (CD) 1.17±0.43 0.08±0.44 4.586±7.266
Assertive Driving (AD) 0.99±0.47 0.74±2.872 6.303±6.707

Regarding user preference and human-automation cooperation, we hypothesized

that participants will report considerably higher levels of preference and cooperation

for the objective-aligned assistance modes (i.e., CD+SA and AD+GA) over the con-

trasting assistance modes (i.e., CD+GA and AD+SA). The result of our subjective

ranking only partially supports the hypothesis. In the case of user preference, all

five participants ranked SA as preferred over GA for cautious driving (CD) tasks.

In the post-study interviews, three participants mentioned that the guidance cues

of SA were more helpful especially in cases when the pedestrians were outside their

field of view (FOV). This echoes remarks reported by participants in the user study

of Chapter 4.

When considering assertive driving (AD), however, three participants (60%) still

ranked SA (the contrasting assistance) as more preferred over GA (the aligned assis-

tance). When asked the reason for their ranking, they reported that the additional

‘safety’ against collisions provided by SA helped them even while heading towards

the goal assertively. However, two participants, who preferred GA over SA, men-

tioned that the goal-oriented guidance of GA was preferred in assertive driving.

This suggests that participants leveraged the assistance modes for different pur-

poses. Additionally, in considering human-automation cooperation, our subjective

metric revealed that no significant differences between aligned and contrasting as-

sistance cases (see Table 5.5 & 5.6). In general, we found no significant distinction

in participant responses across the subjective measures in the experimental condi-

tions without the secondary task cases. However, in the assertive driving cases with

secondary task, we found that SA had a marginally higher cooperation rating than
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GA (t(4) = 2.7, p = 0.052). This may correspond to why participants preferred SA

over GA even while requested to drive assertively.

The third hypothesis for the study was that assistance adaptation would have

a greater impact on driving performance and user perceptions when there is a sec-

ondary task, as the participants would have a greater cognitive load. Our findings

suggest that the participants’ interactions with aligned and contrasting assistance

modes were little influenced by the secondary task. In part, this may be due to

the fact that rather than relying more on assistance due to increased cognitive load

and distraction, the participants ignored it further. As reported in the post-study

interviews, some participants weren’t paying attention to the assistance during the

secondary task cases and couldn’t differentiate between them. However, some par-

ticipants reported that while they ignored the visual guidance cues due to the visual

distraction and cognitive load, they tended to rely on the haptic guidance on their

hands.

5.7 Chapter Summary

In this chapter, we presented an adaptive shared autonomy approach for naviga-

tion assistance in dynamic, human-populated environments. This work extends the

SocNavAssist approach presented in Chapter 4 to account for distinct driving be-

haviors/styles by incorporating socially-relevant objective functions that character-

ize these driving objectives. Specifically, two assistance policies—safety-aligned and

goal-aligned—were developed in this study based on hand-designed cost function

weights and evaluated in autonomous mode across four typical navigation scenarios.

The evaluation results showed that the assistance policies portrayed the expected

behaviors corresponding to cautious and assertive driving behaviors. We further
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conducted an pilot user study (n = 5) to evaluate how the adaptive assistance

affects driving performance (efficiency and safety), human-automation cooperation

and user preference in a simulated social navigation task. Our preliminary results

showed that more participants preferred the safety-aligned assistance mode in both

cautious driving (aligned case) and assertive driving (contrasting case) due to the

safety advantage. However, our results did not find any significant differences in driv-

ing performance (either in safety or navigation efficiency) on account of adaptation

between aligned and contrasting assistance modes. This chapter sets preliminary

work in evaluating how remote operators interact with different navigation assis-

tance modes based on adaptation to common driving behaviors in social navigation.

Future work would include more participants and implementation in a real-world

navigation scenario.
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Chapter 6

Learning-based Computational

Human Driver Modeling for

Assistive Driving Systems

6.1 Introduction

The goal of advanced driving assistance systems is to improve both human safety

and overall mobility experience. However, these systems redefine how humans tra-

ditionally interact with their vehicles while driving. Understanding this interaction

is crucial to the design and evaluation of the next generation of intelligent assistive

driving systems.

Existing approaches for studying driver-vehicle interaction include the use of

digital human driver models because simulation tests performed using real human

drivers are costly, time-consuming and strictly limited due to safety constraints.

Such surrogate models provide a safe and cost-efficient method for approximating

realistic driver behavior in simulation. A review of the literature shows how the
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use of digital driver models contribute to the design of active driver safety systems

[93, 95], the usability and intelligence of driver-assistance systems [101], as well as

vehicle ergonomics analysis [97, 98]. However, existing digital driver models do not

consider the complex bi-directional, physical interactions that occur between the

human driver and the driving interfaces (steering wheel and brake/throttle pedals)

during naturalistic driving.

In recent work, Kimpara et al [2] proposed a novel simulation framework, Human

Model-based Active Driving System (HuMADS), which integrates an active human

driver model with a vehicle dynamics model to render high-fidelity simulation of

driver-vehicle interaction. This chapter extends that work by addressing the problem

of how to generate human-like driver control motions for a simulated driver model.

This is achieved by taking a data-driven approach to learn motion planner policies

for the two primary driving functions: steering wheel handling and pedal pressing.

Specifically in this section, the following contributions are presented:

• Implementation of a data processing pipeline to identify the characteristic

driver control styles (i.e., steering handling and brake/throttle pedal switching

styles) from demonstration data obtained from experienced drivers.

• Analysis of the correlation between resulting characteristic steering handling

styles, driving maneuver behaviors and driving contexts. This enables the

mapping of road and driving task scenarios to respective handling styles.

• Learning driving motion primitive models based on the identified driver control

styles, in order to construct the motion primitive library to enable realistic

vehicle control motion generation on our simulated driver model [2].

The significance of the proposed approach is that it provides automotive re-

searchers with a novel avenue to generate realistic driving behavior on a digital
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Figure 6.1: Driver-vehicle control framework for the Human Model-based Active
Driving System (HuMADS) [2]. This framework enables the simulation of realistic
driver-vehicle interaction in driving tasks.

human driver model in simulation and then perform more comprehensive analyses

on the design and usability of advanced driver-assistance systems. For instance, in

Level 2 autonomy systems [141], where both the human driver and system auton-

omy jointly share control of the vehicle, understanding how haptic authority on the

shared steering wheel interface affects driver workloads is crucial to system usabil-

ity and safety [142]. Other promising applications include leveraging these realistic

simulations to improve vehicle ergonomics, occupant packaging and safety system

design.

This chapter is organized as follows: the integrated framework for human-vehicle

interaction is summarized in Section 6.2. The imitation learning pipeline for identify-

ing, analyzing and modeling driver control styles is presented in Section 6.3. Results

are presented and discussed in Sections 6.4 and 6.5, while concluding remarks are

presented in Section 6.6.
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6.2 Human-Vehicle Interaction Framework (Hu-

MADS)

This section introduces the HUman Model-based Active Driving System (HuMADS)

[2], which we have proposed as the framework for simulating realistic whole-body

motion coordination in physical interactions between human driver and vehicle

(Fig. 6.1). This integrated driver-vehicle model is adapted as a mid-sized human

driver in a regular passenger vehicle cockpit. The human driver model comprises

37 degrees of freedom (DOF), actuated by torque actuators at each coordinate joint

(Fig. 6.2). The vehicle model geometry and properties are obtained from the fi-

nite element model of a 2012 Toyota Camry. It includes vehicular components such

as driver seat, pedals, steering wheel, etc. The following subsections will briefly

describe each component of the HuMADS framework as illustrated in Fig. 6.1:

Driving Task Reasoning Layer: The driving task reasoning layer replicates the

decision-making component of a human driver. It computes the reference pedal δrp

and steering angles δrsw for longitudinal and lateral motion control respectively. The

longitudinal motion controller is based on a car-following model following Saigo’s

model [143, 144]. The inputs to the model are the velocity of the preceding vehicle

and the road pathway. The lateral motion controller is a forward-gaze steering model

on the highway based on the theory of vehicle dynamics described by Abe [145].

Human Motion Planning Layer: This layer computes the coordinated vehicle

maneuver motions, i.e. joint motion trajectories (angles, velocities and accelera-

tions) of the driver model’s whole body, to achieve the desired steering and pedal

motions. Due to the complexity of planning multi-joint coordinated human motion

especially in constrained contexts like driving, an imitation learning approach is
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adopted in this layer and will be described in Section 6.3.

Human Motion Control Layer: This layer computes the desired joint torques

τ given the desired joint angles qd, angular velocities q̇d, and angular accelerations

q̈d of the vehicle maneuver motion as well as external forces. The desired joint

torques for the whole-body driver model are computed to maintain its body posture

while tracking the desired arm/hand and foot trajectory for pedal pressing and

steering respectively through inverse dynamics [2]. Inverse dynamics [146] adopts the

feedback linearization approach to express the joint torques τ as the linear function

of model states and their derivatives along with external forces, f(q, q̇, q̈, Fext). The

human driver model is mathematically modelled as an n-link multi-body system

expressed as:

M(q)q̈ + C(q, q̇) +N(q) + JTFext = τ (6.1)

where q is the state vector in joint space, M is the mass matrix, C is the velocity

vector which is the product of the Coriolis and Centrifugal force matrix, and q̇ is

the state velocity vector, N is the gravity vector, JT represents the system Jacobian

matrix, Fext captures the external forces (contact forces between the human model

and the vehicle such as thigh and seat cushion forces), and τ is the joint torque

vector.

The nonlinearities in the dynamic system are resolved by computing the control

input, τc, which approximates the nonlinear dynamics and then commands a control

law, aq:

τc = M̂(q)aq + Ĉ(q, q̇) + N̂(q) + ĴTFext (6.2)

aq = q̈d −KD(q̇ − q̇d)−KP (q − qd)−KFJ
T (Fext − F d

ext) (6.3)
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Figure 6.2: Kinematic model of the human driver based on full body models available
on OpenSim [3]. The model comprises 37 degrees of freedom (DOF) actuated by
coordinate torque actuators.

where M̂ , Ĉ, N̂ and Ĵ are approximate system dynamics obtained from the forward

dynamics simulator, KP , KD and KF are constant diagonal gain matrices for posi-

tion, velocity and forces, qd, q̇d and q̈d are vectors of desired joint position, velocity

and acceleration respectively, F d
ext is the desired contact force vector.

Driver Dynamics Layer: The driver dynamics layer uses the whole-body human

model to simulate the human driver’s forward kinematics and dynamics, and the

resulting steering and pedal motions. This layer simulates the dynamic interaction

between the driver model and the vehicle cockpit. It also includes the contact forces

on the driver seat, floor, pedals and steering wheel. This enables us analyze internal

parameters such as joint reaction forces and muscle activity, which can be used to

investigate the comfort/potential injury resulting from the driver’s reactive motion.

Vehicle Dynamics Layer: The driver’s commanded pedal angle δp and steer-

ing wheel δsw angle, resulting from the maneuver motions computed in the driver
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Figure 6.3: Framework for simulating realistic driver-vehicle interaction in driving
tasks. (a) shows the control framework for the human driver model (HuMADS) [2].
This framework enables the rendering of whole-body coordination in driving tasks.
(b) expands upon the Human Motion Planning layer to show the motion learning
and reproduction framework using an imitation learning approach.

dynamics layer, are fed to the vehicle dynamics layer. Using the vehicle model

proposed in [144], the vehicle dynamics (i.e. vehicle longitudinal and lateral accel-

eration, velocity) are determined from the commanded steering and pedal motions.

6.3 Learning and Reproducing Vehicle Maneuver

Motions

This section presents our proposed methodology for identifying and learning the

driver control motion styles as motion primitives from exemplar demonstration data

from experienced drivers. To be clear in description, we define the following terms:

• Driver control motion refers to movement of the driver’s arm/hands and

leg(s)/feet to manipulate the steering wheel and pedals respectively

• Driver control style refers to a particular distinctive way a driver coordinates
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their arm/hands and leg(s) motion in controlling the vehicle

• Driving maneuver behavior refers to high-level operational driving tasks as

observed from the vehicle (e.g. lane keeping, lane change, discrete turning)

Our proposed approach consists of five steps (see Fig. 6.3(b)):

1. Data collection: we collected whole-body motion data from experienced

drivers while driving a simulated vehicle on fixed-base driving test bed.

2. Motion segmentation: the motion data was then classified and segmented

based on the characteristic driving maneuver behaviors.

3. Clustering: the segmented data were clustered into distinctive driver control

styles.

4. Motion primitive learning: we extracted the regularity and variability of

each control style cluster group using imitation learning.

5. Motion reproduction: Finally, a motion primitive library is built for repro-

ducing contextual driver control motions in simulation.

The following subsections describe each step of the learning process.

6.3.1 Experiment and Data Collection

An experiment was conducted to collect the data of natural vehicle maneuver mo-

tions in typical driving tasks. Therein, n = 8 (5 Males, 3 Females; Age: 25 ± 2.2

years) healthy participants with at least two years of licensed driving experience

were recruited. The average length of driving experience was 6.8 ± 2.3 years. Dur-

ing the experiment, the participant drove in a fixed-base driving simulation test bed

(see Fig. 6.4(left)). The operator console supports the control of a vehicle within
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Figure 6.4: A participant is driving in fixed-base simulation testbed within motion
capture laboratory. (Left): Experimental setup. (Right): Screen capture of the
driving simulator game.

a driving simulation environment (City Car Driving v1.5 Gaming Software) using

Logitech G920 driving hardware and displays the simulated driving context via a

21” monitor (Fig. 6.4(right)).

Task description: The participants were asked to drive in three different driving

contexts: highway, in-city, and country road. The participants drove under each

condition for six minutes. These contexts were selected to capture a wide range

of driving behaviors under various road and traffic conditions. To avoid fatigue,

participants were allowed to take breaks between driving sessions.

Intake Survey: After giving informed consent, participants were asked to com-

plete a survey to collect demographic information (age, gender) and a description

of their driving experience, style and video gaming experience.

Practice session: The participants were required to pass a practice session be-

fore participating in the study. For each condition, the participant was allowed a

maximum of 10 attempts to complete 3 successful practice runs. A practice run

is considered successful if the participant drives for 2 minutes without getting into
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an accident or accumulating more than 30 driving errors including driving against

traffic, lane changing without signaling, etc. (reported by the gaming software).

Participants who were unable to pass the practice session were excluded from the

study.

Data Collection: A motion capture system (VICON Vero, 10 cameras) was used

to track the upper and lower body motions of the participants at 100Hz. We simul-

taneously recorded the participant motions using video camera and driving context

using screen capture, to facilitate data segmentation and labeling, and to match

driver’s motions to the driving context. The steering wheel angle, throttle open-

ing and brake pedal displacement data were recorded through the Logitech G920

driving hardware at a rate of 100Hz. In total, 144 minutes (8 participants × 3

driving contexts × 6 minutes) of driving data was recorded. A 2nd-order low-pass

butterworth filter with a cutoff frequency of 5 Hz was used for removing the high

frequency noise from the recorded data.

6.3.2 Segmentation and Classification of Driving Motion

Data

We segmented the continuous sequence of driving motion data and investigated the

features that can distinguish different driver control styles. A feature vector thresh-

olding method was used to segment the continuous sequence of driving motion data

based on the characteristics of the data. To effectively determine feature threshold

values, we first visually inspected the video recordings of the data and manually

labeled them by their distinctive driving maneuver behaviors. The classes identified

for steering maneuvers were as follows: (1) lane keeping on a straight road (LK-

SR), (2) lane keeping on a curved road (LK-CR) or lane-change, and (3) discrete
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turns (DT). We identified the steering wheel angle to be the characteristic feature

and learned the threshold values from the manually labeled data. These threshold

values were further used to determine the segment transition points in the data.

For the throttle/brake maneuvers, we noticed that drivers typically perform two

basic foot movements: switching from one pedal to another, and pressing on a pedal.

Our objective here is to extract motion segments when the driving foot is in the

switching movement. We defined the foot position as the characteristic feature for

data segmentation. Based on knowledge of the fixed positions of pedals, threshold

values are set to define the segment transition points in the data. The data is

thus segmented and classified into three characteristic behaviors: throttle-to-brake

motion, brake-to-throttle motion and pedal pressing motion using the pre-defined

threshold. The motion data within each segment is interpolated to a fixed length of

200 frames and normalized to ensure alignment across different demonstrations.

6.3.3 Clustering of Motion Segments

The resulting sequence of motion data segments are clustered based on their dis-

criminatory features. This process aims to identify a set of driver control styles

for wheel-steering and pedal-pressing. Because of the simplistic nature of the foot

switching movement, we directly used the derived classes during segmentation for

modeling and learning the foot switching motion primitives. Thus, this section will

focus on clustering to extract distinctive steering handling styles from the data.

For data processing, we employed the Statistics and Machine Learning Toolbox in

MATLAB [147].
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Feature selection

To obtain the natural clustering in the segmented motion data set, we defined a

broad set of features and then manually labelled a subset of the data based on video

inspection. These features include raw data features (3D position range of both

hands, both elbows; minimum distance between hands; absolute distance covered by

hands, etc.), statistical features (mean and standard deviation of distance between

hands, hand velocity; correlation between hand 3D positions, hand velocities etc.)

and other features such as steering wheel range, the arm swivel angle range which

measures the arm posture by the rotation angle of elbow about the shoulder-wrist

axis [148], and the steering angle range.

Using a filter feature selection method [147] on the partially labelled data, we

selected the relevant features which have the highest discriminatory power in the

distinction of patterns in the data. The resulting set of features1 are shown in

Table 6.1 and described in Fig. 6.5.

ID Features

1 Position range of right hand in X-direction
2 STD of distance between both hands
3 Minimum distance between both hands in X-direction
4-5 Distance covered by right and left hand in X-direction
6 Steering angle range

Table 6.1: Relevant feature set

Hierarchical Clustering

The segmented motion data were clustered using the set of relevant features obtained

from the data. We applied the agglomerative hierarchical clustering method [147],

1In our analysis, for feature ID 1, only the position range of the right hand, and not the left
hand, had high discriminatory power. This may be related to the characteristics of our sample
population.
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Figure 6.5: Graphical description of features defined in our analysis. ID1-6 are
used in data clustering (Table 6.1). ID1-5 relates to distance metrics between both
hands, ID6 (not shown in figure) is the range of the steering wheel during the motion
segment. Swivel angle characterizes the driver’s arm posture while steering.

which is a connectivity-based model, because its hierarchical structure well models

the assumed classification of driver control styles in its inter-variability and coupling.

The agglomerative (or bottom-up) hierarchical clustering algorithm starts with

considering each data point as a distinct cluster, then pairs of clusters are merged

based on their distance/similarity metrics [149]. The Ward’s minimum variance

method [150] is used as the cluster linkage criteria for our data set. The result of

the clustering is a dendrogram which graphically describes the natural groupings

in the data set. To determine the number of clusters (or to cut the dendrogram),

k, we choose k which maximizes the clustering quality index (CQI) represented by

the Silhouette index [151]. This process assigned the segmented motion data into

clusters which represent the characteristic steering maneuver styles exhibited across

our experienced drivers.
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Figure 6.6: Graphical description of features defined in our analysis.

6.3.4 Learning Motion Primitives from Clusters

Here, we present our method for extracting the regularity and variability of respec-

tive driver control style groups using imitation learning algorithms and encoding

them as motion primitives for steering and pedal pressing task. The first step is

to determine the feature space in which to encode the demonstration data. This

is usually defined based on domain knowledge. In our study, we distinguish driver

control motions into unconstrained and constrained motions.

Unconstrained Motions

These are the reaching motions in free space. The active limb is modeled as a serial

kinematic linkage moving its end-effector (hand or foot tip) from one point in 3D

cartesian space to another. For this motion type, the task-specific structure is best

captured by encoding the cartesian pose of the end-effector over time.

(a) Modeling motion regularity and variability: We use Gaussian Mixture Model-

ing/Gaussian Mixture Regression (GMM/GMR) to learn an averaged behavior (i.e.

hand and foot trajectories) from the clustered segments [152]. Gaussian Mixture
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Model (GMM) is parametric model of the probability distribution of the clustered

motion data [153]. This mixture model represents the trajectories of multiple motion

demonstrations as a weighted sum of M Gaussian component densities (Fig. 6.7(a))

expressed as:

p(x) =
M∑
i=1

wig(x|µi,Σi) (6.4)

where x is the N-dimensional vector of the time-aligned motion demonstration seg-

ments, wi is the i-th mixture weight of the Gaussian distributions, µi is the mean

vector of the i-th Gaussian, Σi is the covariance matrix of the i-th Gaussian and

g(x|µi,Σi) is the i-th Gaussian distribution. The parameters of the mixture model,

{wi, µi,Σi}Mi=1, are estimated iteratively using the expectation-maximization (EM)

algorithm [154]. The optimal number of Gaussian components, M, can be esti-

mated by finding the value which maximizes the Bayesian Information Criterion

(BIC) [155].

In addition, a Gaussian mixture regression (GMR) [156] process is implemented

on the mixture model to retrieve a generalized trajectory [152]. This averaged tra-

jectory, x̂ = {x̂t,i, x̂s,i}, representing temporal values and the corresponding spatial

values respectively are estimated through regression [152]. By combining GMM with

GMR, we can extract the averaged motion trajectory with the variability along that

trajectory (Fig. 6.7(b)).

(b) Learning a generalized model: We further encode the averaged trajectories of

the hands and foot using Dynamic Movement Primitives (DMP) [157]. The resulting

generalized trajectory, x̂(t), is encoded by the DMP framework using a second-order

differential equation which is interpreted as a linear spring-damper system perturbed

by a non-linear forcing term [157,158] expressed as:
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τ v̇ = K(xd − x̂)−Dv + (xd − x0)f (6.5)

τ ẋ = v (6.6)

where x̂ and v are the position and velocity of the differential equation system, x0

and xd are the start and final positions, τ is the temporal scaling factor, K and

D are stiffness and damping constants respectively and f is the non-linear forcing

term defined as a weighted Gaussian basis function, ψi(s), with w weights which is

used to encode the generalized trajectory:

f(s) =

∑
iwiψi(s)s∑

i ψi(s)
(6.7)

Note that f(s) is a function of a phase variable, s ∈ [0, 1], which tends mono-

tonically from 1 to 0 along the trajectory from start to goal position [157].

The desired non-linear forcing function, fdes(s), for a given behavior is computed

by inserting the generalized trajectory, x̂(t), and its derivatives v(t) and v̇ into the

differential equation (6.5). Then, a linear regression problem is solved to define

the weights wi that minimize the error criterion to drive the f(s) to fdes(s). The

most common method used is the locally weighted regression (LWR). The weights,

parameters of the DMP, are stored and retrievable from the motion primitive library.

Unconstrained Motions

These are motions where the active limb end-effector (hand or foot) is not free to

move along an arbitrary trajectory, but must follow a defined trajectory that satisfies

the motion constraints, such as the case when a driver’s hand remains fixed on the

steering wheel during a steering control (Fig. 6.6(b)). Thus, the motion of the hand
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Figure 6.7: Combination of GMM/GMR and DMP to learn a generalizable trajec-
tory model from multiple demonstrations. (a) shows a cluster of trajectories (black
lines) with a GMM (green ellipses) fitted to it. (b) shows the mean trajectory (blue
line) along with the variance (light blue shade) derived using GMR. (c) shows the
reproduction of the mean trajectory adapted to 3 different start and end positions
using DMP.

is constrained to follow the confined path of the steering wheel (circular path) as the

driver remains in contact with it. For this motion style, the task-specific structure

is best captured by defining a functional coupling between the steering wheel angle

and the driver’s arm posture measured by the arm swivel angle.

(a) Learning motion coupling as a motion primitive: For every motion segment

with constrained motions, we first compute the arm swivel angle and analyze its

correlation with the steering wheel angle across participants. Then we use a Gaus-

sian model to learn the distribution (regularity and variability) between both angles.

Our analysis resulted in a function which maps steering wheel angle to swivel angle

which is dependent on arm and seating specifications (see Section 6.4.3).

6.3.5 Motion Reproduction Framework

Through imitation learning, a library of motion primitives can be constructed to rep-

resent regularity and diversity of driver control styles. This motion primitive library

is integrated as a component in the human motion planning layer of our simulation
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Figure 6.8: For motion reproduction, the motion primitive selector chooses the
appropriate primitives from the motion library based on the desired driving task
specifications and then sends the resulting parameters to the inverse kinematics
(IK) solver. The result of the IK solver is joint motion trajectories.

framework (Section 6.2), to plan the appropriate driver control motions required to

achieve the desired steering wheel motion (for lateral control) and throttle/brake

pedal motion (for longitudinal control).

Fig. 6.8 illustrates the motion reproduction using motion primitive library. For

steering task, we use a classification decision tree to abstract the decision-making

process of selecting the most appropriate motion primitive in the library which

fits the desired steering task, as defined from the driving task reasoning layer. The

steering handling style clusters are used as classes for the entire motion data segment

set and each observation has two labels: (1) associated driving maneuver behavior,

and (2) associated driving context. The dataset is then used to train the decision

tree model using the two labels as predictors. Therefore, the resulting decision

tree takes in the current driving context (i.e., highway, in-city, country-road) and

desired driving maneuver behavior (i.e. discrete turn, etc.) and predicts the steering

handling style, and as a result, driver control motion primitive most suited to it.

Once the driver control motion primitive is determined and the parameters of the
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desired steering task (such as the desired angle trajectory) is passed from the driving

task reasoning layer, the 3D hand and swivel angle trajectory is computed.

For pedal pressing task, we use a simplified finite state machine with two

states: pressing throttle and pressing brake pedal. The switching actions are based

on the sign of the desired pedal position (positive - throttle/accelerating; nega-

tive - brake/decelerating). For a given switching action, the corresponding pedal

switching motion primitive is selected from the motion library. Then using the mo-

tion primitive, a 3D foot trajectory is computed by the DMP motion reproduction

framework.

The resulting 3D trajectories are then fed through an inverse kinematics solver

to determine the actual arm and leg joint trajectories which will be passed to the

human motion control layer for torque generation at the joints for actuation.

6.4 Results

This section presents our results from the process of (1) motion segment clustering,

(2) driver control style analysis, and (3) the resulting driver control motion primitive

library. We also demonstrate the implementation of the dominant driver behavior

— the most frequently used whole-body coordination in vehicle maneuver — using

the learned motion primitives.

6.4.1 Clustering of Motion Data Segments

Fig. 6.9 shows the results of the clustering process. The agglomerative hierarchical

clustering method was applied in two stages on the steering motion data segments.

In each stage, the optimal number of clusters was obtained using a clustering quality

index (CQI). In Stage 1 clustering, the discriminating behavior was whether the
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Figure 6.9: Clustering result showing the characteristic steering handling styles in
the motion data. Four clusters were retrieved: standard pose (SP), push-pull (PP),
hand-over-hand, and combination (COMB).

driver’s hands remained within their respective halves of the steering wheel. In

cluster A, we observed that both hands remained within their respective halves

of the steering wheel throughout the motion segment. Whereas in cluster B, the

driver’s hands reached across the respective steering wheel half to pull the wheel.

In Stage 2, we applied clustering method to the two resulting clusters (A and

B) to obtain further distinctive characteristics within the groups. We obtained four

sub-clusters as shown in Fig. 6.9. In cluster A1, we observed that both hands held

onto the steering wheel throughout the motion segment. We referred to this style as

the standard pose (SP). In cluster A2, the dominant motion was a push-pull where

both right and left hands slide along the steering wheel to make a turn. We referred

to this style as push-pull (PP).

We observed that the dominant behavior in B1 was a hand-crossing motion,

where the right or left hand breaks contact with wheel and reaches across to the

other side of the wheel to pull it. We referred to this style as hand-over-hand (HOH).

No distinct behavior was observed in B2, the motions related to a combination of
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hand-over-hand, one-hand maneuvers, standard pose maneuvers, etc. We referred

to this as COMB.

6.4.2 Driver Control Style Analysis

Fig. 6.10 shows the distribution of steering handling styles obtained from the cluster-

ing process. We compare the extracted handling style clusters across drivers, driving

scenarios and driving maneuver behaviors and discuss their correlations. The styles

are as follows:

• Standard pose (SP) - driver keeps both hands fixed to steering wheel during

maneuver

• Push-Pull (PP) - driver sequentially rotates the steering wheel by sliding it

from one hand to another

• Hand-over-Hand (HOH) - driver crosses one hand over the other to achieve a

wide steering angle

• Combination (COMB) - driver combines HOH, PP, SP and other maneuvers

to achieve a wide steering motion range

Fig. 6.10(a) shows the handling style distribution across the participants. For

each participant, the plot represents the frequency of occurrence of each maneuver

style. Across participants, we observed that the most dominant maneuver style is the

standard pose (SP). Every participant adopts this style with the highest frequency,

about half of all motion segments. All the participants also demonstrated the PP

and HOH styles, however, in varying amounts. Almost all participants adopt the

full set of styles (except Participant 1).
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(a) (b)

(c) (d)

Figure 6.10: Analysis results from the steering handling style clustering. (a) shows
the distribution of maneuver styles across respective participants, (b) shows the
distribution of maneuver styles across driving contexts; (c) shows the distribution of
maneuver styles across the steering maneuver behavior classes - Discrete turns (DT),
Lane-keeping (curved road) (LK-CR), Lane-keeping (straight road) (LK-SR); and
(d) shows the distribution of steering maneuver behaviors across driving contexts.
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Fig. 6.10(b) shows the distribution of handling styles across driving contexts

(i.e. country road, highway, and in-city driving). For each driving context, the plot

shows the percentage of usage of each handling style. The percentage is computed

by normalizing the frequency of each handling style against the total number of

handling styles for each driving context. We can observe that in highway driving,

over 90% of the handling styles adopted is either SP or PP. This is expected as

drivers generally maintain both hands on the steering wheel or gently slide the wheel

to make turns when driving at higher speeds (which is characteristic of highway

driving). We also observe a near equal distribution between HOH and COMB style

for both country road and in-city driving.

Fig. 6.10(c) shows a distribution of handling styles across steering maneuver

behaviors. The plot shows that for making discrete turns (DT), only HOH, COMB

and PP are adopted. Participant drivers didn’t adopt SP for discrete turns. This

is expected as, in discrete turns, the steering wheel is turned to over 200◦, which is

kinematically infeasible to perform with both hands fixed on the steering wheel. The

dominant handling style in discrete turns is HOH. We can observe that the dominant

style in lane-keep (curved-road) (LK-CR) is PP. That is, drivers slide the steering

wheel along their hands (or adjust their grasping point) to make wider turns which

may be discomforting with SP. In this plot, we also see that for lane-keep (straight

road) (LK-SR), SP dominates almost entirely with over 90%.

Finally, Fig. 6.10(d) shows the distribution of steering maneuver behaviors across

driving contexts. For each driving scenario, we plot the percentage usage of each

maneuver behavior. We can observe that lane-keeping (straight road) (LK-SR) and

lane-keeping (curved road) (LK-CR) steering behaviors dominate highway driving

almost entirely, while discrete turn (DT) is most prominent in city driving compared

to other contexts. This is expected as drivers rarely perform discrete turns on the
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highway but do so more frequently while driving within the city.

Based on the maneuver style classification analysis shown in Fig. 6.10, we de-

signed a high-level motion primitive selector to choose the most appropriate ma-

neuver style that fits the driving scenario and current steering maneuver behavior

required. The selector was modelled as a classification decision tree.

6.4.3 Driver Control Motion Primitives

This section presents our results from analyzing individual maneuver styles obtained

from the clustering process. The regularity and variability of the respective styles

are analyzed and modeled as maneuver motion primitives for both steering and

pedal pressing tasks.

Steering Handling Motion Primitives

For the steering maneuver styles, we analyzed the characteristic features of the stan-

dard pose (SP), hand-over-hand (HOH), push-pull (PP) and combination (COMB)

that distinguish the styles among participants, and then learn the diverse maneuver

styles as maneuver motion primitives.

Standard Pose (SP): Motions in SP style are single-phase constrained motions,

with both hands remaining fixed to the steering wheel throughout the maneuver.

Fig. 6.11 shows the distribution of swivel angle (mean and S.D.) across all partici-

pants for both the left and right arms. To investigate the inter-participant differences

in swivel angle during driving, we performed a multiple pair-wise comparison anal-

ysis (using Tukey’s honestly significant difference criterion). We found that there

is significant difference in swivel angle range across participants (p < 0.001). This

suggests that drivers may employ a consistently distinct arm posture while driving.
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Figure 6.11: Multiple comparison analysis of arm swivel angle across participants.
This plot shows the mean and standard deviation of the swivel angle for each par-
ticipant’s left (top) and right (bottom) arms performing the standard pose handling
style. Participant data is grouped into clusters, L1-6 and R1-6, based on their pair-
wise similarity.

Note that some participant’s means were not significantly different. We further clus-

tered participants based on their pair-wise comparison results (i.e. participants with

significantly different means are placed in different clusters while participants with

insignificant differences are placed in same cluster). This resulted in six participant

clusters labelled L1-6 and R1-6 in Fig. 6.11. An inverse symmetry between the left

and right arm posture was also observed during this steering handling style.

Next, we evaluate the functional coupling between the swivel angle and the

steering wheel across the defined participant clusters (see Fig. 6.12). We fit a

multivariate Gaussian model to the data in each participant clusters and observed

that the steering wheel variance is much larger than the swivel angle variance across

groups. Therefore, for each cluster, we learn a standard pose motion primitive as

the distribution of the swivel angle conditioned on a desired steering wheel angle.
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Figure 6.12: Functional coupling between steering wheel angle and swivel angle
for left arm using a multivariate Gaussian model. The exploded graph shows the
Gaussian model fit to the cluster L1 data. Using this model, we can obtain the
swivel angle for a given steering wheel angle as the expected value, E, of the swivel
angle, conditioned by the given steering wheel angle, along with the variance.

We investigated the factors that influence the driver arm posture. We performed

a correlation analysis on two candidate factors: participant arm length and torso-to-

steering wheel distance in seated position. The parameters are measured as shown

in Fig. 6.13(b). Table 6.2 shows the Pearson correlation coefficient of both arm

length (L) and torso-to-steering distance (C) against the swivel angle. We observe

a moderate correlation across arms (p < 0.001). In Fig. 6.13(a), we plot the torso-

to-steering distance (C) against arm length (L) for the left arm only, and observe

a positive correlation (r = 0.6510, p < 0.001). This can be used in determining the

swivel angle cluster in our simulation: based on the arm length of the driver model

and the seating posture (which defines C), we determine what swivel angle cluster

is best suited, by computing the shortest distance to the cluster center (indicated

using ‘X’ in Fig. 6.13(a)).
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Figure 6.13: Correlation between arm length and torso-to-steering distance, factors
that influence the driver’s swivel angle during SP maneuver. (a) shows the plot of
C against L with the swivel angle groups indicated. (b) shows how the parameters
are measured.

Metric Left Arm Right Arm

Torso-to-steering wheel distance (C) 0.4750 -0.5706
Arm length (L) 0.4179 -0.4439

Table 6.2: Correlation analysis of torso-to-steering wheel distance and arm length
against swivel angle

Hand-over-Hand (HOH): We observed two-phase bi-manual motion coordina-

tion from the analysis of the hand-over-hand demonstrations. The first phase is the

turn phase, when the driver initiates a turn (either left or right); the second phase

is the return phase, when a driver regularizes the steering wheel to 0◦ position after

the turn. Both turn and return phases are symmetrical involving the same actions,

but with opposite hands. Fig. 6.14 shows a graphical description of the turn phase

alone with the actions involved in the phase. For each turn, we define a turning hand

and a returning hand. The turning hand in HOH is the hand that pulls the steering

wheel in the respective direction during the turning phase. When turning to the
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left, the right hand is defined as the turning hand and vice versa. Each phase can

be further decomposed into four actions: turn w/hold (S1), reach-A (S2), reach-B

(S3) and compensate (S4) which take place sequentially (Fig. 6.14 (middle)). The

figure illustrates the turn phase of a discrete turn to the left; the turning hand is

the right hand. In S1, the right hand pushes the steering wheel to the left, while

keeping contact with it. The left hand is inactive in this action. Then in S2, the

active left hand reaches from below the right hand to a point above it to continue

the left steering motion. In S3, the right hand reaches from its current position on

the left side of the steering wheel back to the right side to stabilize the steering

control. In S4, both hands adjust the steering wheel to achieve the desired motion.

Fig. 6.14 (top) shows the start and end points of the reaching motion (S2 & S3)

as well as the trajectory for a representative participant. This is an unconstrained

motion, hence as discussed in section 6.3, GMM/GMR and DMP are applied to

extract and model the averaged hand trajectories from start to end point along

with their variance as a motion primitive.

Fig. 6.14 (bottom-left) shows the plot of coupling between the swivel angle and

the steering wheel angle during the constrained motion action (S1). We extract the

average trajectory from multiple demonstrations using GMM/GMR and model this

as a motion primitive. We also analyzed the temporal sequence of the maneuver

that is shown in Fig. 6.14 (bottom-right). We observed a consistent overlap between

the S1 and S2. This temporal sequence is used as we reproduce the coordinated bi-

manual motion on our digital human model.

Push-Pull (PP): For the push-pull handling style (PP), we also observed a two-

phase bi-manual coordinated motion with a combination of constrained and uncon-

strained motions by both hands. Fig. 6.15 represents the turn phase of the maneuver
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Figure 6.14: Illustration of the turn phase of the hand-over-hand (HOH) maneuver
style. (Top): Trajectory for reaching motion action (S2 & S3) by both left and right
hands. (Middle): Description of the phase actions: turn w/hold (S1), reach - A
(S2), reach - B (S3), and compensate (S4). Dashed lines represent unconstrained
hand motion while solid lines represent constrained hand motion. (Bottom-Left):
Coupling between swivel angle and steering wheel angle during turn w/hold action.
(Bottom-Right): Temporal sequence of the HOH maneuver.
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which includes three sub-motions: push (by the turning hand) along with reaching of

the returning hand, pull (by the returning hand) along with reaching of the turning

hand and then compensation on steering wheel angle. The 3D plot at the bottom

of Fig. 6.15 shows the hand trajectory of a single demonstration for one participant

while under a PP handling style. As opposed to HOH, we observe that both hands

are active during each sub-motion.

In Fig. 6.15, the steering wheel motion is to the right. In the push sub-motion,

the left hand pushes the steering wheel along an arc, while the right hand moves

from its current position at the lower half of the steering wheel upward to grasp the

steering wheel for a pull. The left hand motion is modeled as a constrained motion

(standard pose, SP) because the hand remains fixed on the wheel as it moves.

The right hand motion, which is a reaching (unconstrained) motion is modeled and

learned using GMM/GMR and DMP as in Fig. 6.14. The compensate motion is

modeled as A standard pose (SP). The second phase of the motion, return phase, is

identical to the turning phase with the hands switched (i.e. right hand pulls steering

wheel while left hand moves in reaching motion). The push-pull sequence may occur

multiple times depending on the desired steering angle motion.

Pedal Control Motion Primitives

For the pedal control, we obtained a motion primitive for each foot switching mo-

tion in the pedal task (i.e. brake-to-throttle motion and throttle-to-brake motion).

Specifically, we applied GMM/GMR to extract the averaged trajectory from each of

the demonstration data grouped together. Fig. 6.16 shows a plot overlaying the raw

time-aligned foot tip trajectories for both switching motions (black dashed lines),

the derived mixture model (green ellipses) and the averaged trajectory (blue solid

line). The averaged trajectories for both switching motions are then encoded as
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Figure 6.15: Illustration of the push-pull (PP) handling style. This shows the turn
phase of the motion which includes 3 motions: push, pull and compensate. Dashed
lines represent unconstrained (reaching) hand motion while solid lines represent
constrained hand motion.

a generalizable motion primitive using the DMP framework, as described in Sec-

tion 6.3.

6.4.4 Implementation on HuMADS

The driver control motion primitives for both steering handling and pedal control

modeled above are stored in the motion primitive library and are used in the human

motion planning module of the HuMADS. We demonstrate our implementation on

the HuMADS given a pre-defined driving task (steering and pedal motion). The

result of the human motion planning module is the desired whole-body joint kine-

matics motion best suited to achieve the driving task. Fig. 6.17 shows snapshots

of the simulation at different steering and pedal actions. A demonstration video is

accessible online 2.

2Demonstration video: https://youtu.be/LElY1ISa9uk
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Figure 6.16: Modeling of foot tip motion in foot switching task for pedal activation.
The black dashed lines are the raw time-aligned and normalized foot trajectory
motions (x,y,z). The green ellipses are the mixture models used to fit the data. The
solid blue line is the generalized trajectory derived using GMR. (Left): brake-to-
throttle motion (Right): throttle-to-brake motion.

Figure 6.17: Snapshots of the implementation of our motion planning framework on
the HuMADS
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6.5 Discussion

Existing studies and digital human driver models have been limited to only the

standard pose handling style [100, 101], perhaps due to the difficulty of modeling

and planning other more complex steering handling styles in simulation. In this

chapter, we presented an approach that extracts, analyzes and models these complex

handling styles from human demonstrations. This framework will enable automotive

researchers to perform more comprehensive analyses on the usability of vehicle active

safety and driver-assistance technologies.

Our study reveals that human drivers tend to employ a consistent set of steering

handling styles while controlling a vehicle, due to the regularity in developed human

motor skills. These handling styles may have been learned while training to drive. In

this work, we presented the feasibility of using machine learning methods to analyze

and model the complex bimanual motion coordination involved in steering handling

from human demonstration data. This is a crucial step beyond existing studies [159]

which only investigate the steering handling styles through experimentation.

The results of our clustering on steering handling styles agree well with existing

experimental studies [159] as well as guidelines defined by regulatory agencies such

as the National Highway Traffic Safety Administration (NHTSA) [160]. According

to NTSHA, the recommended steering handling style for large or discrete turns is

the hand-to-hand (or push-pull) steering style. However, in our study, we found the

dominant handling style for discrete turns to be the hand-over-hand (HOH) across

our participants. The push-pull (PP) style is recommended because of its safety

advantage over the hand-over-hand (HOH) specifically in the event of an air bag

release. In such cases, the driver’s hands may be over the steering wheel which

could lead to injury, whereas, with push-pull, the hands remain at their respective
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halves of the steering wheel throughout the driving task. Our simulation framework

may enable automotive researchers to perform further predictive analysis on the

impact of driver handling styles and steering wheel design on driver safety and

workload during normal driving and safety-critical scenarios.

This work may also find relevance in human factors and ergonomics research

in evaluating vehicle cockpit design. Our analysis of the standard handling pose

(SP) shows that there is a positive correlation between the driver’s arm swivel

angle (which describes the arm posture) and factors such as their arm length and

distance to steering wheel. While existing studies perform posture prediction and

driver reachability in static or kinematics-based simulations [161], our framework

can further enable dynamic evaluation of driver motions and hand reachability.

Recent studies in autonomous vehicles research have highlighted the need for

smooth control transition mechanisms when the human operator needs to intervene

either to a transition request or to avert an automation failure scenario [162,163]. To

better design control interfaces and transition modalities, our approach to rendering

realistic steering handling behaviors and our simulation framework can serve as a

simulation testbed for automotive engineers to gain better understanding of impact

of haptic interactions on transition time and stability.

From an imitation learning perspective, our work presents a data-processing

pipeline for dealing with unstructured and heterogeneous human demonstration

data. The question of what to imitate is crucial in defining the accurate feature

space in which to learn the motion structure [152, 164]. We demonstrate how to

learn both in the cartesian space as well as in the posture space (using the swivel

angle). This work may ignite further investigation into learning and modeling other

complex human manipulation tasks for different applications across computer ani-

mation and robotics fields.
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It is also important to acknowledge the limitations of the study. Only a small

sample size was used, which may not accurately represent the whole population.

Therefore, there are concerns regarding the generalizability of our extracted driver

control styles. However, we found a good correlation between our clustering results

and those from studies with larger samples, despite the small sample size. This

further suggests that humans exhibit similar style and behavior in driving. Further-

more, with the current version of the HuMADS framework, simulating the complex

steering handling styles is limited. We experienced difficulties in modeling realistic

forces during the making and breaking of contact between the driver model’s hands

and the steering wheel. Further physical contact modeling is required in future work

to effectively reproduce arbitrary steering handling motions in simulation.

6.6 Chapter Summary

This chapter proposed a data-driven approach to model and render realistic driver

control motions on an integrated human driver and vehicle model for physical

human-vehicle interaction research. In particular, we proposed a systematic ma-

chine learning approach to extract a set of characteristic driver control styles from

human demonstration. We then analyzed the driver control styles to determine

the correlation between control styles, driving contexts and maneuver behaviors.

We further used imitation learning methods (GMM/GMR and DMP) to model the

handling styles as motion primitives for the human motion planning in simulation.

Using the proposed approach, we learned the motion coordination for both steering

handling and pedal activation motion from human driving data and demonstrated

its reproducibility on an integrated cognitive-physical simulation framework (Hu-

MADS). This work demonstrates the feasibility of our approach for rendering realis-
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tic driving behavior on digital human driver models in simulation. This is significant

as it extends the ability of automotive researchers to understand driver-vehicle inter-

action through more comprehensive simulations. Future work is needed to address

the existing limitations in model generalization and simulation rendering.
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Chapter 7

Concluding Remarks

7.1 Summary of Contributions

Mobility vehicles (e.g. passenger vehicles, wheelchairs, and mobile telepresence

robots) are likely to rely on shared autonomy for the foreseeable future until au-

tonomous navigation technology is well developed and societal perceptions change

to support it. Consequently, it is crucial to continue improving the design of

shared autonomy-based driving assistance systems. The versatility of shared au-

tonomy has been demonstrated by its application across several mobility domains

including unmanned aerial vehicles (UAVs) [50, 52, 73], unmanned ground vehicles

(UGVs) [49, 165, 166] and passenger vehicles [7, 10, 51] to provide navigation guid-

ance (e.g. path tracking, collision avoidance, etc.) to humans operating single or

multiple vehicles using diverse interface modalities (e.g. visual, haptic, auditory). In

particular, haptic shared autonomy systems have been shown to improve task per-

formance [10] and enhance drivers’ situational awareness while keeping the driver in

the loop as final control authority [7, 35].

Yet, there are still a number of challenges in shared autonomy systems, including
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control authority arbitration and control conflict caused by misalignment between

the human and autonomous agent, which could result in user dissatisfaction and

system abandonment [7]. Additionally, while SA has been applied across various

domains, it has largely been focused on providing navigation assistance in static

environments, with little attention paid to the more general case of providing nav-

igation assistance in dynamic, human-populated settings. Human-centered design

principles have been explored as a means to address the limitations of SA as well as

to improve user satisfaction and acceptance [1]. The dissertation focuses on under-

standing and improving the design of human-centered shared autonomy systems by

providing scientific contributions to the following four research questions:

1. What are the implications of anticipation uncertainty on aligned intent and

how can they be mitigated in force-based interactions?

System transparency is a crucial component of the human-centered design of

human-machine systems. However, limited work has explored the impact of

anticipation uncertainty on human motor control in force-based interactions.

This is particularly relevant for haptic (kinesthetic) shared autonomy systems,

where a haptic-enabled control device serves as the shared control interface be-

tween the human and the autonomous agent as described in Chapters 1 and 2.

Chapter 3 of this dissertation presents findings from a simple pushing exper-

iment designed and conducted to investigate the effect of force anticipation

uncertainty and transparency on human motor control. Our findings indicate

that task anticipation, including expected workload, influences human control

strategy, particularly during force-based interactions. Particularly, our results

revealed that the first peak of pushing force correlated with anticipated force

workload. This accords with previous studies that humans rely on internal

predictive models for motor control [56], which indicates that with properly
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calibrated internal models, humans can accurately anticipate and predict force

interactions. Furthermore, participants tended to perform more slowly and

with lower forces when Heavy trials were preceded by Light trials. These find-

ings reveal that force anticipation affects task performance in motion and force

control, as well as how the workload of preceding tasks influences performance

on the current task. These considerations are crucial in understanding the

pivotal role of transparency and anticipation in force-based interaction, such

as in haptic shared autonomy.

2. How to design human-centered socially-aware navigation assistance with im-

proved system transparency?

Navigation assistance in human-populated environments is crucial to ensuring

the usability of mobile telepresence robots and the satisfaction and comfort of

smart wheelchair users. Existing research on shared autonomy, however, has

been confined to static environments or single moving pedestrian avoidance

scenarios [13,49] as discussed in Chapter 2. Chapter 4 of this dissertation ad-

dresses two questions that arise in designing intuitive and transparent shared

autonomy systems that support socially aware navigation. The first question

is: “How to plan and generate safe, socially-aware navigation paths within dy-

namic human environments?” I presented SA-RVO (Socially-Aware Reciprocal

Velocity Obstacles) which is an extension of the original reciprocal velocity ob-

stacle [86] approach for dynamic obstacle avoidance. By incorporating social

proxemics constraints into the velocity obstacle formulation, SA-RVO achieves

safe, non-intrusive navigation paths around people. Further, we modified the

computation for optimal velocity by taking into account additional factors

for navigation assistance, including (i) selecting the velocity that is as close
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as possible to the operator’s command velocity vector, (ii) penalizing large

changes in consecutive optimal velocities to facilitate smooth guidance cues

for the operator, and (iii) compensating for goal-directed velocities.

The second question is: “Which interaction modalities work best to com-

municate the generated guidance cues to the human operator in an intuitive

and transparent manner?” In our study, we incorporated visual and haptic

feedback channels into both single-modal and multimodal approaches. Specif-

ically, two visual guidance designs and a haptic force rendering were proposed.

A user study with fifteen participants was conducted to compare multimodal

assistance to visual or haptic assistance alone in a shared navigation task. The

key findings are that participants preferred multimodal assistance with visual

guidance trajectory over haptic and visual modalities alone. Also, we found

that despite no significant differences in navigation safety, visual cues signifi-

cantly increased participants’ understanding of intent and level of cooperation

over haptic guidance alone.

3. How to achieve assistance adaptation to distinct driving objectives/styles and

how would this impact driving performance and human-automation coopera-

tion?

Autonomy adaptation is a crucial element of human-centered autonomous sys-

tems for the reason that it allows autonomous agents to adjust their control

level as needed to best align with human states or behaviors, tasks and/or envi-

ronmental conditions [1,14]. Existing research has examined autonomy adap-

tation to risk, level of trust and confidence [16,43], task and skill level [17,131].

Chapter 5 of this dissertation examines autonomy adaptation in the context

of providing navigation assistance to remote operators of mobile telepresence
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robots in human-populated environments. The focus of this work is twofold:

(i) How to design socially-aware navigation assistance that is adaptive to user

driving objectives/styles?, (ii) Will such an adaptive system impact driving

performance, level of cooperation and user preference, and if so, by how much?

By extending the SA-RVO approach presented in Chapter 4, I proposed two

navigation assistance policies that correspond to the cautious and assertive

driving behaviors studied in driver behavior literature [134]. An exploratory

user study was conducted to examine the effects of adaptive assistance on

driving performance, cooperation, and user preferences in a shared navigation

task. Results showed that, even though assistance adaptation did not signifi-

cantly affect driving performance, participants prefer safety-aligned assistance

modes under both cautious and assertive driving conditions.

4. How to model and render complex human driver behavior in simulation to

advance our understanding of human driver-vehicle interaction and improve

the design of driver assistance systems?

Shared driving has become more complex and disruptive as today’s vehicles

become more autonomous, affecting how drivers interact, adapt, and respond

to vehicle systems. For assistive driving systems to be safe and comfortable, we

must understand human driving behavior. Chapter 2 discussed how tradition-

ally, ADS driver interactions have been studied using simulations or real-world

human driver experiments, which have limited potential to evaluate dynamic

interactions objectively or control workload on the human driver. Chapter 6

presented a new method for modeling and simulating human driver control

behavior in ADS-driver interactions. We first outlined our novel simulation

framework, Human Model-based Active Driving System (HuMADS) that in-
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tegrates a whole-body human driver model and a vehicle dynamics model

to provide a high-fidelity simulation of driver-vehicle interaction. Following

this, we presented a systematic machine learning approach to identify, ana-

lyze, and model characteristic driving styles (such as steering handling and

brake/throttle switching styles) from human demonstrations. Our analysis of

the steering handling styles of human drivers, which agrees well with existing

experimental studies [159], revealed that human drivers tend to control their

vehicles with a consistent set of handling styles. Using this information, we

determined a correlation between steering handling styles and driving contexts

as well as maneuver behaviors. Additionally, we used a combination of imita-

tion learning methods (GMM/GMR and DMP) to identify the regularity and

variability of the steering handling and pedal switch styles across groups and

modeled them as motion primitives that can be used for re-creating motion

in simulations. Our work illustrates the feasibility of our method for simulat-

ing realistic driving behavior on digital human driver models. It is important

because it opens up a novel avenue for automotive researchers to simulate real-

istic driving behavior and analyze the design and usability of advanced driver

assistance systems based on it [28].

7.2 Limitations

1. Experiment sample population: The sample population for the experi-

ments presented in this dissertation were primarily drawn from the WPI stu-

dent population. As a result, the majority of participants were young adults

(ages 18-29). Studies have identified age-related differences in driver behavior

with and without interaction with driver assistance systems. In their study,
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Bao et al. [140] discovered that younger drivers tend to engage in more aggres-

sive driving behaviors than middle-aged and older drivers. Hong et al. [139]

found that response time and driving skills generally diminish with age. More-

over, the level of trust and acceptance of driving assistance systems have been

shown to vary with the age of the driver [167,168]. Consequently, we acknowl-

edge that the lack of age-related diversity in our experiments may limit the

generalizability of our findings.

2. Influence of human-to-robot trust level and task difficulty: The shared

autonomy experiments in Chapters 4 and 5 did not evaluate the effects of

human-to-robot trust on operator perceptions and performance. Research

has shown that human-robot trust impacts joint task performance, with low

human trust degrading task performance [129,169]. On the other hand, higher

levels of trust increase overall task performance and user acceptance, and

reduce operator workloads [16]. Trust, as a dynamic attribute, is continuously

calibrated based on joint interaction with the robot partner and has also been

shown to depend on the robot partner’s past and current performance [16,169]

as well as the transparency of the interface [170]. It is important to measure

and evaluate trust levels across modalities and explore the interactions with

navigation safety and team cooperation in future studies. Additionally, the

level of task difficulty may have affected our ability to evaluate the impact

of control conditions in Chapter 4. Kuiper et al. [69] found that navigation

assistance systems are more effective when the task is more difficult. However,

in our final questionnaire, participants reported high confidence in their skill

to complete the task without navigation assistance. Another study, by Lee et

al. [129], noted that people use autonomous systems based on the difference

between their trust in the system and their self-confidence in completing the
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task. This may imply that, on average, participants did not rely on navigation

assistance in the task.

3. Haptic feedback rendering: In the shared autonomy experiments described

in Chapters 4 and 5, some participants commented that the haptic feedback

cues changed rapidly and they weren’t sure why or what the guidance was

trying to achieve. This may be due to the dynamic nature of the navigation

task. When operating in dense areas with many pedestrians in close proximity

to the robot, there can be rapid consecutive changes in the optimal velocity

heading computed by SA-RVO (see Section 4.2.1). In order to reduce jerky

motions and distracting haptic force vibrations, we penalized consecutive ve-

locity changes using a smoothness cost in the SA-RVO formulation. To further

mitigate this effect, additional damping effects may be required in the haptic

force rendering. Additionally, a fixed haptic gain was used throughout the

experiments. The haptic gain parameter was set and calibrated through trial

and tested in a pilot study. However, haptic force magnitude was perceived

differently by participants during the main experiment. Some participants de-

scribed the haptic force as too strong and overwhelming, yet others considered

it to be mild and controllable. Previous studies have considered the influence

of haptic gains on task performance and human-machine cooperation [171].

There is a need to further explore haptic gain tuning and adaptation for more

comfortable haptic shared autonomy systems.

4. Simulation-based vs. real-world experiments: The discrepancy between

simulation-based and real-world experiments must be acknowledged. Simu-

lated experiments have been used extensively in the literature [8,16,41,52] to

study human-machine interactions in driving and navigation tasks since they
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allow for more control of experimental conditions, relax human safety con-

cerns, and still provide a method of investigating human-machine interactions

effectively. However, we recognize the limitations of simulation-based studies

in robustly validating our hypotheses. For instance, in the shared autonomy

experiments in Chapter 4 and 5, one may expect that participants may con-

trol the robot differently while driving around real pedestrians, perhaps with a

higher sense of safety and caution than when driving virtually around virtual

pedestrians. Additionally, the driving data collection in Chapter 6 was per-

formed on a fixed-base driving simulator in a lab setting. We agree that driver

control motions may vary to accommodate the dynamic forces present while

driving in a real vehicle, and hence, poses a limitation to the generalization

of our learned models. However, it should be noted that the modeling and

learning pipeline presented would be applicable irrespective of experimental

protocol.

5. Limited modeling capabilities on HuMADS framework: In Chapter 6,

the reproduction and rendering of the complex steering handling styles in

simulation is limited by the current version of our HuMADS framework [2].

We experienced difficulties in modeling realistic forces during the making and

breaking of contact between the driver model’s hands and the steering wheel

needed to achieve the complex hand-over-hand (HOH) or push-pull (PP) steer-

ing handling styles analyzed and modeled from human demonstration data.

Further work is required in physical contact modeling and control in the Open-

Sim simulator [3] to enable us to effectively reproduce arbitrary steering han-

dling motions in simulation.
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7.3 Future Research Directions

The contributions presented in this dissertation strived to take a human-centered

approach to design of haptic shared autonomy systems for assisted driving systems.

Our findings offer a plethora of research directions for further addressing the chal-

lenges of shared autonomy, as you can see in this section.

1. Learning social navigation styles from human demonstration: The

adaptive SocNavAssist approach presented in Chapter 5 used navigation ob-

jective functions to facilitate the modeling of different social navigation as-

sistance styles, but the cost weights were custom-crafted and matched to the

desired behaviors (i.e., cautious and assertive). This work could be extended

by using a learning-based approach to automatically determine the navigation

cost weights based on expert human demonstrations of various behaviors. Okal

et al [135] demonstrated this approach for autonomous robot navigation using

Bayesian inverse reinforcement learning to learn a predefined set of social cost

behavior weights from human demonstration. It would also be interesting to

take an unsupervised approach to identify and extract various driving styles

from expert demonstrations by using the machine learning pipeline presented

in Chapter 6. By doing this, we may be able to retrieve more nuanced social

navigation behaviors. Additionally, in future work, this study should be per-

formed in a real robot navigation scenario with real people to ensure realistic

behaviors and perceptions as described in Section 7.2.

2. Socially-aware navigation assistance for smart, powered wheelchairs:

This dissertation examined socially-aware navigation assistance in the context

of telepresence robot navigation in remote driving situations. It would be

worthwhile to adapt the proposed SocNavAssist approach to navigation as-
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sistance for smart, powered wheelchairs in future investigations. In existing

studies, wheelchair users with motor impairment have been shown to have

difficulty driving in busy environments (e.g. airports, train stations, side-

walks, etc.) [172]. However, research on wheelchair navigation assistance has

been focused mostly on collision avoidance tasks in static environments such

as passing through doors [61, 80, 173]. Recently, a few studies [13, 89] have

proposed semi-autonomous navigation methods for social navigation, but only

considered scenarios with limited social interaction (e.g., narrow corridor cross-

ing with a single person). Adapting the SocNavAssist approach proposed in

Chapters 4 and 5 to assist wheelchair users in social navigation is a promising

direction for future work. This would require exploring more compatible con-

trol and feedback interfaces for haptic and visual communication between the

operator and the autonomous agent.

3. Learning from control conflict: The concept of control conflict was intro-

duced in Chapter 2, which arises from a lack of intent alignment or control

strategy between the human and the autonomous agent. In general, control

conflicts are undesirable as they result in greater interaction forces by hu-

mans, which lowers user satisfaction and acceptance. What if the autonomous

agent used conflict scenarios as interactive feedback to update its model of

the user and their preferences in the task? There is a body of literature on

learning from demonstrations that deal with interactive learning through feed-

back [174–176]. The mismatch in control commands can serve as continuous

corrective feedback for online agent adaptation through incremental interactive

learning. It could be a promising direction for improving the personalization

and acceptance of haptic shared autonomy systems.
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4. Extending HuMADS: The HuMADS framework presented in Chapter 6

provides an effective tool for simulating driver-ADS interaction in various sce-

narios. In our recent work [28], we explored how HuMADS can be used to

evaluate the impact of different haptic-based ADS systems (with respect to

presence and type of control conflict) on driving task performance and driver

workloads. We envision extending this work in the future to evaluate er-

gonomic designs of interiors, to include muscle elements in HuMADS models

to further study driver physical workload, and evaluate and validate active

safety systems (e.g., frontal collision avoidance, steering handling, traction

control, etc.) in simulation. Using this framework, we believe there is sig-

nificant potential for improving future ADS design for safer driver assistance

systems.

7.4 Broader Impact

Human mobility is fundamental to our everyday lives. Whether it is within our

own home, on a wheelchair across a city street, commuting to work in a passenger

vehicle, or traveling overseas, our ability to move from one place to another enriches

our lives and enables society to function. In modern society, much of our mobility is

mediated by machines and technology that not only make our transportation faster

and more efficient, but also allow people with physical impairment to travel inde-

pendently. Additionally, as outlined in Chapter 4, major advances in robot sensing

capabilities and declining computing costs are driving the adoption of autonomous

and intelligent systems in mobility vehicles. However, care must be taken to ensure

that these systems are designed in a safe, trustworthy and reliable manner. In this

dissertation, I primarily consider how assisted driving systems can be developed
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from a human-centered approach so that they limit the adverse effects (e.g. con-

trol conflict), while improving the benefits (reduced workload and improved driving

performance).

One primary area of concern is with safety. Safety is one of the most important

design goals for any mobility system. Yet, a study by the United States National

Highway Traffic Safety Administration (NTSHA) showed that in passenger vehicles,

about 94% of accidents result from human error rather than from vehicle failure

or system errors [177]. Many factors such as driver state (distractions, drowsiness,

intoxication, fatigue), environmental conditions or a simple misjudgment can con-

tribute to driving errors that compromise safety. This also holds true for other

mobility systems. A key objective of intelligent assisted driving systems is to en-

hance overall driving safety by complementing the capabilities of the human driver.

As described in Chapter 2, shared autonomy systems have been shown to not only

improve driving performance (e.g. reduced collisions), but also reduce workload for

the human [7]. However, as vehicles adopt more intelligent and autonomous features

now and in the future, it is crucial to design these systems in a way that is human-

compatible, ensuring understanding and cooperation between the humans and the

autonomous system.

The findings of this dissertation suggest that multimodal shared autonomy sys-

tems (particularly with visual information) improve users’ understanding of au-

tonomous agents’ intent and subsequently increase their satisfaction and preference

for these systems. I believe that explainability, transparency and adaptation in au-

tonomous and intelligent systems are crucial to ensure adequate human trust and

cooperation is achieved, which would further ensure safety. In addition, the ap-

proach for human driver modeling and simulation proposed in this dissertation will

offer automotive researchers a new avenue to perform model-based analyses on the
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safety and usability of advanced driver assistance systems of the future.
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