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Notation

X Multinormal data set as a M ×N matrix

µX Mean of data set X

Σ Population covariance

ΣXX Sample covariance from data set X

Σt Optimal population covariance from convex solver

Σte Optimal population covariance from a closed form solution

Σ−1 Population information matrix

Σ−1
XX Sample information matrix from data set X

Σ−1
t Optimal population information matrix from convex solver

Σ−1
te Optimal population information matrix from a closed form solution

1i Column vector that has element “1” at the ith position, “0” at other positions

1ij A matrix with two columns that has element “1” at the ith position for the first
column, element “1” at the jth position for the second column, and “0” at other positions

λ A Lagrange multiplier

R
[
(X − µX)(X − µX)H

]
C A vertex set

C A simple undirected graph

E(C) The edge set of graph C

C̃ Complementary graph of C

Θ̂ Graphical Lasso Estimator of Σ−1

ρ Graphical Lasso penalization parameter
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Abstract

We address the problem of identifying the neighborhood structure of an undirected
graph, whose nodes are labeled with the elements of a multivariate normal (MVN)
random vector. A semi-definite program is given for estimating the information matrix
under arbitrary constraints on its elements. More importantly, a closed-form expression
is given for the maximum likelihood (ML) estimator of the information matrix, under
the constraint that the information matrix has pre-specified elements in a given pattern
(e.g., in a principal submatrix). The results apply to the identification of dependency
labels in a graphical model with neighborhood constraints. This neighborhood structure
excludes nodes which are conditionally independent of a given node and the graph is
determined by the non-zero elements in the information matrix for the random vector.

A cross-validation principle is given for determining whether the constrained infor-
mation matrix returned from this procedure is an acceptable model for the information
matrix, and as a consequence for the neighborhood structure of the Markov Random
Field (MRF) that is identified with the MVN random vector.
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1 Introduction

Markov Random Fields(MRF) and Graphical Models naturally arise in many estimations and
machine learning problems [2, 3]. Perhaps even more importantly, Sparse graphical models
[4] are classically computed using techniques such as the Graphical Lasso [4, 5]. Herein, we
extend and generalize such techniques to the case where the underlying information matrix
(also called concentration matrix) has a specified pattern of entries. For example, similar
to the Graphical Lasso, our techniques provide a closed form solution for the maximum
likelihood(ML) estimate of an information matrix, under constraints on the corresponding
graphical model. Given empirical measurements from the underlying generative process, they
provide a principle for cross-validating the graphical model.

The work in this thesis is closely related to a companion paper Maximum Likelihood Iden-
tification of an Information Matrix Under Constraints in a Corresponding Graphcical Model
[6] which was recently published in the proceedings of the 2016 Asilomar conference on Sig-
nals, Systems, and Computers. This paper was produced in collaboration with Professor
Randy Paffenroth, from WPI, and Professor Louis Scharf, from Colorado State University.
The paper and this thesis share the same structure and results. However, this thesis provides
the detailed proofs and applications that are only outlined in the companion paper. Espe-
cially, this thesis provides the theoretical basis which are the foundations of our research.
Interested readers can see the paper [6] as a summary of this thesis.

Consider the following construction. Given a multivariate normal random vector x =
[x1, x2, · · · , xn] ∈ Cn, construct a corresponding undirected graph G [2]whose nodes are
identified with the random variables xi and whose edges are labeled with the elements of the
information matrix Σ−1. Assume x ∼ CNn[0,Σ] follows a multi-normal distribution. The
non-zero elements of the information matrix then code for the neighborhood structure of a
Markov Random Field, and according to the Hammersley-Clifford Theorem, for the cliques
in the global Gibbs distribution for the multivariate normal distribution [7]. .

Locally, the zero elements of the information matrix determine conditional independence
between random variables, and even when the random variables are not multivariate normal,
they determine random variables which do not participate in a linear minimum variance
unbiased estimator of a given node from all others (sometimes called the BLUE estimator
for Best Linear Unbiased Estimator). Thus, the neighborhood of node i in an MRF model
for the random vector x consists of only those random variables that would participate in a
BLUE of the random variable xi. It excludes all random variables xj that are conditionally
linearly independent of xi, and these excluded random variables are just those for which
Σ−1
ij = 0.

So here is the question: given a random sample of the MVN random vector x, what is
the maximum likelihood estimator for the information matrix Σ−1, under the constraint that
a pattern of entries in Σ−1 is specified, and once determined, how is this estimator to be
cross-validated? In this thesis we address this question and give the following results:
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1. A semidefinite program [8] that returns the constrained ML estimator of Σ−1, where the
constraints are an arbitrary pattern of pre-specified entries in Σ−1. A typical pattern is
a pattern of zeros defining neighborhood structure in a corresponding graphical model.

2. A closed form solution for the ML estimator of the information matrix Σ−1 with a
constraint on one pair (i, j) of symmetric entries of the information matrix:

arg max
Σ
−n

2
ln det(Σ)− 1

2
tr
[
Σ−1(X − µX)(X − µX)H

]
s.t. (Σ−1)ij = (Σ−1)ji = 0

3. A closed form solution for the ML estimator of the information matrix Σ−1 with a
constraint on any principal submatrix of the information matrix, derived by generalizing
the solution method of the previous case.

4. A procedure for cross-validating the constrained ML solutions for Σ−1 and Σ as an
acceptable model for the multivariate random vector x, and for the corresponding
graphical model and MRF encoded into the constraints [2, 3].

It is our intention that these results will extend many practices for identifying Markov
Random Fields and Graphical Models. Our closed form solutions for the constrained ML
estimators of Σ−1 and Σ, under constraints on Σ−1 inherited from a graphical model, may be
cross-validated with the principle of Expected Likelihood, meaning experimental realizations
of x may be used to cross-validate a hypothetical graphical model. Even further, our closed
form solutions of such problems promise to be more rigorous and computationally efficient
than standard iterative schemes.

2 Background

For univariate or single valued random variables, we observe the outcome of one random
experiment and map the result to one real number. In many problems, however, it is necessary
to map the result of one random experiment to multiple random numbers. For example, we
have p variables measured on N observations, which are p proteins measured on N cells and,
in this case, we would use a p×N matrix to store these numbers.

There is another way to denote multivariate random variables by using graphical models
[2, 3]. Graphical models are ways of representing the relationship between variables, with
the nodes represent different variables. There are two main kinds of graphs, namely directed
graphs and undirected graphs. Undirected graphs are a set of vertices or nodes that are
conset of vertices or nodes that are connected together by edges, where all the edges are
bidirectionalnected together by edges, where all the edges are bidirectional and such graphs
are widely used to represent multivariate random variables, where they are also known as
Graphical Models or Markov Random Fields(MRF). In such a graph, an edge between two
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Figure 1: This is an undirected graph, nodes indicate a set of objects and all edges are
undirected.

nodes implies these two variables are correlated even when conditions on the other variables.
Such a graph is illustrated in Figure 1.

In recent years, many statisticians and researchers have proposed different ways to esti-
mate sparse undirected graphical models [4]. A sparse undirected graph is also known as a
conditional independence graph and, in this case, we delete the edge between nodes j and
k if the variable X(j) is independent of the variable X(k) given the rest of the variables.
Conditional independence graphs provide substantial information about their underlying ran-
dom variables and the most widely used method to estimate such graphs is the Graphical
Lasso [4, 5]. The Graphical Lasso method attempts to learn the structure of a Gaussian
graphical model by maximizing the log likelihood of the data, subject to an l1 penalty on
elements of the information matrix (the inverse of the covariance matrix) [4]. As opposed
to the Graphical Lasso, which uses an iterative scheme to estimate the maximum likelihood
information matrix based upon the measured data balanced against the l1 penalty, our work
provide closed from solutions which can be leveraged for future theoretical work.

In this section, we will take a closer look at Undirected Graphical Models, the Hammersley-
Clifford Theorem and Graphical Lasso. Most importantly, we will discuss how they related
to each other in providing our desired closed form solutions.

2.1 Undirected Graphical Models

In discrete mathematics, especially in graph theory, a graph is a mathematical structure that
represents the relationship between objects. Usually a graph C has two components, vertices
and edges, which can be denoted as C and E. In particular, one edge (x, y) ∈ E means
x, y ∈ C and the presence of such as edge in the graph means that the two corresponding
random variables are conditionally dependent [2, 3].
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One example of an undirected graph is given in Figure 1. Here we have six objects, denote
as A,B,C,D,E, F six nodes in the graph. There are eight edges, which are (A,B), (A,C), (B,
C), (B,D), (C,D), (C,E), (D,F ), (E,F ), the edges here mean that there is some “relation”
between these objects.

However, what is the “relation” represented by the edge set E? In other words, when can
we put an edge between two vertices? The answer to this question gives the essential part of
our research, which is the reason we focused on information matrices of multivariate random
variables.

To start, some background knowledge and notations about graphical theory are given.
An information matrix, also known as a concentration matrix or a precision matrix, is the
inverse of the covariance matrix. Elements in the information matrix can be interpreted in
terms of partial correlations. Under an assumption of Gaussianity, non-zero entries in the
information matrix imply conditional dependence between corresponding variables given rest
variables. This idea implies that, by identifying zero elements in the information matrix we
can actually find the conditional independent relationship between variables. This “condi-
tional independent relationship” is actually the “relation” represented by the edge set as we
mentioned earlier.

Let’s denote the covariance matrix of random variables as Σ, then the information matrix
can be written as Σ−1. If the element in the ith row and jth column of the information matrix
Σ−1 is not zero, we put an edge between nodes i and j in the graph. So the connection
between a graph C and the corresponding information matrix Σ−1 can be summarized as
[2, 3]

Σ−1
ij = 0 ⇔ there is no edge between node i and j.

⇔ variable i and j are conditional independent given other variables.
Σ−1
ij 6= 0 ⇔ there is an edge between node i and j

⇔ variable i and j are conditional dependent.

Herein, we follow the notation from [3] and focus on the specific mathematical elements
important to our derivations.

As mentioned before, a simple undirected graph is denoted as C = (C,E(C)), for which
C is the vertex set, and E(C) is the edge set. The edge set E(C) contains the unordered pairs
of distinct vertices. If {α, β} ∈ E(C), then pairs of vertices {α, β} are said to be adjacent.

We define a clique as a maximal set of (≥ 2) vertices in which every pair is adjacent. For
any vertex γ we write ∂γ = {α : {α, γ} ∈ E(C)} for the set of neighbors of γ, by which α
are the vertices that directly related to γ. We also have γ̄ = γ ∪ ∂γ.

We can then define a chain as a sequence γ = γ0, γ1, ..., γm = β of vertices such that
{γl, γl+1 ∈ E(C)} for l = 0, 1, ...,m − 1. If γ0 = γm the chain is called a cycle. Another
important concept here is the separation of sets of vertices in C. Two sets of vertices a, b are
said to be separated by a third set d if every chain connecting an α ∈ a to a β ∈ b intersects
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Figure 2: An undirected graph and its complement have the same node sets but complemen-
tary edges set.

d.

The graph C is said to be triangulated [2] if and only if all cycles γ0, γ1, ..., γp = γ0 of
length p ≥ 4 possess a chord, where a chord is an edge connecting two nonconsecutive vertices
of the cycle.

The graph C̃ is called the compliment of C when C̃ has vertex set C and edge set E(C̃)
with the property that {α, β} ∈ E(C̃) if and only if α 6= β and {α, β} /∈ E(C).

Example. The graph C with vertex set {1, 2, 3, 4} and edge set {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {3, 4}}
could be depicted as the first graph in Figure 2. The second graph in Figure 2 is the com-
plement of graph C. For this graph the set of neighbors of 1 is {2, 3, 4}; the cliques are
{1, 2, 3}, {1, 3, 4}; a chain from {2} to {4} is 2, 3, 1, 4 and {2} is separated from {4} by
{1, 3}.

Proposition 1 of [3] relate the conditional independence of a multivariate data set X to
the structure of it its corresponding information matrix Σ−1. In these propositions, following
[3], we abbreviate the set intersection a∩ b to ab and write a/b for the complement of b in a.
The set C/b will be denoted b′. The characterization of all conditional independence relations
consequent upon a given pattern of zeros in Σ−1 is:

Proposition 1. For subsets a, b of C with a∪ b = C the following statements are equivalent.
(i) Σa,b = Σa,abΣ

−1
ab Σab,b.

(i
′
) Σa/b,b/a = Σa/b,abΣ

−1
ab Σab,b/a.

(ii) (Σ−1)a/b,b/a = 0
(iii) Xa and Xb are conditionally independent given Xab

A detailed proof of Proposition 1 is given in the Appendix.

Other important Corollaries for our work include

Corollary 1. For distinct elements α, β of C, Xα and Xβ are conditionally independent
given X{α,β}′ if and only if Σ−1(α, β) = 0.

Proof. Put a = C {α} = {α}′ and b = {β}′ in Proposition 1.

Proposition 1, provide the theoretical foundation of how the connectivity of an undirected
graph are related to the entries in a corresponding information matrix. Figure 3 provide an

10



Figure 3: Zero elements of the information matrix means there is no edge between the
corresponding nodes in a Markov Random Field, non-zero elements of the information matrix
code for the neighborhood structure of a Markov Random Field according to the Hammersley-
Clifford theorem.

example of how the zeros in Σ−1, and the corresponding conditional independence relation-
ships, can be encoded in an undirected graph.

2.2 Hammersley-Clifford Theorem and Markov Random Fields

Hammersley-Clifford theorem gives necessary and sufficient conditions under which a pos-
itive probability distribution can be represented as a Markov Random Field[7]. It is the
fundamental theorem of random fields and the basis for the graphical modeling.

Consider a set of variables corresponding to the nodes of a particular graph. According
to Hammersley-Clifford theorem [7], given an undirected graph C = (C,E(C)), random
variables X form a Markov random field with respect to C if they satisfy the Markov property.

The pairwise Markov property:

Σ−1(α, β) = 0 if {α, β} /∈ E(C) and α 6= β;

The local Markov property:

For every γ ∈ C,Xγ and X{γ}′ are conditionally independent given X∂γ;

The global Markov property:

For every a, b and d with d separating a from b in C,Xa and Xb are conditionally inde-
pendent given Xd.

Markov properties reveal connections between sparsity of an undirected graph, depen-
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Figure 4: This figure shows an undirected graph corresponding to a given information matrix.

dency between Gaussian random variables and zero entries in information matrix. We will
use an example from [3] illustrates Markov Properties and how we can use Hammersley -
Clifford theorem to do graph separation.

Example. Suppose Σ−1 has the following pattern with ∗ denoting a nonzero element:
∗ ∗ 0 0 0
∗ ∗ ∗ 0 ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 ∗ ∗ ∗ ∗


Then the corresponding graph C would be shown in Figure 4. If we put γ = {2}, ∂γ =

{1, 3, 5}, and use the local Markov property we deduce that X2 and X4 are conditionally
independent given X{1,3,5}. Similarly with a = {1}, b = {4}, and d = {2}, the global Markov
property can be used to assert that X1 and X4 are conditionally independent given X2.

2.3 Graphical Lasso

Recently, there has been a lot of activity on the estimation of undirected graphical models us-
ing Graphical Lasso regularization [4, 5]. The Graphical Lasso is an algorithm for estimating
a sparse the information matrix from observations of a multivariate Gaussian distribution.
It is a widely used method for learning the structure of undirected graphs based on an l1 reg-
ularization technique. By learning the sparsity pattern of the information matrix, Graphical
Lasso can estimate the conditional independence between random variables [9].

Consider observations X1, X2, ..., Xn from a multivariate Gaussian distribution:

X ∼ N(µ,Σ)

We want to estimate the information matrix Θ = Σ−1. The Graphical Lasso estimator is Θ̂
that maximizes the l1 penalized log-likelihood [4, 5]:

log detΘ− tr(ΣXXΘ)− ρ ‖Θ‖1
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over non-negative definite matrices Θ

Here ‖Θ‖1 is the L1 norm, which is the sum of the absolute values of the elements of Σ−1

Accordingly, we can write our desired optimization problem as:

Θ̂ = arg min
Θ≥0

(
tr(ΣXXΘ)− log det(Θ) + ρ

∑
|Θj,k|

)
Where ΣXX is the sample covariance, and ρ is the penalizing parameter.

Herein, we can consider the problem of estimating sparse graphs by a Lasso penalty
applied to the inverse covariance matrix and implementation over all positive, semi-definite,
symmetric matrices [4]. However, there is no known closed form solution for Graphical Lasso
[4, 5] and the problem is classically solved using an iterative numerical scheme. However,
here we focus on producing closed form solution for information matrices under prespecified
constraints.

3 Closed form Solution for Optimization

3.1 Lagrange Multipliers

In mathematical optimization, the method of Lagrange Multipliers is a strategy for finding
the local maxima and minima of an objectuve function subject to constraints [10]. It is
actually easier to explain the geometric basis of Lagrange multiplier for a function of two
variables, so address such functions here.

For example, consider the optimization problem with two variables:

maximize f(x, y) subject to g(x, y) = c

So we want to find the extreme values of f(x, y) when the point (x, y) lie on the curve
g(x, y) = c.

Figure 5 shows the line g(x, y) = c together with several level curves of f(x, y). These
level curves are f(x, y) = k, where k = 5, 7, 8, 9. To maximize f(x, y) subject to g(x, y) = c
is to fine the largest value of k such that the level curves of f(x, y) intersect with g(x, y) = c.
From Figure 5 we can see that it happens when the curve g(x, y) = c tangent with the curve
f(x, y) = k. In other words, when these two curves have a common tangent line. This means
the gradient vectors are parallel at that point. So for some scalar λ, we have

∇f(x, y) = λ∇g(x, y) (3.1)

Thus, we define the Lagrange function as

L(x, λ) = f(x)− λg(x) (3.2)
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Figure 5: Geometric basis of Lagrange multiplier, f(x, y) = c is the level curve and g(x, y) is
the function we want to maximize with constraint g(x, y) = k.

Optimal solution can be get by solving

∇xy,λL(x, λ) = 0 (3.3)

If we let f(x) is the log-likelihood function and g(x) is the constraints for the information
matrix, then our problems is

arg max
Σ
−n

2
ln det(Σ)− 1

2
tr
[
Σ−1(X − µ)(X − µ)H

]
s.t. (Σ−1)ij = (Σ−1)ji = 0

(3.4)

We can rewrite our constrained optimization problem as:

arg min
Σ−1

te

−n
2

ln det(Σ−1
te ) +

1

2
tr
[
Σ−1
te (X − µX)(X − µX)H

]
s.t. (Σ−1

te )ij = 0

(3.5)

The Gaussian log-likelihood function is a concave function of the information matrix
Σ−1. Thus, maximum likelihood estimation in Gaussian models with linear constraints on
the information matrix, as for Gaussian graphical models, is actually a convex optimization
problem. We will give different closed form solution of the information matrix under different
constrains as following sections show.

3.2 One pair of zero constraints

We begin our derivation by considering the simplest case first, namely that of on pair of
0-constraints. In particular, we assume that some oracle has indicate that a pair of specified
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Figure 6: In this figure we show the first case we treat, namely a symmetric pair of 0
constraints in Σ−1.

random variables are conditionally independent and derive closed form solutions to (3.5) that
respect this constraint.

Theorem 3.1. If the constraints in Σ−1 are one pair of zeros, as in Figure 6, then the
constrained optimization problem:

arg min
Σ−1

te

−n
2

ln det(Σ−1
te ) +

1

2
tr
[
Σ−1
te (X − µX)(X − µX)H

]
s.t. (Σ−1

te )ij = 0

(3.6)

has an optimal information matrix Σ−1
te which can be written as

Σ−1
te =

(
1

n

[
(X − µX)(X − µX)H

]
+

2

n
λ1i1

T
j +

2

n
λ1j1

T
i

)−1

(3.7)

where
λ =

a

2(bc− a2)
(3.8)

The elements a, b, c can be define as the elements in matrix

R =
[
(X − µX)(X − µX)H

]
(3.9)

where
R−1
ij = R−1

ji = a (3.10)

R−1
ii = c (3.11)

R−1
jj = b (3.12)
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Proof. Let us first fix some notation, namely let

1i =


0
...
1
...
0

 (3.13)

where the 1 is in the i-th position.

So
1
T
i A1j selects the Aij entry of matrix A.

Then our problem can be written as

arg min
Σ−1

te

−n
2

ln det(Σ−1
te ) +

1

2
tr
[
Σ−1
te (X − µX)(X − µX)H

]
s.t. 1Ti Σ−1

te 1j = 0 and 1
T
j Σ−1

te 1i = 0

(3.14)

We proceed using the method of Lagrange multipliers and rewrite our constrained optimiza-
tion as an unconstrained optimization

L(Σ−1
te , λ1, λ2) = −n

2
ln det(Σ−1

te )+
1

2
tr
[
Σ−1
te (X − µX)(X − µX)H

]
+λ11

T
i Σ−1

te 1j +λ21
T
j Σ−1

te 1i

(3.15)

By the first order partial derivative of a matrix[10, 11], we have :

∂ ln | det(X)|
∂X

= (X−1)T (3.16)

∂ tr(XY Y T )

∂X
=
∂ tr(Y TXY )

∂X
= Y Y T (3.17)

∂aTXb

∂X
= abT (3.18)

Let us take some derivatives of our unconstrained optimization formulea as:

∂

∂Σ−1
te

L(Σ−1
te , λ1, λ2) =

∂

∂Σ−1
te

{
− n

2
ln det(Σ−1

te ) +
1

2
tr
[
Σ−1
te (X − µX)(X − µX)H

]
+ λ11

T
i Σ−1

te 1j + λ21
T
j Σ−1

te 1i

} (3.19)

Since Σ−1
te is assumed to be symmetric positive definite (SPD) so

∂ ln det(Σ−1
te )

∂Σ−1
te

=
∂ ln | det(Σ−1

te )|
∂Σ−1

te

= (Σte)
T = Σte (3.20)
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∂

∂Σ−1
te

L(Σ−1
te , λ1, λ2) = −n

2
Σte +

1

2

[
(X − µX)(X − µX)H

]
+ λ11i1

T
j + λ21j1

T
i . (3.21)

Similarly,
∂

∂λ1

L(Σ−1
te , λ1, λ2) = 1

T
i Σ−1

te 1j (3.22)

∂

∂λ2

L(Σ−1
te , λ1, λ2) = 1

T
j Σ−1

te 1i (3.23)

Setting the derivatives equal to 0 and moving around terms we get a formula for Σ−1
te

Σ−1
te =

(
1

n

[
(X − µX)(X − µX)H

]
+

2

n
λ11i1

T
j +

2

n
λ21j1

T
i

)−1

(3.24)

We can plug this into formulas for λ1 and λ2 and multiply out the constants and simplify
notation slightly by setting

R =
[
(X − µX)(X − µX)H

]
(3.25)

to get

0 = 1
T
i

(
R +

[
1i 1j

] [2λ1 0
0 2λ2

] [
1
T
j

1
T
i

])−1

1j (3.26)

0 = 1
T
j

(
R +

[
1i 1j

] [2λ1 0
0 2λ2

] [
1
T
j

1
T
i

])−1

1i (3.27)

We apply the Woodbury identity [12]

(A+ UCV )−1 = A−1 − A−1U(C−1 + V A−1U)−1V A−1 (3.28)

to the middle term givin rise to the two terms

0 = 1
T
i R
−1
1j − 1

T
i R
−1
[
1i 1j

]([ 1
2λ1

0

0 1
2λ2

]
+

[
1
T
j

1
T
i

]
R−1

[
1i 1j

])−1 [
1
T
j

1
T
i

]
R−1

1j (3.29)

0 = 1
T
j R
−1
1i − 1

T
j R
−1
[
1i 1j

]([ 1
2λ1

0

0 1
2λ2

]
+

[
1
T
j

1
T
i

]
R−1

[
1i 1j

])−1 [
1
T
j

1
T
i

]
R−1

1i (3.30)

Let [
1
T
j

1
T
i

]
R−1

[
1i 1j

]
=

[
1
T
j R
−1
1i 1

T
j R
−1
1j

1
T
i R
−1
1i 1

T
i R
−1
1j

]
=

[
a b
c a

]
(3.31)

Where we leverage the symmetry of R and therefore the symmetry of R−1. We have that

1
T
j R
−1
1i = 1

T
i R
−1
1j = a (3.32)

1
T
i R
−1
[
1i 1j

]
=
[
c a

]
(3.33)

1
T
j R
−1
[
1i 1j

]
=
[
a b

]
(3.34)
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[
1
T
j

1
T
i

]
R−1

1i =

[
a
c

]
(3.35)[

1
T
j

1
T
i

]
R−1

1j =

[
b
a

]
(3.36)([ 1

2λ1
0

0 1
2λ2

]
+

[
1
T
j

1
T
i

]
R−1

[
1i 1j

])−1

=

([
a+ 1

2λ1
b

c a+ 1
2λ2

])−1

(3.37)

And our two terms are

0 = a−
[
c a

]([a+ 1
2λ1

b

c a+ 1
2λ2

])−1 [
b
a

]
(3.38)

0 = a−
[
a b

]([a+ 1
2λ1

b

c a+ 1
2λ2

])−1 [
a
c

]
(3.39)

Moving terms and expanding, we have

a2 +
a

2λ1

= bc and a2 +
a

2λ2

= bc (3.40)

Which means
λ1 = λ2 (3.41)

And we can write both of them as λ. So we can write both of the equation as

a2 +
a

2λ
= bc (3.42)

by solving the equation, we have

λ =
a

2(bc− a2)
(3.43)

Which means the closed form solution of optimization problem with one pair of zeros con-
straints is

Σ−1
te =

(
1

n

[
(X − µX)(X − µX)H

]
+

2

n
λ11i1

T
j +

2

n
λ21j1

T
i

)−1

(3.44)

3.3 One pair of nonzero constraints

Theorem 3.2. If the constraints in Σ−1 are one pair of nonzeros, as in Figure 7, then we
can state our constrained optimization problem as

arg min
Σ−1

te

−n
2

ln det(Σ−1
te ) +

1

2
tr
[
Σ−1
te (X − µX)(X − µX)H

]
s.t. (Σ−1

te )ij = (Σ−1)ij and (Σ−1
te )ji = (Σ−1)ji

(3.45)
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Figure 7: In this figure we show the second case we treat, namely a symmetric pair of nonzero
constraints in Σ−1.

Then the closed form solution of optimal information matrix Σ−1
te is

Σ−1
te =

(
1

n

[
(X − µX)(X − µX)H

]
+

2

n
λ1i1

T
j +

2

n
λ1j1

T
i

)−1

(3.46)

where

λ =
−1

4d
− a

2(a2 − bc)
± 1

4

√
1

d2
+

4bc

(a2 − bc)2
(3.47)

a, b, c are elements in Equation 3.31, d is defined as

(nΣ)−1
ij = d (3.48)

Proof. Our optimization problem can be written as

arg min
Σ−1

te

−n
2

ln det(Σ−1
te ) +

1

2
tr
[
Σ−1
te (X − µX)(X − µX)H

]
s.t. 1Ti Σ−1

te 1j = 1
T
i Σ−1

1j and 1
T
j Σ−1

te 1i = 1
T
j Σ−1

1i

(3.49)

We proceed using the method of Lagrange multipliers and rewrite our constrained opti-
mization as an unconstrained optimization

L(Σ−1
te , λ1, λ2) = −n

2
ln det(Σ−1

te ) +
1

2
tr
[
Σ−1
te (X − µX)(X − µX)H

]
+ λ11

T
i (Σ−1

te − Σ−1)1j + λ21
T
j (Σ−1

te − Σ−1)1i

(3.50)

By the first order partial derivative of a matrix, we have

∂

∂Σ−1
te

L(Σ−1
te , λ1, λ2) = −n

2
Σte +

1

2

[
(X − µX)(X − µX)H

]
+ λ11i1

T
j + λ21j1

T
i . (3.51)
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∂

∂λ1

L(Σ−1
te , λ1, λ2) = 1

T
i (Σ−1

te − Σ−1)1j (3.52)

∂

∂λ2

L(Σ−1
te , λ1, λ2) = 1

T
j (Σ−1

te − Σ−1)1i (3.53)

Setting the derivatives equal to 0 and moving around terms we get a formula for Σ−1
te

Σ−1
te =

(
1

n

[
(X − µX)(X − µX)H

]
+

2

n
λ11i1

T
j +

2

n
λ21j1

T
i

)−1

(3.54)

We can plug this into the formulas for λ1 and λ2 and simplify notation slightly by Equa-
tion 3.25, we get

0 = 1
T
i

{(
R +

[
1i 1j

] [2λ1 0
0 2λ2

] [
1
T
j

1
T
i

])−1

− (nΣ)−1

}
1j (3.55)

0 = 1
T
j

{(
R +

[
1i 1j

] [2λ1 0
0 2λ2

] [
1
T
j

1
T
i

])−1

− (nΣ)−1

}
1i (3.56)

Apply the Woodbury identity [12] in Equation 3.28 to the middle term we have

0 = 1
T
i R
−1
1j−1Ti R−1

[
1i 1j

]([ 1
2λ1

0

0 1
2λ2

]
+

[
1
T
j

1
T
i

]
R−1

[
1i 1j

])−1 [
1
T
j

1
T
i

]
R−1

1j−1Ti (nΣ)−1
1j

(3.57)

0 = 1
T
j R
−1
1i−1Tj R−1

[
1i 1j

]([ 1
2λ1

0

0 1
2λ2

]
+

[
1
T
j

1
T
i

]
R−1

[
1i 1j

])−1 [
1
T
j

1
T
i

]
R−1

1i−1Tj (nΣ)−1
1i

(3.58)

Following the notation in Equation 3.31, our two terms are

0 = a−
[
c a

]([a+ 1
2λ1

b

c a+ 1
2λ2

])−1 [
b
a

]
− (nΣ)−1

ij (3.59)

0 = a−
[
a b

]([a+ 1
2λ1

b

c a+ 1
2λ2

])−1 [
a
c

]
− (nΣ)−1

ji (3.60)

By moving terms and expanding, we get

λ1 = λ2 (3.61)

Write both of them as λ. Let (nΣ)−1
ij = d, solve λ as

λ =
−1

4d
− a

2(a2 − bc)
± 1

4

√
1

d2
+

4bc

(a2 − bc)2
(3.62)

Then our optimization problem with one pair of non-zeros constraints can be solved in closed
form

Σ−1
te =

(
1

n

[
(X − µX)(X − µX)H

]
+

2

n
λ11i1

T
j +

2

n
λ21j1

T
i

)−1

(3.63)

20



Figure 8: In this figure we show the third case we treat, namely two symmetric pairs of
nonzero constraints in Σ−1.

3.4 A 2 × 2 matrix constraints.

Let’s define some notations first.

1ij =



0 0
...

...

1
...

... 1

...
...

0 0


(3.64)

where the 1 is in the i-th and j-th rows.

So
1
T
ijA1ij selects Aii, Aij, Aji, Ajj entries of matrix A.

Which is a 2 × 2 matrix of A.

Theorem 3.3. If the constraints in Σ−1 is a 2×2 matrix, as in Figure 8, then we can start
our constrained optimization problem as:

arg min
Σ−1

te

−n
2

ln det(Σ−1
te ) +

1

2
tr
[
Σ−1
te (X − µX)(X − µX)H

]
s.t. 1

T
ijΣ
−1
te 1ij = 1

T
ij(Σ

−1)1ij

(3.65)

Then our closed form solution is in the form

Σte = ΣXX + 1ijB1
T
ij (3.66)

Where
B =

(
1
T
ijΣ
−1
1ij

)−1 −
(
1
T
ijΣ
−1
XX1ij

)−1
(3.67)
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Proof. We rewrite our optimization problem as

arg min
Σ−1

te

−n
2

ln det(Σ−1
te ) +

1

2
tr
[
Σ−1
te (X − µX)(X − µX)H

]
s.t. 1

T
i (Σ−1

te − Σ−1)1i = 0 and 1
T
i (Σ−1

te − Σ−1)1j = 0

and 1
T
j (Σ−1

te − Σ−1)1i = 0 and 1
T
j (Σ−1

te − Σ−1)1j = 0

(3.68)

We proceed using the method of Lagrange multipliers and rewrite our constrained optimiza-
tion as an unconstrained optimization

L(Σ−1
te , λ1, λ2, λ3, λ4) = −n

2
ln det(Σ−1

te ) +
1

2
tr
[
Σ−1
te (X − µX)(X − µX)H

]
+ λ11

T
i (Σ−1

te − Σ−1)1i + λ21
T
i (Σ−1

te − Σ−1)1j

+ λ31
T
j (Σ−1

te − Σ−1)1i + λ41
T
j (Σ−1

te − Σ−1)1j

(3.69)

By the first order partial derivative of a matrix, we have

∂

∂Σ−1
te

L(Σ−1
te , λ1, λ2, λ3, λ4) = −n

2
Σte+

1

2

[
(X − µX)(X − µX)H

]
+λ11i1

T
i +λ21i1

T
j +λ31j1

T
i +λ41j1

T
j .

(3.70)
∂

∂λ1

L(Σ−1
te , λ1, λ2, λ3, λ4) = 1

T
i (Σ−1

te − Σ−1)1i (3.71)

∂

∂λ2

L(Σ−1
te , λ1, λ2, λ3, λ4) = 1

T
i (Σ−1

te − Σ−1)1j (3.72)

∂

∂λ3

L(Σ−1
te , λ1, λ2, λ3, λ4) = 1

T
j (Σ−1

te − Σ−1)1i (3.73)

∂

∂λ4

L(Σ−1
te , λ1, λ2, λ3, λ4) = 1

T
j (Σ−1

te − Σ−1)1j (3.74)

Setting the derivatives equal to 0 and moving around terms we get the closed form solution
as

Σte =
1

n

[
(X − µX)(X − µX)H

]
+

2

n

[
λ11i1

T
i + λ21i1

T
j + λ31j1

T
i + λ41j1

T
j

]
(3.75)

Which can be written as
Σte = ΣXX + 1ijB1

T
ij (3.76)

Where

B =

[
2
n
λ1

2
n
λ2

2
n
λ3

2
n
λ4

]
(3.77)

We can plug this into the formulas for λ1, λ2, λ3 and λ4 to get

0 = 1
T
i

{(
ΣXX + 1ijB1

T
ij

)−1 − Σ−1
}
1i (3.78)
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0 = 1
T
i

{(
ΣXX + 1ijB1

T
ij

)−1 − Σ−1
}
1j (3.79)

0 = 1
T
j

{(
ΣXX + 1ijB1

T
ij

)−1 − Σ−1
}
1i (3.80)

0 = 1
T
j

{(
ΣXX + 1ijB1

T
ij

)−1 − Σ−1
}
1j (3.81)

Which can be combined together and rewritten as:

1
T
ij

{(
ΣXX + 1ijB1

T
ij

)−1
}
1ij = 1

T
ijΣ
−1
1ij (3.82)

Apply the Woodbury identity [12] in Equation 3.28 to the term(
ΣXX + 1ijB1

T
ij

)−1
(3.83)

to get

Σ−1
XX − Σ−1

XX1ij

(
B−1 + 1

T
ijΣ
−1
XX1ij

)−1
1
T
ijΣ
−1
XX (3.84)

Denote
1
T
ijΣ
−1
XX1ij = A (3.85)

1
T
ijΣ
−1
1ij = C (3.86)

Then the equation

1
T
ijΣ
−1
XX1ij − 1

T
ijΣ
−1
XX1ij

(
B−1 + 1

T
ijΣ
−1
XX1ij

)−1
1
T
ijΣ
−1
XX1ij = 1

T
ijΣ
−1
1ij (3.87)

becomes
A− A(B−1 + A)−1A = C (3.88)

and can be written as
A−1(A− C)A−1 = (B−1 + A)−1 (3.89)

Taking the inverse of both side, we have

B−1 + A = [A−1(A− C)A−1]−1 = A(A− C)−1A (3.90)

So B cab be solved as
B = [−A+ A(A− C)−1A]−1 (3.91)

Apply the Woodbury identity [12] in Equation 3.28 to the right hand side, we have

[−A+A(A−C)−1A]−1 = −A−1+A−1A[(A−C)−AA−1A]−1A(−A−1) = −A−1−(−C)−1 = C−1−A−1

(3.92)
So we can write B as

B = C−1 − A−1 =
(
1
T
ijΣ
−1
1ij

)−1 −
(
1
T
ijΣ
−1
XX1ij

)−1
(3.93)
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Figure 9: In this figure we show the final case we treat, namely a k × k principal submatrix
of constraints in Σ−1.

3.5 A k × k matrix of constraints.

We can now proceed to our most general results, a k× k principle sub-matrix of constraints.
We begin with a small measure of notation.

First, denote
Ik = {a1, a2, ..., ak} (3.94)

If A is a n× n matrix, then
A[Ik, Ik] (3.95)

is a k×k submatrix of A, which selected the row {a1, a2, ..., ak} and the column {a1, a2, ..., ak}
of A.

Similarly, A[·, Ik] denote a n × k submatrix of A, which select every row but only
{a1, a2, ..., ak} column of A.

Theorem 3.4. If the constraints in Σ−1 is a k×k principle sub-matrix, as in Figure 9. Then
we can start our constrained optimization problem as:

arg min
Σ−1

te

−n
2

ln det(Σ−1
te ) +

1

2
tr
[
Σ−1
te (X − µX)(X − µX)H

]
s.t. Σ−1

te [Ik, Ik] = Σ−1[Ik, Ik]

(3.96)

So our closed form solution for Σte is

Σte = ΣXX + 1IkB1
T
Ik

(3.97)

Where
B =

(
1
T
Ik

Σ−1
1Ik

)−1 −
(
1
T
Ik

Σ−1
XX1Ik

)−1
(3.98)
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Proof. Rewrite our optimization problem as

arg min
Σ−1

te

−n
2

ln det(Σ−1
te ) +

1

2
tr
[
Σ−1
te (X − µX)(X − µX)H

]
s.t. for ∀ai, aj ∈ Ik,1TaiΣ

−1
te 1aj = 1

T
ai

Σ−1
1aj

(3.99)

We proceed using the method of Lagrange multipliers and rewrite our constrained opti-
mization as an unconstrained optimization

L(Σ−1
te , λ1, λ2, ..., λk2) = −n

2
ln det(Σ−1

te ) +
1

2
tr
[
Σ−1
te (X − µX)(X − µX)H

]
+ λ11

T
a1

(Σ−1
te − Σ−1)1a1 + λ21

T
a1

(Σ−1
te − Σ−1)1a2 + ...+ λk21

T
ak

(Σ−1
te − Σ−1)1ak
(3.100)

Taking derivatives we have

∂

∂Σ−1
te

L(Σ−1
te , λ1, λ2, ..., λk2) = −n

2
Σte+

1

2

[
(X − µX)(X − µX)H

]
+λ11a11

T
a1

+λ21a11
T
a2

+...+λk21ak1
T
ak

(3.101)
∂

∂λ1

L(Σ−1
te , λ1, λ2, ..., λk2) = 1

T
a1

(Σ−1
te − Σ−1)1a1 (3.102)

∂

∂λ2

L(Σ−1
te , λ1, λ2, ..., λk2) = 1

T
a1

(Σ−1
te − Σ−1)1a2 (3.103)

...

∂

∂λk2
L(Σ−1

te , λ1, λ2, ..., λk2) = 1
T
ak

(Σ−1
te − Σ−1)1ak (3.104)

Setting the derivatives equal to 0 and moving around terms we get the closed form solution
as

Σte =
1

n

[
(X − µX)(X − µX)H

]
+

2

n

[
λ11a11

T
a1

+ λ21a11
T
a2

+ ...+ λk21ak1
T
ak

]
(3.105)

Which can be rewrite as
Σte = ΣXX + 1IkB1

T
Ik

(3.106)

Where

B =
2

n


λ1 λ2 . . . λk
λk+1 λk+2 . . . λk+k

...
...

...
...

λk(k−1)+1 λk(k−1)+2 . . . λk2

 (3.107)

We can plug this into the formulas for λ1, λ2, ..., λk2 to get

0 = 1
T
a1

{
(ΣXX + 1IkB1

T
Ik

)−1 − Σ−1
}
1a1 (3.108)

0 = 1
T
a1

{
(ΣXX + 1IkB1

T
Ik

)−1 − Σ−1
}
1a2 (3.109)
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...

0 = 1
T
ak

{
(ΣXX + 1IkB1

T
Ik

)−1 − Σ−1
}
1ak (3.110)

Which can be combined together and rewritten as:

1
T
Ik

{(
ΣXX + 1IkB1

T
Ik

)−1
}
1Ik = 1

T
Ik

Σ−1
1Ik (3.111)

Apply the Woodbury identity [12] in Equation 3.28 to the term(
ΣXX + 1IkB1

T
Ik

)−1
(3.112)

to get

Σ−1
XX − Σ−1

XX1Ik

(
B−1 + 1

T
Ik

Σ−1
XX1Ik

)−1
1
T
Ik

Σ−1
XX (3.113)

Plug it in to the previous equation:

1
T
Ik

Σ−1
XX1Ik − 1

T
Ik

Σ−1
XX1Ik

(
B−1 + 1

T
Ik

Σ−1
XX1Ik

)−1
1
T
Ik

Σ−1
XX1Ik = 1

T
Ik

Σ−1
1Ik (3.114)

Denote
1
T
Ik

Σ−1
XX1Ik = A (3.115)

1
T
Ik

Σ−1
1Ik = C (3.116)

Then the equation is
A− A(B−1 + A)−1A = C (3.117)

which means
A−1(A− C)A−1 = (B−1 + A)−1 (3.118)

Taking the inverse of both side, we get

B−1 + A = [A−1(A− C)A−1]−1 = A(A− C)−1A (3.119)

So B can be solved as
B = [−A+ A(A− C)−1A]−1 (3.120)

Apply the Woodbury identity [12] in Equation 3.28 to the right hand side, we have

[−A+A(A−C)−1A]−1 = −A−1+A−1A[(A−C)−AA−1A]−1A(−A−1) = −A−1−(−C)−1 = C−1−A−1

(3.121)
Thus

B =
(
1
T
Ik

Σ−1
1Ik

)−1 −
(
1
T
Ik

Σ−1
XX1Ik

)−1
(3.122)
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4 Numerical Experiments

Cross-validation is a primary way of measuring the predictive performance of a statistic or a
statistical model. To evaluate the performance of our closed form estimator, a cross-validation
procedure was conducted. Also, to compare the accuracy of optimal information matrix we
get from our closed form solution and the estimator obtained from the semidefinite procedure
we used standard convex optimization solvers [8].

As a computational conveniennce, we randomly generate a 4×4 positive definite symmet-
ric matrix as our covariance matrix Σ. This Σ is used to generate our multivariate data set
X. By doing this, we obtain a random sample which follows the multinormal distribution.
Thus we have

X ∼ N(Σ,0)

With this data set X, we can easily compute the sample covariance ΣXX . Which is

ΣXX = (X − µXX)(X − µXX)H (4.123)

Remember we have the closed form formula for optimal information matrix under different
constraints, the Σ−1

te . We can plug Σ−1
XX into Σ−1

te ’s expression to get the value.

Another way to obtain optimal solution for information matrix is by running the convex
solver in the scripting language Python [13] since our problem can be phrase as a convex
optimization problem. So comparison of these two solutions, Σ−1

te from closed form solution
and Σ−1

t from convex solver, can be easily done by looking at numbers in each entry and by
comparing the value of likelihood [8].

We will use the most general case - k×k non-zeros constraints - to illustrate the problem.
The constraints here is a 2 × 2 submatrix (k = 2) of the information matrix, which are the
(2, 2), (2, 3), (3, 2), (3, 3) entries of Σ.

By forcing the corresponding entries in Σt and Σte to equal these constraints, we obtained
results of the numerical experiments as following:

Σ−1 =


2.385 −2.793 −0.821 −1.955
−2.793 4.444 0.779 3.075
−0.821 0.779 0.565 0.343
−1.955 3.075 0.343 2.494

 (4.124)

Σ−1
XX =


1.657 −1.582 −0.75 −0.521
−1.582 2.835 0.465 1.776
−0.75 0.465 0.954 −0.614
−0.521 1.776 −0.614 2.478

 (4.125)
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Σ−1
t =


1.815 −2.219 −0.634 −1.097
−2.219 4.166 0.73 2.416
−0.634 0.73 0.53 0.032
−1.097 2.416 0.032 2.206

 (4.126)

Σ−1
te =


2.049 −2.507 −0.679 −1.33
−2.507 4.444 0.779 2.733
−0.679 0.779 0.565 0.036
−1.33 2.733 0.036 2.569

 (4.127)

We can see that both Σ−1
te and Σ−1

t are quite close to the true information matrix Σ−1, but
the submatrix of Σte is exactly the same as those of Σ. Which means the optimal information
matrix we got from the closed form solution is better than what we got from convex solver
[13]. Examining the likelihood values produced by the various methods show the same story:

Estimator Likelihood
Σ−1 -43.1373680097

Σ−1
XX -33.9670608437

Σ−1
t -36.4135128746

Σ−1
te -36.4043062778

Table 1: The likelihoods of each of the estimate covariance matrices.

From the value of likelihoods, we can see that our closed form solution is more rigorous
than the experiment solution from convex solver since it obtains a larger likelihood. As we
expect the sample information matrix ΣXX shows the largest likelihood since it is calculated
from the real data. By repeating the experiment, our closed form solution keeps showing a
larger likelihood than the solution from the convex solver and our solution is better than the
solution from the convex solver.

4.1 Test Statistics

Our work has been inspired by a particular class of test statistics for hypothesis tests between
sample and postulated exact covariance matrices[1]. These results state that if S is either the
true covariance Σ (perfect side information) or a sample covariance ΣXX (no side information)
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then the statistic γ is independent of the true covariance Σ where

γ(Σ−1S) =
det(Σ−1/2SΣ−1/2)

[
1

M
tr(Σ−1/2SΣ−1/2)]M

(4.128)

which can be proved by using properties in [14]. In the future, we want to use our closed form
solutions to see whether we can construct appropriate null-distributions to cross-validate the
given side information since the following figure shows that the distribution of γ is invariant
of the optimal information matrix as it does for the true information matrix.

The reason we brought up statistic γ here is that we want to use the distribution of γ to
validate our closed form solution again. What we did is to use the convex solver in Python
[13] to get optimal information matrices Σ−1

t , then plug them into the γ function to get the
γ value for each data set, which is

γ(Σ−1
t ΣXX) =

det(Σ
−1/2
t ΣXXΣ

−1/2
t )

[
1

M
tr(Σ

−1/2
t ΣXXΣ

−1/2
t )]M

(4.129)

For the same data set we get the Σ−1
te using the closed form solution this time, and also

plug it in to the γ function to get the γ values as

γ(Σ−1
te ΣXX) =

det(Σ
−1/2
te ΣXXΣ

−1/2
te )

[
1

M
tr(Σ

−1/2
te ΣXXΣ

−1/2
te )]M

(4.130)

Figure 10 shows the histograms for both γs. We can see that these two histogram overlap
with each other, and the Kolmogorov-Smirnov test gave us a very high p-value, which is
actually close to 0.999999999, which means that our closed form solution is valid, and is
almost the same as what Python optimal solver gave us.

5 Future Work

There are many future directions where one could proceed based upon the foundation of
our research. Some detailed proof work is still needed since some of the numerical results
support conjectures about the invariance for the test statistic γ. In this section we provide
some preliminary theoretical work we were already done and conjectures for possible future
work.

5.1 Proofs of results in [1]

Before proving results in [1], we will give some lemmas which are used in the following proofs.
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Figure 10: Histograms of statistics γ. The green one is the histogram of γ we calculated
using our closed form solution Σ−1

te , the blue one is the histogram of γ we calculated using
optimal information matrix Σ−1

t given by Python optimal solver. We can see that the green
one and the blue one are overlap with each other.
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Lemma 1. For a matrix B, if B−1 exists then

det (B−1AB) = det (A) (5.131)

Proof.
det (B−1AB) = det (B−1) det (A) det (B)

=
(

det (B−1) det (B)
)

det (A)

= det (A)

(5.132)

Lemma 2. If Λ is a diagonal matrix and Λ−1 exists, then

trace
(
Λ−1AΛ

)
= trace (A) (5.133)

Proof. Since Λ is diagonal matrix, then(
Λ−1AΛ

)
ii

= Λ−1
ii AiiΛii = Λ−1

ii ΛiiAii = Aii (5.134)

so the diagonal of (Λ−1AΛ) is the same as the diagonal of A. Thus,

trace
(
Λ−1AΛ

)
= trace (A) (5.135)

Lemma 3. If U is unitary then λ is an eigenvalue of A if and only if λ is an eigenvalue of
UAUT .

Proof. Let λ be the eigenvalue of A with corresponding eigenvector x. Then

Ax = λx (5.136)

AIx = λx (5.137)

AUTUx = λx (5.138)

UAUTUx = λUx (5.139)

UAUT (Ux) = λ(Ux) (5.140)

So λ is the eigenvalue of UAUT with corresponding eigenvector Ux.

Let Σ ∈ RN×N be semi-symmetric positive definite (SSPD) matrix. We can write Σ =
UΛΛUT where U is unitary and Λ is diagonal matrix by singular value decomposition (SVD).

Since X ∼ N(0,Σ) and X ∈ RN ×M we know that ΣXX = XXT has the property that

ΣXX = UΛΘXXΛUT (5.141)

where ΘXX ∼ W (N,M, I)

Then we can show results in [1] as following:
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Theorem 5.1. Let X ∼ N(0,Σ) and ΣXX be the sample covariance then the distribution
of the statistic γ where

γ =
det (Σ−1/2ΣXXΣ−1/2)[

1

M
trace (Σ−1/2ΣXXΣ−1/2)

]M (5.142)

is independent of Σ.

Proof. Since

det (Σ−1/2ΣXXΣ−1/2) = det (Σ−1/2Σ−1/2ΣXX) = det Σ−1ΣXX (5.143)

trace (Σ−1/2ΣXXΣ−1/2) = trace (Σ−1/2Σ−1/2ΣXX) = trace Σ−1ΣXX (5.144)

So we can change the theorem to prove that the distribution of

γ(Σ−1ΣXX) =
det (Σ−1ΣXX)[

1

M
trace (Σ−1ΣXX)

]M (5.145)

is independet of Σ.

We can write
Σ−1ΣXX = UΛ−1Λ−1UTUΛΘXXΛUT

= UΛ−1Λ−1ΛΘXXΛUT

= UΛ−1ΘXXΛUT

(5.146)

Since U is unitary and Λ is diagonal, so

det (UΛ−1ΘXXΛUT ) = det ΘXX (5.147)

trace (UΛ−1ΘXXΛUT ) = trace (ΘXX) (5.148)

Which are both independent of Σ.

Let’s do some numerical experiments to shown what we just proved resultin [1]. The
following results are got from two data sets, we can see clearly that even though the Σ and
ΣXX are not the same, but we end up with same determinate and trace of Σ−1/2ΣXXΣ−1/2.

Σ1 =


3.791 0.034 4.016 2.377
0.034 2.45 −1.644 −2.769
4.016 −1.644 7.336 4.166
2.377 −2.769 4.166 5.106

 (5.149)

ΣXX1 =


33.736 0.566 30.602 23.039
0.566 13.787 −3.781 −14.429
30.602 −3.781 61.261 16.291
23.039 −14.429 16.291 35.244

 (5.150)

32



det1 = 1936.86418972 (5.151)

trace1 = 37.2879281384 (5.152)

Σ2 =


1.162 −0.047 1.071 −0.283
−0.047 5.849 −0.495 1.28
1.071 −0.495 1.968 −1.075
−0.283 1.28 −1.075 2.195

 (5.153)

ΣXX2 =


17.113 −1.004 15.666 3.516
−1.004 33.297 −9.446 11.889
15.666 −9.446 19.079 −4.307
3.516 11.889 −4.307 23.999

 (5.154)

det2 = 1936.86418972 (5.155)

trace2 = 37.2879281384 (5.156)

Also, we can show the following result:

Theorem 5.2. Let X, Y be two data set which following the same distribution as X, Y ∼
N(0,Σ) with sample covariance ΣXX and ΣY Y respectively. Then the distribution of γ where

γ =
det (Σ

−1/2
Y Y ΣXXΣ

−1/2
Y Y )[

1

M
trace (Σ

−1/2
Y Y ΣXXΣ

−1/2
Y Y )

]M (5.157)

is independent of Σ.

Proof. Because of the same reason in the previous theorem, we can change our theorem to
prove

γ(Σ−1
Y Y ΣXX) =

det (Σ−1
Y Y ΣXX)[

1

M
trace (Σ−1

Y Y ΣXX)

]M (5.158)

is independent of Σ. We can write

Σ−1
Y Y ΣXX = UΛ−1Θ−1

Y Y Λ−1UTUΛΘXXΛUT

= UΛ−1Θ−1
Y Y Λ−1ΛΘXXΛUT

= UΛ−1Θ−1
Y Y ΘXXΛUT

(5.159)

Since U is unitary and Λ is diagonal so

det (UΛ−1Θ−1
Y Y ΘXXΛUT ) = det (Θ−1

Y Y ΘXX) (5.160)

trace (UΛ−1Θ−1
Y Y ΘXXΛUT ) = trace (Θ−1

Y Y ΘXX) (5.161)

which are both independent of Σ.
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Here are some numerical results to shown what we just proved. We can see clearly that
even though the Σ, ΣXX and ΣY Y are not the same, but we end up with same determinate
and trace of Σ

−1/2
Y Y ΣXXΣ

−1/2
Y Y .

Σ1 =


3.791 0.034 4.016 2.377
0.034 2.45 −1.644 −2.769
4.016 −1.644 7.336 4.166
2.377 −2.769 4.166 5.106

 (5.162)

Σ−1
XX1 =


33.736 0.566 30.602 23.039
0.566 13.787 −3.781 −14.429
30.602 −3.781 61.261 16.291
23.039 −14.429 16.291 35.244

 (5.163)

Σ−1
Y Y 1 =


11.742 −0.368 9.68 9.368
−0.368 9.82 −4.513 −11.874

9.68 −4.513 23.837 9.493
9.368 −11.874 9.493 21.944

 (5.164)

det 1 = 0.00815864972649 (5.165)

trace 1 = 1.85334124231 (5.166)

Σ2 =


1.162 −0.047 1.071 −0.283
−0.047 5.849 −0.495 1.28
1.071 −0.495 1.968 −1.075
−0.283 1.28 −1.075 2.195

 (5.167)

ΣXX2 =


17.113 −1.004 15.666 3.516
−1.004 33.297 −9.446 11.889
15.666 −9.446 19.079 −4.307
3.516 11.889 −4.307 23.999

 (5.168)

ΣY Y 2 =


7.858 1.841 6.915 2.208
1.841 19.214 0.113 3.815
6.915 0.113 7.217 −0.997
2.208 3.815 −0.997 9.178

 (5.169)

det 2 = 0.00815864972649 (5.170)

trace 2 = 1.85334124231 (5.171)

5.2 Generalization the Invariance of Σ−1 to the Invariance of Σ−1
te

The question here is that since we already proved γ(Σ−1ΣXX) and γ(Σ−1
Y Y ΣXX) are indepen-

dent of Σ, is the statistic γ(Σ−1
te ΣXX) also independent of Σ?
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Figure 11: In this figure, the blue and green histograms are γ(Σ−1
1 ΣXX1) and γ(Σ−1

2 ΣXX2)
respectively. The red and yellow histograms are γ(Σ−1

te1ΣXX1) and γ(Σ−1
te2ΣXX2) respectively.

The constraints are one pair of zeros.

Before providing details conjectures, we would give the numerical experiment results first.
What we did is using two different true population covariance to generate two sets of data,
then using these data to get two sets of optimal information matrix Σ−1

te using our closed form
solution. We then plug these values into the γ(Σ−1

te ΣXX) statistic function to get two sets of
γ(Σ−1

te ΣXX)s. We can then plot the histogram of these γ(Σ−1
te ΣXX)s. Here the constraints

we used to calculate γ(Σ−1
te ΣXX) is one pair of zeros, which is

Σij = Σji = 0

Below is is the figure of distribution of γs.

In the figure above, the blue and green histograms are γ(Σ−1
1 ΣXX1) and γ(Σ−1

2 ΣXX2)
respectively. The Kolmogorov-Smirnov test gave us a p-value:

blue-green p-value 0.822841332825

Which verified our earlier statement that the statistic γ(Σ−1ΣXX) is invariant of the true
population covariance Σ.

In the figure above, the red and yellow histograms are γ(Σ−1
te1ΣXX1) and γ(Σ−1

te2ΣXX2)
respectively, they are also overlap with each other very well. The Kolmogorov-Smirnov test
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Figure 12: In this figure, the blue and red histograms are γ(Σ−1
1 ΣXX1) and γ(Σ−1

2 ΣXX2)
respectively. The green and yellow histograms are γ(Σ−1

te1ΣXX1) and γ(Σ−1
te2ΣXX2) respectively.

The constraints are two pairs of zeros.

gave us a p-value:
red-yellow p-value 0.951890168048

The numerical result above seem to support our conjecture that the statistic γ(Σ−1
te ΣXX)

is also invariant of Σ.

Let’s give another numerical results by changing the constraints to two pair of zeros,
which are

Σij = Σji = 0 and Σkl = Σlk = 0

Below is is the figure of distribution of γ(Σ−1
te ΣXX)s combined with γ(Σ−1ΣXX)s.

And the Kolmogorov-Smirnov test p-values are:

blue-red p-value 0.911041018381

green-yellow p-value 0.861365206773

The conclusions we draw from the p-value here are the same as in the previous example.

Thus, we want to prove that the statistic γ(Σ−1
te ΣXX) is also invariant of Σ, however a

detailed proof is beyond the scope of the current work.

36



For further study, let us make a few definitions and more conjectures here.

Definition 1. Two symmetric matrices A and B are relabeling if there exists a permutation
matrix P such that A = PBP T .

The following two matrices are relabeling.

A =

1 2 0
2 3 4
0 4 5

B =

3 2 4
2 1 0
4 0 5

 (5.172)

with the permutation

P =

0 1 0
1 0 0
0 0 1

 (5.173)

Definition 2. Two symmetric matrices A and B are 0-permutations if there exists a per-
mutation matrix P such that C = PBP T and Aij = 0 if, and only if, Cij = 0.

For example, the matrices below are 0-permutations

A =


1 2 0 6
2 3 4 0
0 4 5 7
6 0 7 8

B =


5 8 1 0
8 3 0 2
1 0 5 3
0 2 3 4

 (5.174)

with the permutation

P =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (5.175)

Definition 3. Two symmetric matrices A and B are 0-count equivalent if the number of 0
entries in A is the same as the number of 0 entries in B.

Note, the following two matrices are not 0-permutations, but the are 0-count equivalent.

A =


1 2 0 6
2 3 4 0
0 4 5 7
6 0 7 8

B =


5 8 1 0
8 3 2 0
1 2 5 3
0 0 3 4

 (5.176)

We can now state three conjectures of increasing strength.
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Figure 13: A test of the “very weak” conjecture. M = 5, N = 128, and we have 2 pairs of
zeros.

Figure 14: A test of the “weak” conjecture. M = 5, N = 128, and we have 2 pairs of zeros.

Conjecture 1. The “very weak version”: the distribution of Γ is invariant between two
sequences of experiments, one with Σ1 and one with Σ2, if Σ−1

1 and Σ−1
2 are relabeling.

Conjecture 2. The “weak version”: the distribution of Γ is invariant between two sequences
of experiments, one with Σ1 and one with Σ2, if Σ−1

1 and Σ−1
2 are 0-permutations.

Conjecture 3. The “strong version”: the distribution of Γ is invariant between two sequences
of experiments, one with Σ1 and one with Σ2, if Σ−1

1 and Σ−1
2 are 0-count equivalent.

We feel that the study of these conjectures would a fruitful path for future research.

6 Conclusion

The most general finding of this thesis is an exact formula for the estimator of the infor-
mation matrix that maximizes multivariate normal likelihood, under a constraint on values
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Figure 15: A test of the “strong” conjecture. M = 5, N = 128, and we have 2 pairs of zeros.

of the information matrix in a principal submatrix. Numerical simulations demonstrate the
performance of a convex solver against this exact result, and show that even though the
likelihood returned by the convex solver is near the exact likelihood, its returned solution for
the information matrix does not well-approximate the constraints, at least for a reasonable
number of iterations.

A Proofs of various propositions

Herein be provide detailed proofs of some statements from the main text.

Prove [2] Proposition 5.2

Proposition. Assume that Y ∼ N|Γ|(ξ,Σ), where Σ is regular. Then it holds for γ, µ ∈ Γ
with γ 6= µ that

Yγ |= Yµ|YΓ/{γ,µ} ⇔ kγµ = 0 (A.177)

where K = {kαβ}α,β∈Γ = Σ−1 is the concentration matrix of the distribution.

Proof. Suppose V = Rn and assume the random vector X partitioned into components X1

and X2, where X1 ∈ Rp and X2 ∈ Rq with p+ q = n.
The mean vector and covariance matrix can then be partitioned accordingly into blocks as

ξ =

(
ξ1

ξ2

)
and Σ =

(
Σ11 Σ12

Σ21 Σ22

)
(A.178)

such that Σ11 has dimensions p× p and so on.

Let X be distributed as Nn(ξ,Σ). Then we can show that the conditional distribution of
X1 given X2 = x2 is Np(ξ1|2,Σ1|2) where

ξ1|2 = ξ1 + Σ12Σ−1
22 x2 − ξ2 and Σ1|2 = Σ11 − Σ12Σ−1

22 Σ21 (A.179)
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Since
fξ,Σ(x) = (2π)−p/2(detΣ)1/2e−<x−ξ,k(x−ξ)>/2 (A.180)

So
f(x1|x2) ∝ fξ,Σ(x) ∝ e−<x−ξ,k(x−ξ)>/2 (A.181)

Since

< x− ξ, k(x− ξ) > =

〈(
x1 − ξ1

x2 − ξ2

)
,

[
k11 k12

k21 k22

](
x1 − ξ1

x2 − ξ2

)〉
=

〈(
x1 − ξ1

x2 − ξ2

)
,

(
k11(x1 − ξ1) + k12(x2 − ξ2)
k21(x1 − ξ1) + k22(x2 − ξ2)

)〉
=

(
x1 − ξ1

x2 − ξ2

)T (
k11(x1 − ξ1) + k12(x2 − ξ2)
k21(x1 − ξ1) + k22(x2 − ξ2)

)
= (x1 − ξ1)T [k11(x1 − ξ1) + k12(x2 − ξ2)] + (x2 − ξ2)T [k21(x1 − ξ1) + k22(x2 − ξ2)]

= (x1 − ξ1)Tk11(x1 − ξ1) + (x1 − ξ1)Tk12(x2 − ξ2)

+ (x2 − ξ2)Tk21(x1 − ξ1) + (x2 − ξ2)Tk22(x2 − ξ2)
(A.182)

Since (x2 − ξ2)Tk21(x1 − ξ1) is singular, so [(x2 − ξ2)Tk21(x1 − ξ1)]T = (x2 − ξ2)Tk21(x1 − ξ1).
So

< x− ξ, k(x− ξ) > = (x1 − ξ1)Tk11(x1 − ξ1) + (x1 − ξ1)Tk12(x2 − ξ2)

+ [(x2 − ξ2)Tk21(x1 − ξ1)]T + (x2 − ξ2)Tk22(x2 − ξ2)

= (x1 − ξ1)Tk11(x1 − ξ1) + (x1 − ξ1)Tk12(x2 − ξ2)

+ (x1 − ξ1)Tk12(x2 − ξ2) + (x2 − ξ2)Tk22(x2 − ξ2)

= (x1 − ξ1)Tk11(x1 − ξ1) + 2(x1 − ξ1)Tk12(x2 − ξ2) + (x2 − ξ2)Tk22(x2 − ξ2)
(A.183)

So
f(x1|x2) ∝ exp

{
−(x1 − ξ1)Tk11(x1 − ξ1)/2− (x1 − ξ1)Tk12(x2 − ξ2)

}
(A.184)

Since

− (x1 − ξ1)Tk11(x1 − ξ1)/2− (x1 − ξ1)Tk12(x2 − ξ2)

=(−xT1 + ξT1 )k11(x1 − ξ1)/2 + (−xT1 + ξT1 )k12(x2 − ξ2)

=(−xT1 k11 + ξT1 k11)(x1 − ξ1)/2 + (−xT1 k12 + ξT1 k12)(x2 − ξ2)

=
−xT1 k11x1

2
+
xT1 k11ξ1

2
+
ξT1 k11x1

2
− ξT1 k11ξ1

2
− xT1 k12x2 + xT1 k12ξ2 + ξT1 k12x2 − ξT1 k12ξ2

(A.185)

Since

[
ξT1 k11x1

2

]T
=
ξT1 k11x1

2
=
xT1 k11ξ1

2
, so the linear term involving x1 has coefficient

k11ξ1

2
+
k11ξ1

2
− k12x2 + k12ξ2 = k11ξ1 − k12(x2 − ξ2) = k11[ξ1 − k−1

11 k12(x2 − ξ2)] (A.186)
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Since (
A B
C D

)−1

=

(
E−1 −E−1G
−FE−1 D−1 + FE−1G

)
(A.187)

where E = A−BD−1C,F = D−1C,G = BD−1.
Since (

Σ11 Σ12

Σ21 Σ22

)−1

=

(
k11 k12

k21 k22

)
(A.188)

So
k−1

11 = E = A−BD−1C = Σ11 − Σ12Σ−1
22 Σ21 (A.189)

K12 = −E−1G (A.190)

So
k−1

11 k12 = E(−E−1G) = −G = −BD−1 = −Σ12Σ−1
22 (A.191)

So

f(x1|x2) ∝ exp

{
−xT1 k11x1

2
+ xT1 k11[ξ1 − k−1

11 k12(x2 − ξ2)]

}
∝ − 1

2k−1
11

{
xT1 x1 − 2xT1 [ξ1 − k−1

11 k12(x2 − ξ2)]
}

∼ N
(
ξ1 − k−1

11 k12(x2 − ξ2), k−1
11

)
∼ N

(
ξ1 + Σ12Σ−1

22 (x2 − ξ2),Σ11 − Σ12Σ−1
22 Σ21

)
∼ Np

(
ξ1|2,Σ1|2

)
(A.192)

Now we know Σ1|2 = k−1
11 , since K{γ,µ} =

(
kγγ kγµ
kµγ kµµ

)
So we have

Σγ,µ|Γ/{γ,µ} = k−1
{γ,µ} =

1

detK{γ,µ}
=

(
kµµ −kγµ
−kµγ kγγ

)
(A.193)

Now back to the proposition:
(⇒)
If Yγ |= Yµ|YΓ/{γ,µ}, that means the nondiangonal entries of the matrix Σγ,µ|Γ/{γ,µ}are zero.
Which means kγµ and kµγ are zero.
(⇐)
It is easy to proof by going through the opposite direction.

Proof for Proposition 1

Proposition. For subsets a, b of C with a ∪ b = C the following statements are equivalent.
(i) Σa,b = Σa,abΣ

−1
ab Σab,b.

(i
′
) Σa/b,b/a = Σa/b,abΣ

−1
ab Σab,b/a.

(ii) (Σ−1)a/b,b/a = 0
(iii) Xa and Xb are conditionally independent given Xab
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Prove Statements (i) and (i
′
) are equivalent.

Proof. Define Σm,n as extending Σm,n into a × b dimensions, keeping entries in rows m and
columns n do not change, filling other entries zeros. So, we know

Σa,b = Σa/b∪ab , b/a∪ab

= Σa/b,b/a + Σa/b,ab + Σab,b/a + Σab,ab

From (i′) we have

= Σa/b,abΣ
−1
ab Σab,b/a + Σa/b,abΣ

−1
ab Σab,ab + Σab,abΣ

−1
ab Σab,b/a + Σab,abΣ

−1
ab Σab,ab

= Σa/b,abΣ
−1
ab Σab,b/a + Σa/b,abΣ

−1
ab Σab + ΣabΣ

−1
ab Σab,b/a + ΣabΣ

−1
ab Σab

= Σa/b,abΣ
−1
ab Σab,b/a∪ab + ΣabΣ

−1
ab Σab,b/a∪ab

= Σa/b,abΣ
−1
ab Σab,b + ΣabΣ

−1
ab Σab,b

= Σa/b∪ab,abΣ
−1
ab Σab,b

= Σa,abΣ
−1
ab Σab,b

(A.194)
So (i) is established from (i

′
).

It is easy to get (i
′
) from (i) by going through the opposite direction.

Hence, statements (i) and (i
′
) are equivalent.

Prove Statements (i
′
) and (ii)are equivalent.

Proof. Since
Σa/b,b/a = Σa/b,abΣ

−1
ab Σab,b/a (A.195)

So
cov(Xa/b,Xb/a|Xab) = Σa/b,b/a − Σa/,abΣ

−1
ab Σab,b/a = 0 (A.196)

Which means
Xa/b |= Xb/a|Xab (A.197)

Also
ab is the rest of C exclude a/b and b/a (A.198)

Hence, from [2]
(Σ−1)a/b,b/a = 0 (A.199)

So (ii) is established from (i
′
).

It is easy to get (i
′
) from (ii) by going through the opposite direction.

Hence, statements (ii) and (i
′
) are equivalent.

Prove Statements (i) and (iii) are equivalent.
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Proof. Since
Σa,b = Σa,abΣ

−1
ab Σab,b (A.200)

So
cov(Xa,Xb|Xab) = Σa,b − Σa,abΣ

−1
ab Σab,b = 0 (A.201)

So
Xa |= Xb|Xab (A.202)

It is easy to get (i) from (iii) by going through the opposite direction.
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