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Abstract

The use of eye tracking analysis to understand human behavior and cognition is increas-

ingly prevalent in user experience research. Eye gaze data consists of a sequence of eye

movement events, such as fixation and saccade, which can be used to analyze focus of

attention and awareness under a variety of visual stimuli. The distribution of gaze points

within individual fixations, which we call micro-patterns, has to date been largely un-

explored. This work uses mathematical optimization and machine learning to explore

micro-patterns in gaze data, and thereby improve the fundamental unit of analysis for at-

tention and awareness in eye-tracking studies. The result is enhanced accuracy of location

and level of attention intensity.

The primary research is to study micro-patterns in gaze data by developing fixation

detection algorithms using data science technologies. Fixation inner-density (FID), in-

troduced for the first time in this dissertation, measures the compactness of a fixation. It

exhibits significant information about focused attention and effort. In Chapter 1, integer

optimization and algorithmic techniques are combined to identify fixations in gaze point

sequences by optimizing for inner-density. The computational results in Chapter 1 to-

gether with the experiments in Chapter 2, demonstrate that this approach, also known as

the FID filter, outperforms methods used in existing commercial eye trackers in fixation

refinement. Moreover, it has great potential to contribute to user experience research by

providing better representation of attention and awareness, which is the fundamental unit

of analysis in behavioral studies.

We further extend this research in two dimensions. The first extension, known as the

FID+ filter, advances the integer optimization techniques to identify fixation outliers in

gaze point sequences. As introduced in Chapter 3, this enhances the FID filter by ac-

counting for outlier sensitivity. The second extension is a set of experiments to explore

the automated recommendation of the density intensity modulation parameter α to the

FID filter users. Chapter 4 discusses current findings from the experiments of recom-

mending suitable α levels on how two eye-tracking datasets were manually labeled, and

experimental findings on recommending suitable α levels.

These developments serve as fundamental building blocks for a real-time system for

gaze fixation detection using inner-density. Such a system can provide instant and ac-

curate gaze analysis, and thereby enable the ability to provide immediate feedback to

the user. This may have significant implications and expand the application scope of eye

tracking, and will be beneficial to Human Computer Interaction and behavioral research

through the development of innovative and personalized user experiences.
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Chapter 1

Identifying Fixations in Gaze Data

via Inner-Density and Optimization

Eye tracking is an increasingly common technology with a variety of practical uses. Eye

tracking data, or gaze data, can be categorized into two main events: fixations represent

focused eye movement, indicative of awareness and attention, whereas saccades are higher

velocity movements that occur between fixation events. Common methods to identify

fixations in gaze data can lack sensitivity to peripheral points, and may misrepresent

positional and durational properties of fixations. To address these shortcomings, this

chapter introduces the notion of inner-density for fixation identification, which concerns

both the duration of the fixation, as well as the proximity of its constituent gaze points.

Moreover, this chapter demonstrates how to identify fixations in a sequence of gaze

data by optimizing for inner-density, which is a representative of fixation micro-patterns.

After decomposing the clustering of a temporal gaze data sequence into successive re-

gions (chunks), we use nonlinear, linear 0–1 and second-order cone program optimization

formulations to find the densest fixations within a given data chunk. Our approach is

parametrized by a unique density intensity controller parameter α that adjusts the degree

of desired density, allowing decision makers to have fine-tuned control over the density

in the process. We call the resulting algorithm as fixation inner-density (FID) filter. We

show that our problem is fixed-parameter tractable, so we also develop a polynomial-time

algorithm to find small number of fixations in data chunks. Computational experiments

on real datasets demonstrate the efficiency of our optimization-based approach. Fixations

identified through our approach exhibit greater density than existing methods, thereby

enabling the refinement of key gaze metrics such as fixation duration and fixation center.
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1.1 Introduction

Research interest in understanding human behavior and cognition via eye tracking tech-

niques has existed for a long time. With the increasing availability of low-cost eye tracking

devices, it is evaluated that eye tracking devices will become pervasive accessories for com-

puters in the near future [1]. The basic function of an eye tracking device is collecting

gaze data, which represent eye movement when a visual stimulus is presented. The study

of gaze data is useful in many different areas, such as understanding of the human visual

system [2], diagnosis of psychological disorders [3], analysis of marketing techniques [4],

design of products [5], and web experience [6].

Precisely understanding the recorded gaze data plays a key role for eye movement

behavior applications [7]. This understanding comes from the translation of raw, longitu-

dinal gaze data into distinct eye-movement, or oculomotor, events. This process is known

as fixation identification [8], and it separates gaze data into two primary event types:

fixations and saccades. Fixations are pauses over informative regions of interest, where

cognitive processing is believed to occur, whereas saccades are rapid movements between

fixations, used to recenter the eye on a new location [8, 9]. Fixations are the primary unit

of analysis for attention and awareness studies. Fixations characterize attention because

they represent effort in maintaining a relatively stable gaze to take foveal snapshots of an

object for subsequent processing by the brain [1].

To date, computational analysis has enabled a great deal of progress towards translat-

ing gaze data into fixations. Primary existing methods for identifying fixations use either

gaze location (e.g., I-DT filter) or velocity metrics (e.g., I-VT filter). Methods based on

the former typically use a constant area size as the threshold for grouping consecutive

gaze points into a fixation, while the latter use a fixed velocity threshold to separate fix-

ations from saccades. While these existing approaches are relatively simple to implement

and generally effective, they can lead to issues with precision because they are prone to

including points on the fringe of tolerance settings, thereby skewing summary fixation

metrics (further discussed in Section 1.2).

Our work makes two novel contributions to address these shortcomings. The first

is the identification of fixations via inner-density, which carries two characterizations of

cognitive effort: the duration of a fixation, as well as its proximal compactness. It has

been shown that fixation duration is a reliable measure of attention [1], and proximal

compactness of individual gaze points in a fixation represent a person’s focused attention

and increased levels of information processing [10]. Fixations with greater inner density

tend to exclude peripheral gaze points, thereby improving the accuracy of traditional

fixation metrics.

While there is great potential to use inner-density for refining gaze data, there are
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no known studies that use the concept to identify fixations, let alone optimization-based

approaches. Our second contribution is a computational approach to identify the densest

fixations from gaze data, which we call the fixation inner-density (FID) filter. Given the

impressive progress of modern optimization technology (for one such review in the context

of data analysis see, e.g., [11]), exact methods that provide a performance guarantee on

solution quality are now a reality; that is, given a dense fixation, optimization methods

can prove no denser fixation exists. This is incredibly important when exact, rather than

approximate, oculomotor event identification is desirable, or even essential.

1.2 Background

Gaze data has a particular structure, and must be reliably processed to generate meaning-

ful information. Prior to proposing fixation inner-density and its associated optimization

as a novel approach to measure information processing behavior, we review existing meth-

ods.

The process of fixation identification separates gaze data into distinct oculomotor

events (e.g., fixations and saccades). The gaze data we consider results from user interac-

tion with 2D static stimuli, e.g. visual computer displays, as a major focus of behavioral

research is to understand user interaction with static screen based technologies. This

gaze data is recorded in two dimensions (x, y) for every discrete time point t. Hence

each 2D data point is an (x, y, t) triplet. Each time-series sequence S of consecutive

discrete (x, y, t) gaze data points can be computationally separated into constituent fix-

ations. Common sampling rate frequencies range from 30 Hz to 300 Hz, though some

eye tracking devices can record at levels exceeding 1,000 Hz [12]. Once gaze data has

been computationally processed into its fundamental oculomotor events, each event can

be characterized using summary statistics, for example the duration and center (centroid)

of the event. Figure 1.1 depicts approximately 10,000 gaze points in a segment of a real,

raw gaze data sequence in (x, y, t) space, which arises from a task of reading on a 2D

static computer display stimulus. The problem of interest is to separate this gaze data

into distinct fixations.

Two primary methods exist to analyze and process gaze data: those based on gaze-

point position, such as the I-DT, and those based on gaze-point velocity, such as the I-VT

for in-depth descriptions of these approaches, see, e.g., [8, 13]. It is widely accepted that

all existing event detection methods have flaws [7]. This is due in part to the arbitrary and

somewhat interpretive nature of classifying gaze data points into representative events.

The author in [14] contends that the reason there are so many ways to identify fixations

(clusters) is because the notion cannot precisely be defined; rather, it is in the eye of the

3



Figure 1.1: Raw (x, y, t) gaze data depicted in three dimensions, as recorded by a typical
eye tracking device.

beholder. Even so, there are basic criteria, many used by existing approaches, that are

suggestive for a group of points to be considered as a fixation.

1.2.1 Drawbacks of I-DT Filter

The I-DT is a well-known position-based approach. This algorithm separates gaze data

using a predefined maximum dispersion threshold D together with a minimum duration.

It uses a fixed-area window to construct fixations by sequentially adding points beyond a

minimum duration, until the dispersion threshold is exceeded [8]. The I-DT can yield fairly

accurate results, is rather straightforward to implement, and has favorable performance

time. However, a significant drawback arises from the interaction with the threshold D

and the dispersion metric it uses:

D(x, y) = D(x) +D(y) = [max(x)−min(x)] + [max(y)−min(y)]. (1.1)

Figure (1.2a) illustrates some of the challenges with I-DT in assuming a simple, con-

stant dispersion threshold D. As long as the D(x, y) measure does not exceed D, points

are considered to belong to the same fixation. Figure (1.2a) raises significant doubts as

to whether the sixth point belongs to the same fixation as the first five gaze points. This

in turn can skew metrics such as the fixation duration and centroid, which are often used

to assess user reaction to stimuli [15, 16].

1.2.2 Drawbacks of I-VT Filter

The I-VT algorithm may be the simplest of all fixation detection approaches, which

sequentially categorizes each gaze point based on its point-to-point velocity. If the velocity

meets or exceeds a velocity threshold V , it is identified as a saccade; below, the point

belongs to a fixation [8]. I-VT is an elegant algorithm; as the authors in [8] discuss, it

is a rather straightforward and robust approach, because the physical and physiological

nature of the velocity profiles naturally separate data points into fixations or saccades. In
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(a) The I-DT algorithm may misclassify gaze
points under static dispersion threshold D.
Whether to include the sixth point in the fix-
ation, while technically within outer threshold
D, is questionable.

1
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I-VT Centroid
Denser Centroid
Gaze Points

(b) The I-VT algorithm may misclassify gaze
points under constant velocity threshold V .
The fifth and sixth points, while technically
having velocities below threshold V , may not
belong to the fixation.

Figure 1.2: Depicting some limitations of standard methods for fixation identification.
For both the I-DT and I-VT algorithms, the center points (centroids) appear as lighter
triangles, shifted to the upper right, as opposed to those of the denser fixation centroids,
which are depicted with darker triangles and are more representative of the center of
fixation of interest.

fact, the I-VT algorithm serves as the foundation for the fixation detection algorithms in

major commercial eye tracking devices such as Tobii [17]. The I-VT algorithm features a

simple implementation, efficient performance, and is fairly accurate.

Even so, the I-VT algorithm also has significant limitations. It essentially considers

any consecutive group of points below a specified velocity threshold as a fixation. It

then uses this grouping as a basis for summary statistics, such as the (x, y) centroid (by

collapsing into a single point the individual x and y points according to their average

values). Hence, the simplicity of the I-VT algorithm may result in misclassification, that

is, points being classified as within the same fixation – when in reality they are distinct –

because they do not strictly exceed the velocity threshold. As can be seen in Figure (1.2b),

the inclusion of gaze points that are technically below the velocity threshold, but would

not otherwise be included in a fixation, can skew important metrics such as the fixation

duration and centroid. When considering the first four fixation points in Figure (1.2b),

the centroid appears lower, and to the left, of where it appears when all six points are

included in a fixation.

Although a few studies exist on enhancing the I-VT algorithm (see, e.g., [7, 18]), the

aforementioned drawback remains detrimental for applications that demand precision.

To resolve inherent discrepancies present in commonly used methods for fixation identi-
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fication, we propose the concept of inner-density, which refers to both the duration and

concentration of the gaze points that form a fixation. In the next section we explain how

we use inner-density to identify the densest fixations in a stream of temporal gaze data.

1.3 Technical Development

In this section we address the core challenge of fixation identification in gaze data. We

begin with a formal problem description. We then highlight three unique insights to

facilitate efficient solution of the problem, and proceed to introduce three mathematical

programming formulations that identify fixations by optimizing for inner-density, together

with an iterative algorithm.

1.3.1 Fixation Identification: Formal Problem Description

Fixation identification is the process of translating a longitudinal sequence of raw eye-

movement data points into constituent fixation events and, thereby, the saccadic events

between them [8]. We are unaware of any formal characterization of the fixation identifi-

cation problem, though a related problem of sequence segmentation is discussed in [19],

from which we adapt some notation.

Formally, we consider a raw time-series sequence S of T d-dimensional gaze points, so

that S = {t1, . . . , tT }. Let ST denote all such sequences of length T . We seek to form F
fixations from these T gaze points, with F known a priori. An important consideration

is to determine which points belong to fixations; some should not be included as they

are saccade points, or possibly some other noise. Points that do form fixations must be

consecutive in time, and together should be of a minimum length to have meaning with

respect to cognitive processing. At a fixed sampling frequency, this is equivalent to stating

that every fixation must contain a minimum number of points N . Hence, the F formed

fixations constitute segments of the gaze sequence S that are mutually exclusive, and of

a sufficient minimum length. Of particular interest to us are dense fixations, which we

will further qualify.

An F -segmentation F of S can be uniquely represented by F pairs of fixation “seg-

ment” breakpoints. That is, F = {(f1, f2), . . . , (f2F−1, f2F)}, with fi ∈ S. These

pairs of breakpoints denote the fixation points in F through the respective intervals

[f2j−1, f2j] , j = 1, . . . ,F . Hence fixation j contains f2j − f2j−1 + 1 gaze points, which

must meet or exceed N for information processing to occur, so that f2j−1 + N − 1 ≤
f2j, j = 1, . . . ,F .

Let ST denote all possible segmentations of gaze sequences of length T , and let ST ,F ,N

denote all possible segmentations of sequences of length T into F fixation “segments” of

6



length N or greater. Of particular interest is to minimize error criterion E : ST ×ST 7→ IR

that assesses the quality of the formed fixations. Specifically, E should characterize two

density-related aspects: fixation duration (a relatively large number of gaze points) and

compactness (gaze points in close proximity).

For sequence S and error function E, we define the optimal F -segmentation F of S
as:

Fopt(S,F) = arg min
F∈ST ,F,N

E(S, F ), (1.2)

that is, Fopt is a grouping of S into F fixations that minimizes the function E(S, F ).

Problem 1 Fixation Identification. Given a raw longitudinal gaze sequence S con-

taining T total time points, integer values F and N respectively denoting the number

of fixations and minimum number of points, together with error function E, identify

Fopt(S,F).

As it turns out, this problem has a very large number of possible segmentations.

A related problem, sequence segmentation, is also concerned with optimal segmentation

of time series sequences of data [19, 20]. They too consider minimizing an error criterion,

for example distance from the center of the sequence. However a key distinction is that

in the sequence segmentation problem, all points must be used to form relevant segments

(clusters). On the contrary, the fixation identification problem forms fixations with only

the most salient time points – that is, there are data points in the gaze sequence that

should not be included in any fixation. A dynamic programming algorithm is presented

in [19] to solve the sequence segmentation problem in O(T 3F) time, and it is further

reduced to O(T 2F) time through a series of clever algorithmic improvements.

While a dynamic program similar to that of [19] also exists for the fixation identifi-

cation problem, it has O(T 3F) complexity due to the need to process the assignment of

points to fixations as well as to intervals between fixations, and unfortunately it becomes

prohibitive to solve for even modest sizes of the fixation identification problem (indeed, [19]

similarly notes “...cubic complexity makes the dynamic programming algorithm prohibitive

to use in practice.”). This suggests alternative solution approaches, which are discussed in

Section 1.4.5 are necessary that further exploit the structure of the fixation identification

problem.

1.3.2 Three Mathematical Insights

We next highlight insights that enable us to develop an algorithmic approach to identify

the densest fixations in S.
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Decomposition Principle: Saccades Separate Fixations

A gaze sequence S contains a large number of (x, y) points over time. Common lengths

of gaze data sequences are in the tens to hundreds of seconds. For frequencies of 30 Hz

to 300 Hz, S can contain anywhere from several hundred, to hundreds of thousands of

gaze points, and may contain hundreds if not thousands of fixations. For such realistic

data instances, the fixation identification problem is prohibitive for even a moderate

number of fixations, as proving the optimality of clusters on large datasets is known to

be computationally demanding [21–23].

An alternative perspective leverages the specific structure of the sequence S. Fixations

must occur over temporally consecutive gaze points. Hence, any point that is identified as

saccadic (e.g., by the I-VT filter) is a separator of fixations. Moreover, any small number

of consecutive points may be removed if they are below a reasonable lower threshold for

information processing to occur (similar to the I-DT filter). By removing these two types

of gaze points, the gaze sequence S becomes a collection of disjoint sets, or chunks, of

gaze points where fixations may occur – that is, there are no saccadic points, and each

chunk contains at least a minimum number of gaze points to be considered a fixation.

Such a process separates S into K chunks of potential fixation points Ck, k = 1, . . . ,K.

In particular, Ci ∩ Cj = ∅, 1 ≤ i < j ≤ K, and ∪k=1,...,K Ck ⊆ S. Each of these chunks

can subsequently be explored, independently, for (dense) fixations.

Fixations Contain Consecutive Points in Time

There are fundamental differences between clustering temporal versus non-temporal data.

In particular, fixations must adhere to temporal restrictions, which represents an extra

condition for typical (atemporal) clustering tasks. Once a fixation begins, the included

points must be consecutive in time, until the fixation ends. Stated another way, a fixation

may conclude only once in a given sequence of gaze points. If this were not the case,

fixations that occur in the same proximity, but separated over distinct periods of time,

may be considered as a single fixation. Moreover, saccadic points that collect over time

in the same region could also be incorrectly classified as a fixation [24]. To facilitate the

ensuing discussion, define T F binary variables z, with ztf = 1 if gaze point t is included

in fixation f , and 0 otherwise.

T∑
j=t+1

zjf ≤ T (1− ztf + zt+1,f ), t = 1, . . . , T − 1; f = 1, . . . ,F (1.3)

Time consistency constraint set (1.3) ensures that every fixation f has only consecutive

gaze points and terminates at most once. For a fixation f starting at time point p and
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concluding at q, the constraint set in (1.3) ensures in a linear fashion that zt,f
t:1≤t<p

= 0,

zt,f
t:p≤t≤q

= 1, and zt,f
t:q<t≤T

= 0. Moreover, this is accomplished with T F − F additional

constraints, and no new variables.

Controlling Inner-Density of Fixations

Given that fixation identification is somewhat subjective in nature, all automated clas-

sification methods require some interpretation. Fixations properties can fluctuate as the

task and stimulus vary. To account for this, we incorporate a nonnegative parameter α

that acts to balance the tradeoff between the inclusion of additional gaze points and the

spatial concentration of gaze points within fixations. This is done by incorporating the

following term in the objective function:

F∑
f=1

T∑
t=1

α(1− ztf ), (1.4)

where larger α values provide greater incentive (that is, greater penalty) to include ad-

ditional fixation points, at the expense of spatial proximity. Fixation inner-density can

thereby be controlled by adjusting the level of α. As α increases, there is additional

incentive to cluster points, with α→∞ tantamount to clustering all points (as in [19]).

1.3.3 Mathematical Modeling

We next present three optimization-based formulations that make use of these three key

insights to identify fixations in gaze data chunks by optimizing for density. The first

formulation bears some resemblance to a clustering approach proposed by [25], which

has the advantage of finding 2D fixations with no strong regard for their shape. The

formulation is nonlinear and requires linearization to solve efficiently. The second is an

original, linear formulation that we develop, and has a related goal of bounding fixations

with a square box of minimal diameter. The third is a second-order cone programming

formulation for using circular bounding regions in fixation identification. We note that the

following mathematical programming formulations are valid for any values of T and F ,

notably including smaller values that arise from the output of the decomposition principle

described in Section 1.3.2, i.e. a single chunk Ck.

MINLP Formulation: Minimize Average Intra-Fixation Sum of Distances

The main idea of this formulation is to ensure that fixations are constructed by minimiz-

ing the average intra-fixation sum of distances. Whereas every point must have a cluster
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assignment in [25], in our formulation we enable gaze points to be selected for a fixation

only when it improves the objective of optimizing the density-based metric – it is not

necessary to include every data point in a given chunk. To offset the tendency to select

fixations of minimum duration, we incorporate the idea in (1.4) to balance the tradeoff

between highly compact clusters and non-inclusion. Our formulation uses values dij as

the Euclidean distances between two data points i and j, i < j, and N is the minimum

number of gaze points that could reasonably constitute a fixation.

minimize
F∑
f=1

[∑T −1
i=1

∑T
j=i+1 dijzifzjf∑T
t=1 ztf

+ α

T∑
t=1

(1− ztf )

]
(1.5a)

subject to
F∑
f=1

ztf ≤ 1, t = 1, . . . , T , (1.5b)

T∑
t=1

ztf ≥ N , f = 1, . . . ,F , (1.5c)

T∑
j=t+1

zjf ≤ T (1− ztf + zt+1,f ), t = 1, . . . , T − 1; f = 1, . . . ,F , (1.5d)

ztf ∈ {0, 1}, t = 1, . . . , T , f = 1, . . . ,F . (1.5e)

Constraint set (1.5b) ensures that gaze points are assigned to at most one fixation.

Constraint set (1.5c) ensures a fixation contains at least N points, and as per 1.3, con-

straint set (1.5d) ensures a fixation concludes at most once. Objective function (1.5a)

contains two terms, one resembling the objective of [25], and a second that incentivizes

inclusion of gaze points into fixations. Rather than d2ij as in [25], we use a simpler objec-

tive term of dij (this effect can be offset by adjusting the level of α). This formulation

has T F binary variables and T F + T linear constraints. The specific instance with α

very large and N = 1 yields a model that can solve the sequence segmentation problem

of [19].

The first term of the objective function is nonlinear and fractional. In addition to

containing the ratio of variable terms, it has a bilinear product component zifzjf in the

numerator. This bilinear term can be linearized by introducing variables yijf ∈ IR+ equal

to the product of zifzjf , enforced implicitly via the following three constraint sets:

yijf ≤ zif , i = 1, . . . , T − 1; j = i+ 1, . . . , T ; f = 1, . . . ,F , (1.6a)

yijf ≤ zjf , i = 1, . . . , T − 1; j = i+ 1, . . . , T ; f = 1, . . . ,F , (1.6b)

yijf ≥ zif + zjf − 1, i = 1, . . . , T − 1; j = i+ 1, . . . , T ; f = 1, . . . ,F . (1.6c)
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The remaining nonlinear fractional term of the objective can be linearized through an

approach similar to [21, 26]. Define uf = 1∑T
t=1 ztf

, f = 1, . . . ,F . Continuous variable

uf has a lower bound of 1/T and, from (1.5c), an upper bound of 1/N . This gives a new

objective function of:
F∑
f=1

T −1∑
i=1

T∑
j=i+1

dijyijfuf , (1.7)

which remains nonlinear. As yijf is binary and uf is a bounded continuous variable, this

product can be further linearized in a manner similar to (1.6a)–(1.6c). Define continuous

variable vijf to be the product of yijfuf . We can enforce this relationship implicitly

through the following four constraint sets:

vijf ≤
1

N
yijf , i = 1, . . . , T − 1; j = i+ 1, . . . , T ; f = 1, . . . ,F , (1.8a)

vijf ≥
1

T
yijf , i = 1, . . . , T − 1; j = i+ 1, . . . , T ; f = 1, . . . ,F , (1.8b)

vijf ≤ uf −
1

T
(1− yijf ), i = 1, . . . , T − 1; j = i+ 1, . . . , T ; f = 1, . . . ,F , (1.8c)

vijf ≥ uf −
1

N
(1− yijf ), i = 1, . . . , T − 1; j = i+ 1, . . . , T ; f = 1, . . . ,F . (1.8d)

Lastly, it is important to ensure that uf is indeed the reciprocal of
∑T

t=1 ztf . Akin

to [21], we can restrict the sum of the variable vijf over all i, j, i < j pairs. Suppose∑T
t=1 ztf = P . Then it is not difficult to show that

∑T −1
i=1

∑T
j=i+1 yijf = P·(P−1)

2
. Hence∑T −1

i=1

∑T
j=i+1 vijf = P·(P−1)

2
/P = P−1

2
. Rewriting this expression yields:

2
T −1∑
i=1

T∑
j=i+1

vijf −
T∑
t=1

ztf = −1, f = 1, . . . ,F . (1.9)

The final, linearized reformulation is:

minimize
F∑
f=1

[
T −1∑
i=1

T∑
j=i+1

dijvijf + α
T∑
t=1

(1− ztf )

]
, (1.10a)

subject to (1.5b), (1.5c), (1.5d),

(1.6a), (1.6b), (1.6c), (1.8a), (1.8b), (1.8c), (1.8d), (1.9), (1.10b)

1

T
≤ uf ≤

1

N
, f = 1, . . . ,F , (1.10c)

0 ≤ vijf ≤
1

N
, i = 1, . . . , T − 1; j = i+ 1, . . . , T ; f = 1, . . . ,F , (1.10d)

ztf ∈ {0, 1}, t = 1, . . . , T , f = 1, . . . ,F , (1.10e)

yijf ∈ {0, 1}, i = 1, . . . , T − 1; j = i+ 1, . . . , T ; f = 1, . . . ,F . (1.10f)
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MIP Formulation: Minimize Square Area of Fixations

We now present our second formulation for finding dense fixations. It attempts to balance

enveloping the largest number of points with a 2D square of minimal area, as measured by

the side length r. As in the first formulation, the model is parametrized by the expression

described in (1.4).

minimize
F∑
f=1

[
rf + α

T∑
t=1

(1− ztf )

]
, (1.11a)

subject to (1.5b), (1.5c), (1.5d), (1.11b)

xf − rf −Mx(1− ztf ) ≤ xt ≤ xf + rf +Mx(1− ztf ), t = 1, . . . , T ,
(1.11c)

yf − rf −My(1− ztf ) ≤ yt ≤ yf + rf +My(1− ztf ), t = 1, . . . , T ,
(1.11d)

lx ≤ xf ≤ ux; ly ≤ yf ≤ uy, f = 1, . . . ,F , (1.11e)

rf , xf , yf ∈ IR, f = 1, . . . ,F ; ztf ∈ {0, 1}, t = 1, . . . , T , f = 1, . . . ,F .
(1.11f)

The model has binary variables ztf for assigning time point t to fixation f , and contin-

uous variables xf and yf that indicate the center of fixation f . Bounds for xf and yf are

constructed using lx = min
t
xt, ux = max

t
xt, ly = min

t
yt, and uy = max

t
yt, and further we

set the values of Mx = max {|xt − lx|, |ux − xt|} and My = max = {|yt − ly|, |uy − yt|}.
Constraints (1.11c)–(1.11d) are box constraints to ensure that, if time point t is assigned

to fixation f (i.e., ztf = 1), then it lies geometrically within the appropriate square with

side length rf . Again, constraints (1.11b) represent the fundamental constraints that

simply ensure, respectively, no time point is assigned to more than one fixation, every

fixation contains a minimum number of points, and every fixation is composed of con-

secutive time points. Variable definitions and bounds are given in (1.11e)–(1.11f), while

objective (1.11a) minimizes the total square fixation area, while the α term accounts for

the tradeoff on the number of points included.

MISOCP Formulation: Minimize Circle Area of Fixations

Similar to the MIP formulation for minimizing the square areas of fixations in the original

manuscript, the MISOCP [27] formulation attempts to balance minimizing the fixation

area with inclusion of gaze points. The model contains second order conic constraints,

and appears as follows.
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minimize
F∑
f=1

[
rf + α

T∑
t=1

(1− ztf )

]
, (1.12a)

subject to (1.5b), (1.5c), (1.5d), (1.12b)

(xt − xf )2 + (yt − yf )2 ≤ r2f +M(1− ztf ), t = 1, . . . , T ; f = 1, . . . ,F ,
(1.12c)

rf ∈ IR; xf ∈ [lx, ux], yf ∈ [ly, uy], ztf ∈ {0, 1},

t = 1, . . . , T , f = 1, . . . ,F . (1.12d)

Similar to the construction of MIP formulation, MISOCP formulation has continuous

variables xf and yf , the circle center of fixation f . lx, ly, ux and uy are the bounds for xf

and yf , but we further set the value ofM = [(ux− lx)2 + (uy− ly)2]/4. Constraint (1.12c)

is a second-order conic constraint to ensure that, if time point t is assigned to fixation

f (i.e., ztf = 1), then it lies geometrically within the appropriate circle with radius rf .

Variable definitions and bounds are given in (1.12d), and objective (1.12a) minimizes the

total circumscribed fixation area.

1.3.4 Algorithm to Identify Densest Fixations

We provide an algorithmic approach, which we call the fixation inner-density (FID) filter,

to identify the densest fixations from a sequence S of gaze points using one of optimization

formulations (1.10a)–(1.10f), (1.11a)–(1.11f) or (1.12a)–(1.12d).

Algorithm 1 Identify Densest Fixations

Input: Sequence S separated into distinct chunks of consecutive (x, y, t) data Ck, k =
1, . . . ,K; parameter α.

1: Set L ← ∅.
2: for k = 1, . . . ,K do
3: Set T ← T k.
4: for F = Fkmin, . . . ,Fkmax do
5: With α, formulate and solve optimization formulation (1.10a)–(1.10f), (1.11a)–

(1.11f) or (1.12a)–(1.12d).
6: if optimal solution found then
7: Add solution to L.
8: return L.

Algorithm 1 processes all (x, y, t) gaze-data chunks Ck, k = 1, . . . ,K from sequence S
into constituent fixations by optimizing for density using formulation (1.10a)–(1.10f), (1.11a)–

(1.11f) or (1.12a)–(1.12d). Initially L is empty, and by sequentially iterating over each
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chunk Ck, k = 1, . . . ,K, it sets T to the total number of gaze points T k in chunk Ck,
and then formulates an optimization problem for every level of F . For each chunk Ck,
fixations of maximum density (with respect to α) are recorded and stored in L.

1.4 Computational Experiments

We now proceed to discuss the computational performance of using Algorithm 1 to sequen-

tially call formulations (1.10a)–(1.10f), (1.11a)–(1.11f) and (1.12a)–(1.12d), on real gaze

datasets from two tasks that differ with respect to cognitive effort: online shopping [28],

and solving math problems [10]. The shopping task requires participants to purchase

three items in a simulated grocery store environment, while the math task requires par-

ticipants to answer a set of Graduate Record Examination Math Section questions. The

task of reading and processing Math GRE questions by nature requires a higher level of

information processing than the shopping task, hence it is more cognitively complex.

1.4.1 Datasets and Equipment

We considered two datasets, one containing eye movement data from the shopping task

and one from the math task. Each dataset contains R = 10 eye tracking recordings (in-

dexed by `). Participants were recruited from the student population in a Northeastern

university of the United States. The first (shopping task) dataset was recorded by a Tobii

Pro X2-30 eye tracker [29], with a frequency of 30 Hz. Each recording is between seven

and twelve minutes in duration. The second (math task) dataset was recorded by a Tobii

Pro TX300 [29]. Each recording is approximately five minutes in duration. This dataset

was originally recorded at 300 Hz. To compare the fixation patterns between shopping and

math tasks, we also downsampled this dataset for each recording by retaining the first gaze

point, and every tenth point thereafter, thereby generating a new reading dataset at 30

Hz. All experiments were run on an Intel core i7-4700MQ computer with 2.40GHz and 8.0

GB RAM running 64-bit Windows 8. We used the Gurobi Optimizer [30] with Python 2.7

interface for the optimization modeling, algorithmic design, and solution process, and note

that we explicitly pursue global optima for each optimization problem by using default

values for the Gurobi MIPGap (1e-4) and MIPGapAbs (1e-10) parameters. MATLAB was

used for designing the I-DT filter [31], while Tobii Studio was used for the I-VT filter [17].

A time limit of 12 hours (wall-clock) was present for all computational experiments.
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1.4.2 Data Preprocessing

For each recording `, gaze data is preprocessed, as discussed in Section 1.3.2, by separat-

ing the data sequence S` into chunks Ck
` , k = 1, . . . ,K`, via saccadic events. We used

the Tobii Studio I-VT filter [8, 17] to do so, together with a constant velocity threshold

of V = 30◦/s, which is suitable for a variety of types of data under different sampling

frequencies and noises [17]. Because the I-VT processing can result in one or more consec-

utive, non-saccadic gaze points with total duration below a theoretical minimum fixation

duration which we take to be 100ms; see, e.g., [9, 13, 32], we also preemptively removed

these from consideration.

Stimuli
Frequency

(Hertz)
Avg # of All

Points in Sequence
Avg # of

Data Chunks
Avg # of

Valid Data Chunks
Avg # of Points in
All Data Chunks

Avg # of Points in
Valid Data Chunks

Shopping Data 30 18,207 3,017 1,178 10,153 7,737
GRE Math Reading Data 30 9,058 752 575 8,092 6,822
GRE Math Reading Data 300 90,580 3,612 721 80,956 66,677

Table 1.1: Summary results on separated data with I-VT filter, averaged over ten record-
ings per dataset.

The minimum number of gaze points for a fixation is dependent on the frequency h

(in Hertz) of the eye tracking device. From the literature, fixation durations are typically

estimated in the range of 60 − 400ms; in general a minimum duration dm = 100ms is a

reasonable lower-bound for information processing to occur [9, 13, 32]. A straightforward

choice of N is then N =
⌈

h·dm
1,000ms

⌉
. Using this we set the minimum number of gaze points

to be N = 3 and N = 30 for the 30 Hz and 300 Hz datasets, respectively. Table 1.1 details

summary results on the processed sequences prior to, and after, removing these small sets

of points; we term as valid those chunks (and points) that remain after removal. In general,

lower values of N result in smaller, more numerous data chunks for a given data sequence.

After preprocessing each S`, ` = 1, . . . ,R, into chunks Ck
` , k = 1, . . . ,K`, we then run

Algorithm 1 using one of formulations (1.10a)–(1.10f), (1.11a)–(1.11f) or (1.12a)–(1.12d).

We set Fkmin = Fkmax = 1 for all of our experiments, as manual inspection predominantly

indicated each data chunk contained a single fixation.

1.4.3 Evaluation Metrics

We use several metrics to evaluate the performance of our methods for each dataset and

level of α. The average fixation duration δavg of a sequence S measures, in seconds, the

time spent in fixations, averaged over all fixations. The cover rate γ of a data sequence S
measures the ratio of the number of gaze points included in fixations, to the total number

of gaze points (fixation and non-fixation) in a given data instance; [9] also reports this
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measurement (“the percentage of points-of-regard that are included in fixations”). Cu-

mulative computational runtimes are also recorded, in seconds of wall-clock time, for both

the Gurobi Optimizer and Algorithm 1. Each of the metrics we consider are averaged

over all ten recordings for each respective dataset.

Figure 1.3 is a small illustrative example depicting the duration and cover rate. It

depicts a small data chunk (outer bounding region) containing eight gaze points obtained

from 30 Hz data. The inner fixation, namely gaze points 2 through 7, has a duration of

δ = 6
30

= 0.2 seconds. Supposing that the length of this recording was 8 total points, the

cover rate is γ = 6
8

= 0.75, because six of the eight points were included in the fixation.

We also consider three distinct representations of density. The paper of [25] advocates

for minimizing the average intra-fixation sum of distances, a measure that is inversely pro-

portional to density (so, effectively, the optimization maximizes density). Hence, to keep

with this convention we present our results from this perspective – the three expressions

we use to characterize density are such that smaller magnitudes represent greater density.

1

2

3
6

5

4

7

8

I-VT Centroid
Denser Centroid
Gaze Points

Figure 1.3: Duration δ and cover rate γ for a
single chunk. Our results refine those of I-VT,
including only six of the eight points, yielding
a denser fixation. In addition to duration and
cover rate differences, the centroid shifting is
also apparent.

The first of these metrics (ρ1) is

the average pairwise distances between

points within a fixation. Suppose that

P is the number of points contained in

the fixation, P > 2, and dpq is the Eu-

clidean distance between fixation points

p and q. Then ρ1 is expressed as:

ρ1 =

∑P−1
p=1

∑P
q=p+1 dpq(P
2

) . (ρ1)

The second metric ρ2 is similar to

ρ1. It has the same numerator of sum-

ming the pairwise distances of all in-

cluded fixation points, though the de-

nominator is simply P , which has the

effect of increasing the density for fixa-

tions with greater number of points:

ρ2 =

∑P−1
p=1

∑P
q=p+1 dpq

P
. (ρ2)

We consider ρ2 because of its clear relationship to objective function (1.10a) when

α = 0. It is meaningful to see how this metric varies under differing values of α.

The third metric (ρ3) is the minimal area square bounding box surrounding the fixation
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30 Hz Shopping Data 30 Hz GRE Math Reading Data

Duration Density Measures Cover Rate Center Shift Avg Runtime (s) Duration Density Measures Cover Rate Center Shift Avg Runtime (s)

α δavg (s) ρavg1 ρavg2 ρavg3 γavg λavg Gurobi Overall δavg (s) ρavg1 ρavg2 ρavg3 γavg λavg Gurobi Overall

0 0.1000 21.3300 21.3300 528.3056 0.1877 6.9322 39.2 55.6 0.1000 5.2815 5.2815 94.6009 0.2637 2.7312 131.0 151.3
3 0.1005 21.3200 21.3669 528.2375 0.1888 6.9244 129.6 146.4 0.1901 5.8623 10.9157 95.6769 0.5052 2.2796 – –
6 0.1075 21.3647 22.3935 527.9422 0.2040 6.8027 1,796.2 1,812.9 0.2496 6.6952 18.2435 98.9420 0.6674 1.4921 – –
9 0.1287 21.8642 27.2219 530.6561 0.2493 6.3368 1,911.2 1,928.1 0.2658 7.1121 21.7909 101.8035 0.7096 1.0694 – –
12 0.1500 22.6585 33.8933 537.9728 0.2946 5.6161 356.6 373.4 0.2722 7.3488 23.7653 103.7606 0.7258 0.8422 784.6 804.7
15 0.1655 23.4458 40.1121 547.7675 0.3268 4.8396 216.8 233.8 0.2747 7.4884 24.7490 105.3714 0.7319 0.7191 507.9 528.0
18 0.1752 24.1153 44.9136 557.6114 0.3466 4.1185 178.3 195.2 0.2759 7.5881 25.3391 106.7105 0.7345 0.6306 375.2 395.3
21 0.1821 24.7263 48.9410 569.2495 0.3606 3.4843 183.0 199.9 0.2765 7.6401 25.7045 107.6167 0.7359 0.5857 219.6 239.6
24 0.1871 25.2430 52.2651 580.8938 0.3704 2.9871 164.8 181.6 0.2768 7.7087 25.9153 109.1708 0.7365 0.5390 24.8 44.8
27 0.1906 25.6653 54.9576 591.0722 0.3774 2.5722 136.9 153.8 0.2770 7.7516 26.0471 110.1686 0.7369 0.5068 16.5 36.6
30 0.1934 26.0326 57.3728 601.0251 0.3831 2.1891 100.5 117.6 0.2772 7.7877 26.1815 111.2469 0.7372 0.4865 12.7 32.9

Table 1.2: Results of Algorithm 1 & formulation (1.10a)–(1.10f) on 30 Hz shopping and
GRE Math reading datasets.

divided by the number of fixation points it contains:

ρ3 =
(2r̂)2

P
. (ρ3)

The minimal square side length 2r̂ is derived from the optimal r̂ value in optimization

formulation (1.11a)–(1.11f). A final metric, the center shift λavg, is reported in more

detail in Section 1.4.4, in particular with respect to the performance of our approaches

versus the standard I-VT filter.

1.4.4 Computational Results and Discussion

We now discuss the results of our computational experiments for our proposed meth-

ods. Table 1.2 highlights computational results from running formulation (1.10a)–(1.10f)

on 30 Hz Shopping data (left) and 30 Hz GRE Math reading data (right). Table 1.3

documents the same information as Table 1.2, but using formulation (1.11a)–(1.11f). Ta-

ble 1.4 details the performance of formulation (1.11a)–(1.11f) on the larger 300 Hz dataset

(formulations (1.10a)–(1.10f) and (1.12a)–(1.12d) were not competitive at this higher fre-

quency). Table 1.5 reports the computational results for formulation (1.12a)–(1.12d) on

30 Hz Shopping data (left) and 30 Hz GRE Math reading data (right). Each table has a

similar format, with the rows indexed by trade-off parameter α, and the columns indicat-

ing various properties discussed in Section 1.4.3, which are obtained post-optimization by

averaging over all chunks in each of the ten data recordings.

The parameter α represents the trade-off in emphasis between the spatial compactness

versus the number of gaze points contained in a given fixation. At one extreme, a level

of α = 0 gives no incentive for inclusion, so very compact fixations tend to form with

minimal gaze points, that is, near the level of N . At the other extreme, larger α penalties

incentivize many gaze points to be included in the fixation, likely at the expense of spatial

proximity. Tension exists in between these two extremes for gaze points that, while within
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30 Hz Shopping Data 30 Hz GRE Math Reading Data

Duration Density Measures Cover Rate Center Shift Avg Runtime (s) Duration Density Measures Cover Rate Center Shift Avg Runtime (s)

α δavg (s) ρavg1 ρavg2 ρavg3 γavg λavg Gurobi Overall δavg (s) ρavg1 ρavg2 ρavg3 γavg λavg Gurobi Overall

0 0.1006 21.5012 21.6441 522.6540 0.1888 6.9010 8.2 44.2 0.1015 5.3435 5.4356 93.7965 0.2679 2.7093 7.7 40.4
1 0.1209 21.5645 26.7576 513.3601 0.2323 6.4350 10.3 46.6 0.2477 6.4484 19.5562 93.3753 0.6603 1.6307 6.4 39.6
2 0.1531 22.5559 37.6929 519.0029 0.3012 5.4906 9.7 46.3 0.2669 6.9389 23.0267 89.6347 0.7120 1.1170 4.1 37.3
3 0.1711 23.5078 45.9917 529.5563 0.3389 4.5600 8.7 45.3 0.2719 7.1749 24.1726 91.7787 0.7249 0.8920 3.5 36.6
4 0.1812 24.2505 51.3489 541.7839 0.3595 3.8215 7.7 44.3 0.2740 7.3090 24.7753 93.4555 0.7299 0.7780 3.2 36.5
5 0.1873 24.8422 54.9765 553.5813 0.3714 3.2194 6.9 43.6 0.2752 7.4159 25.2025 95.1061 0.7327 0.7007 3.1 36.3
6 0.1908 25.2697 57.2888 562.2031 0.3785 2.7894 6.2 42.9 0.2759 7.4883 25.4862 96.3742 0.7344 0.6406 3.0 36.3
7 0.1932 25.6052 59.1002 571.0291 0.3834 2.4927 5.8 42.5 0.2763 7.5522 25.7068 97.5203 0.7354 0.5861 3.0 36.5
8 0.1951 25.9119 60.5458 580.0977 0.3871 2.1942 5.4 42.0 0.2765 7.5892 25.8133 98.1695 0.7359 0.5581 2.9 36.2
9 0.1965 26.1606 61.7261 588.6679 0.3897 1.9573 5.1 41.8 0.2769 7.6568 26.0204 99.6355 0.7366 0.5136 2.8 36.2
10 0.1977 26.3796 62.7787 597.2041 0.3919 1.7403 4.9 41.7 0.2770 7.6795 26.1019 100.1463 0.7368 0.4983 2.8 36.2

Table 1.3: Results of Algorithm 1 & formulation (1.11a)–(1.11f) on 30 Hz shopping and
GRE Math reading datasets.

300 Hz GRE Math Reading Data

α
Duration Density Measures Cover Rate Center Shift Avg Runtime (s)

δavg (s) ρ
avg
1 ρ

avg
2 ρ

avg
3 γavg λavg Gurobi Overall

0 0.1062 5.8589 90.1959 31.9361 0.2598 1.8150 574.3 659.5
0.1 0.2607 6.5335 241.3585 28.8872 0.6528 0.9478 364.5 454.1
0.2 0.2762 6.7828 268.4264 28.5850 0.6911 0.6739 264.7 354.7
0.3 0.2803 6.8764 277.5209 28.2034 0.7004 0.5727 207.2 299.7
0.4 0.2827 6.9654 283.6307 27.5299 0.7053 0.5046 154.7 246.6
0.5 0.2840 7.0202 287.1474 27.7181 0.7083 0.4589 119.0 212.0
0.6 0.2848 7.0571 289.3265 27.8777 0.7100 0.4300 87.0 178.1
0.7 0.2853 7.0816 290.6830 28.0161 0.7112 0.4095 67.1 159.0
0.8 0.2857 7.1100 292.1223 28.1589 0.7121 0.3880 53.9 145.1
0.9 0.2860 7.1251 292.7735 28.2548 0.7126 0.3777 43.4 136.5
1.0 0.2863 7.1483 294.0966 28.3347 0.7134 0.3612 37.7 128.8

Table 1.4: Results of Algorithm 1 & formulation (1.11a)–(1.11f) on 300 Hz GRE Math
reading dataset.

30 Hz Shopping Data 30 Hz GRE Math Reading Data

Duration Density Measures Cover Rate Center Shift Avg Runtime (s) Duration Density Measures Cover Rate Center Shift Avg Runtime (s)

α δavg (s) ρavg1 ρavg2 ρavg3 γavg λavg Gurobi Overall δavg (s) ρavg1 ρavg2 ρavg3 γavg λavg Gurobi Overall

0 0.1001 21.7751 21.7965 532.1699 0.1879 6.2534 16.3 80.3 0.1003 5.4527 5.4657 94.9431 0.2646 2.4653 17.2 62.4
1 0.1170 21.9019 25.8494 529.9510 0.2243 6.1039 17.6 81.0 0.2298 6.4971 18.0447 97.7410 0.6109 1.8494 12.5 58.3
2 0.1437 22.7085 34.9120 534.9214 0.2818 5.6520 15.6 79.4 0.2441 7.0206 20.9778 100.7641 0.6498 1.5250 9.5 56.9
3 0.1586 23.5800 41.9778 545.8175 0.3135 5.1162 14.2 78.5 0.2471 7.2600 21.8616 103.1921 0.6572 1.4012 8.3 55.7
4 0.1664 24.2382 46.3210 556.7186 0.3296 4.6829 13.0 77.0 0.2482 7.4053 22.2978 104.9492 0.6599 1.3425 7.7 54.9
5 0.1711 24.7528 49.1512 567.0128 0.3390 4.3568 11.7 75.5 0.2488 7.5115 22.6194 106.4665 0.6612 1.2967 7.5 53.8
6 0.1737 25.1590 51.0543 576.6504 0.3442 4.1230 10.9 74.9 0.2490 7.5596 22.7724 107.1763 0.6618 1.2783 7.3 53.8
7 0.1754 25.4661 52.4020 585.1760 0.3476 3.9430 10.3 74.5 0.2492 7.6125 22.9142 108.3814 0.6621 1.2590 7.2 53.3
8 0.1766 25.7537 53.5489 594.1787 0.3501 3.7863 9.8 74.2 0.2492 7.6496 22.9996 109.2310 0.6623 1.2387 6.9 52.1
9 0.1776 26.0125 54.5135 602.4873 0.3518 3.6435 9.4 74.4 0.2493 7.6811 23.0626 110.1126 0.6624 1.2265 6.9 52.2
10 0.1781 26.1922 55.1608 608.5803 0.3530 3.5430 9.3 74.1 0.2493 7.6936 23.1089 110.5536 0.6625 1.2225 6.9 51.8

Table 1.5: Results Algorithm 1 & with formulation (1.12a)–(1.12d) on 30 Hz shopping
and GRE Math reading datasets.

a given data chunk Ck, are not near the center of a fixation (see, e.g., the sixth gaze point

in Figure 1.2a). Due to the intrinsic and distinct interpretations of density in (1.10a)

versus (1.11a) (1.12a), differing levels of α are required to induce similar outcomes. For

this reason we varied the range of α values in Tables 1.2, 1.3, 1.5, and 1.4. Due to the

higher frequency of the 300 Hz dataset, greater sensitivity with α was necessary (in the
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form of smaller values) to influence the results of Table 1.4.

Runtime Discussions

For each sequence S`, the runtime consists of solving an optimization problem for each

valid chunk Ck` , k = 1, . . . ,K`. As can be seen in Table 1.1, on average this implies

solving upwards of several hundreds, and sometimes thousands, of small yet still NP-

hard optimization problems. Moreover, for every computational test, there is a roughly

“constant” time for processing the same dataset. This can be seen in the difference

in runtimes between the “Gurobi” and “Overall” columns, with “Overall” being fairly

static. Thus, the differences in runtime are largely due to the contribution of Gurobi,

which experiences varying levels of computational difficulty as α fluctuates. Moreover,

Table 1.2, Table 1.3 and Table 1.5 exhibit the general trend that when α increases, the

Gurobi runtime initially increases, and then decreases. This is apparent for both the 30

Hz shopping and GRE Math reading datasets, and for both optimization formulations.

This behavior is likely induced by α: when α is rather small yet nonzero, there is relatively

greater difficulty in balancing the trade-off term in the objective of including a point or

adding the penalty.

Looking across Tables 1.2, 1.3 and 1.5, in general formulation (1.10a)–(1.10f) exhibits

a slower runtime performance than (1.11a)–(1.11f) and (1.12a)–(1.12d). When comparing

the algorithmic performances of formulation (1.10a)–(1.10f) on shopping and GRE Math

reading stimuli as reported in Table 1.2, we observe that the latter dataset exhibited much

longer runtimes for several initial levels of α. Generally speaking, many of the GRE Math

reading data chunks were much larger than those from the shopping data. These larger

data chunks, as well as the numerous new variables and constraints required to linearize

formulation (1.10a)–(1.10f), are likely the reason that it returned no fixations for several

levels of α where the proximity-duration trade-off was most difficult to balance.

Formulation (1.11a)–(1.11f) experienced no such performance degradation on the 30

Hz datasets detailed in Table 1.3. Even so, when comparing the runtimes for the 30 Hz

and 300 Hz GRE Math reading data in Tables 1.3 and 1.4, formulation (1.11a)–(1.11f)

exhibits slower performance on the 300 Hz instances. It can be seen from Table 1.1 that

the 300 Hz instances have larger average chunk sizes. Hence, the longer processing times

are likely due to Gurobi formulating and solving (1.11a)–(1.11f) on larger data chunks.

These runtime results from Table 1.4, while larger than those from Table 1.3, remain

quite promising for future fixation detection on similar datasets, and for those of longer

duration and at higher frequencies.

The Gurobi optimization runtime reported in Table 1.5 for formulation (1.12a)–(1.12d)

is approximately twice as long as with formulation (1.11a)–(1.11f), indicating that this

19



formulation is more challenging for the solver.

Fixation Duration and Cover Rate Discussions

Fixation duration δ is a commonly-used metric in eye tracking research representing

the temporal length of a fixation. For each dataset and formulation, we report in Ta-

bles 1.2, 1.3, and 1.4 the fixation duration averaged over all chunks and recordings, δavg.

When α = 0, there is no incentive to include gaze points beyond the minimum necessary.

Hence, the value of δavg approaches the minimum defined length of a fixation represented

by N . As α increases, the value of δavg also increases, indicating that on average, fixations

are containing more gaze points. Moreover, independent of dataset and formulation, δavg

experiences the greatest increase for relatively low values of α.

The cover rate γ is a measurement that describes the ratio of points included in

fixations to the total points in a data recording. For each dataset and formulation, we

report the cover rate averaged over all recordings, γavg. As α increases, γavg exhibits an

increasing trend in Tables 1.2, 1.3, 1.4 and 1.5. Independent of the formulation, the largest

γ increases occur at slightly different values of α. For the GRE Math reading data, the

largest jump in γ occurs immediately after α transitions from 0 to the first nonzero value.

For the shopping data, however, the greatest γ increase occurs somewhat subsequent to

the initial nonzero α transition. After these larger jumps, γ increases at a decreasing rate.

Density Metric Discussions

The three density metrics discussed in Section 1.4.3 are averaged over all chunks in each

of the ten data recordings, and reported in Tables 1.2, 1.3, 1.4 and 1.5. Recall that, in

keeping with [25], density is largest for small ρ1, ρ2, and ρ3 values. Some general trends

across all experiments is that ρavg1 never exceeds ρavg2 . This is a relatively straightforward

observation because, while ρavg1 and ρavg2 have identical numerators, ρavg1 always has at

least as large of a denominator (and often larger). The ρavg3 metric evaluates the ratio of

the minimal bounding box area to the number of points in the fixation, hence is a slightly

different metric and often differs in magnitude from ρavg1 and ρavg2 .

For all datasets and formulations, the general trend is for ρavg1 , ρavg2 , and ρavg3 to in-

crease as α increases, implying that, on average, fixations decrease in density. For all three

metrics, both the numerator and denominator will increase as α increases, hence there

are some slight fluctuations as α varies, and among the three metrics, ρavg3 exhibits the

greatest variation for early values of α. Another observation is that the difference between

ρavg1 and ρavg2 increases as the value of α increases. This increase is largely attributed to

the difference in denominators of ρavg1 and ρavg2 . For the 300 Hz dataset, as can be seen

in Table 1.4, there is a much larger difference between ρavg1 and ρavg2 . This is again due
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to the linear versus quadratic nature of the denominators; with the 300 Hz dataset, the

value of the minimum duration threshold N is much larger, implying that each fixation

should contain many more points.

Another important observation is that, independent of formulation, the fixations in

GRE Math reading data both exhibit greater density than those for the shopping data,

as well as feature longer durations. As it is known that longer fixations are representative

of higher levels of information processing [1], the results in our study give further support

that the math task was cognitively more demanding than the shopping task. Moreover,

our results also provide evidence that fixations for more cognitively complex tasks are

denser than less demanding tasks. This in turn is a valuable insight for studies that use

eye tracking to capture information processing behavior at the physiological level.

Comparing Our Methods with Existing Methods

Having already observed that fixation duration is strongly influenced by the level of α,

which controls for inner-density, we now demonstrate that our approaches can fine-tune

the locational precision of the I-VT method. We introduce the center shift λavg, which

measures the straight-line (Euclidean) distance, in pixels, between the I-VT fixation cen-

troid and the densest fixation centroid, averaged over all fixations. These values are

reported in Tables 1.2, 1.3, 1.4 and 1.5. It can be clearly seen that lower α values yield

larger λavg values than do higher α values. This is because smaller α values increase the

inner-density of the resulting fixations, and in so doing, the fixation centroids become

more centralized due to the exclusion of some peripheral points existing in data chunks.

1.4.5 Polynomial-time Algorithm to Identify Single Fixation per

Chunk

When considering finding one fixation in each data chunk, we further devised a polynomial-

time algorithm to find the densest fixation. The algorithm examines all possible partitions

by identifying two critical gaze points: the one that begins, and the one that ends the

fixation (recall, by definition, that fixations must contain gaze points that are consecutive

in time).

Polynomial-time Algorithm to Identify Densest Fixation

For each begin-end pair, the algorithm computes the corresponding objective function,

and when a smaller objective function value is found, updates the optimal begin-end pair

and associated objective function value. The cost of this algorithm is O(KT 2).
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Algorithm 2 Polynomial-time Algorithm for Densest Fixations Identification

Input: Sequence S separated into distinct chunks of consecutive (x, y, t) data Ck, k =
1, . . . ,K; parameter α; number of fixation to be clustered F = 1.

1: Set L ← ∅.
2: for k = 1, . . . ,K do
3: Set d←∞.
4: Set l← ∅.
5: Set T ← T k.
6: for i = 1, . . . , T − 1 do
7: for j = i+N , . . . , T do
8: Set zt1 = 1, t = i, . . . , j, then calculate (1.10a), (1.11a) or (1.12a) with α. Let

the result be d′.
9: if d > d′ then

10: d← d′, l← (i, j).
11: Add solution l to L.
12: return L.

Computational Experiments for Polynomial-time Algorithm

We perform Algorithm 2 on the Math reading dataset as the experiments. The objective

function is chosen as (1.11a). Since the values for evaluation metrics are the same as

Tables 1.2, 1.3, 1.5, and 1.4, we only report the runtime of Algorithm 2 for performance

comparison.
α for 30Hz/300Hz Math Reading Data

Algorithm Frequency(Hz) 0 1/0.1 2/0.2 3/0.3 4/0.4 5/0.5 6/0.6 7/0.7 8/0.8 9/0.9 10/1.0

Polynomial-time Algorithm 30 1.74 1.76 1.74 1.72 1.74 1.73 1.72 1.73 1.74 1.73 1.71
MILP for Minimizing Square Areas 30 7.7 6.4 4.1 3.5 3.2 3.1 3.0 3.0 2.9 2.8 2.8

Polynomial-time Algorithm 300 255.0 255.4 254.2 254.6 256.8 257.2 255.7 255.9 257.0 256.0 248.5
MILP for Minimizing Square Areas 300 574.3 364.5 264.7 207.2 154.7 119.0 87.0 67.1 53.9 43.4 37.7

Table 1.6: Runtime comparison with the Gurobi optimization runtime on formula-
tion (1.11a)–(1.11f) for minimizing the square areas for fixations for 30Hz and 300Hz
math reading dataset.

The runtime of Algorithm 2 for the two datasets are fairly static, without the influence

of varying levels of α. For low frequency dataset, it outperforms formulation (1.11a)–

(1.11f) significantly, however, with the increase of α, the gap becomes smaller and when

α = 10, the difference is reduced to 1.1 seconds, which is a fairly acceptable result. The

more interesting finding is that for the high frequency dataset, when α is greater than

0.3, the MIP formulation is faster than the polynomial-time algorithm. When comparing

to the runtime in polynomial-time algorithm, we can clearly see the effect of balancing

the trade-off term in the objective of including a point or adding the penalty when α is

rather small. Our MIP formulation is more competitive than this basic polynomial-time

algorithm on high frequency dataset.
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1.5 Conclusions

Our proposed fixation inner-density (FID) filter both builds on strengths of both the I-

VT and I-DT filters, and avoids shortcomings. Velocity-based methods serve as a suitable

method to group a gaze data sequence into fixation chunks by removing saccadic points

(as per the I-VT filter). Moreover, excluding consecutive gaze points for which the dura-

tion is below a realistic threshold is also a useful way to remove gaze points unrelated to

fixations (similar to the I-DT filter). By optimizing for inner-density, one of the fixation

micro-patterns, on each resulting data chunk, we essentially use a dispersion-based ap-

proach to identify fixations. A key difference is that, rather than a static threshold used

in I-DT, our dispersion threshold is dynamic – this is directly expressed by the variable

r, characterizing bounding region side length, that is minimized in formulation (1.11a)–

(1.11f) and (1.12a)–(1.12d). By doing so, we minimize the inclusion of fringe points in

fixations and thus improve the accuracy of fixation duration and location. Hence, our

methods are a refinement of both approaches.

Figure 1.4 contrasts the performance of the raw I-VT filter with the performance of

formulation (1.11a)–(1.11f) and α = 0.1 on the same data sequence depicted in Figure 1.1.

The callouts denote saccadic points by stars, fixation points by circles, and points that are

eliminated by our approach by triangles. The smallest 2D boundaries for both approaches

are also drawn. Some I-VT fixations (e.g. Fixation 1) contain nearly 35% more points as

compared to ours (66 vs. 49 points). This refinement can have a large affect on key gaze

metrics such as fixation duration and center.

Figure 1.4: Comparing fixations identified with standard I-VT, versus formula-
tion (1.11a)–(1.11f), α = 0.1, in the gaze stream depicted in Figure 1.1. Some I-VT
fixations contain nearly 35% more points than our approach.

Our computational experiments on two actual shopping and GRE Math reading

datasets yielded encouraging results, in particular formulation (1.11a)–(1.11f) is quite
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robust to the larger 300 Hz GRE Math reading dataset over a variety of parametrized

α values. The reasonable runtimes suggest further scalability for formulation (1.11a)–

(1.11f). Moreover, all formulations are able to identify fixations with greater density than

the standard I-VT filter, revealing that finer detail is available than what the I-VT can

otherwise provide.

Our computational findings have important implications for eye tracking research.

First, they show that considering fixations at a more refined scale can provide important

insights into cognitive processing levels, as our computational experiments reveal that

tasks with greater cognitive complexity featured longer-lasting fixations with heightened

density. Hence, the results provide a rationale and theoretical direction for studying be-

havior via a new metric in user experience and human-computer interaction studies. Addi-

tionally, our results demonstrate that inner-density is a valuable concept; when combined

with optimization-based approaches, it is a useful and novel way to identify fixations. In

particular, the inner-density parameter α provides a previously unavailable level of control

for studying focused fixation, which we believe will prove fruitful in many fields of study

that use fixation duration and location to identify behavior, including marketing, user

experience, human-computer interaction, and medical diagnosis.
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Chapter 2

Measuring Focused Attention Using

Fixation Inner-Density1

In this chapter, we more thoroughly investigate our proposed fixation inner-density (FID)

filter with respect to the performance of a widely used method of fixation identification,

the I-VT filter. To do so we use a set of measures that investigate the distribution of gaze

points at a micro-level, that is, the patterns of individual gaze points within each fixation.

Our results show that in general fixations identified by the FID filter are significantly

denser and more compact around their fixation center. They are also more likely to have

randomly distributed gaze points within the square box that spatially bounds a fixation.

Our results also show that fixation duration is significantly different between the two

methods. Because fixation is a major unit of analysis in behavioral studies and fixation

duration is a major representation of the in-tensity of attention, awareness, and effort, our

results suggest that the FID filter is likely to increase the sensitivity of such eye tracking

investigations into behavior.

2.1 Introduction

A fixation is the collection of gaze points that are near to one another in both time and

proximity, a denser collection of gaze points within a fixation represents higher level of

focused attention, and thus higher level of cognitive processing [10]. Thus, we proposes for-

mulations (1.10a)–(1.10f), (1.11a)–(1.11f) and (1.12a)–(1.12d),which we called as Fixation

Inner-density (FID) filter, to group gaze points into fixations based on their inner-density

property. Identifying fixations using the FID filter naturally eliminates those gaze points

that are near to tolerance settings. How gaze points are dispersed in a fixation affects

1W. Liu, S. Djamasbi, A. C. Trapp, “Measuring Focused Attention Using Fixation Inner Density,”
Human-Computer Interaction International Conference 2018 (HCII2018), Las Vegas, Nevada, July 2018.
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fixation metrics such as the duration and center location, and there is evidence that the

FID filter reduces the possibility of skewing these metrics.

In this chapter we translate raw gaze data into fixation using the I-VT and FID

filters. We demonstrate that fixations processed by the FID filter are superior in terms of

three key fixation micro-patterns than those that are processed by the I-VT filter. First,

they are denser. Second, the extent to which points are dispersed within a fixation is

smaller. Third, the points within a fixation are more likely to be uniformly distributed.

This investigation is important because the compactness and the patterns of distribution

of gaze points can directly affect fixation metrics, such as fixation duration and fixation

center position, that are commonly used in eye tracking studies to assess viewing behavior.

This study is the first to investigate such fixation micro-patterns or properties of the

distribution of gaze points within an individual fixation.

2.2 Background

One popular fixation identification algorithm is the I-VT filter. It identifies fixations by

gaze point velocity. If the velocity exceeds the predefined threshold V , the corresponding

gaze point is identified as a saccade, otherwise it is categorized as a fixation point. I-VT

filter is efficient and practical; however, it has the drawback of ignoring the information

about the spatial arrangement of individual gaze points within a distinct fixation. Some

fixation metrics can express the distribution of points within a fixation. One such metric

is fixation inner-density, which was introduced by [10] and further re-fined in Chapter 1.

Fixation inner-density represents user focus, and [10] has validated that fixation inner-

density is correlated with normalized fixation duration and average pupil dilation variation

during fixation. The FID filter uses optimization-based techniques to optimize for inner-

density, which means that it selects a set of candidate gaze points that guarantees there is

no better set with respect to the objective function of maximizing fixation inner-density.

Fixation inner-density improves upon previous fixation identification methods because it

combines both the temporal and the spatial aspects of the fixation into a single metric

that evaluates the compactness of a fixation.

As the problem of fixation identification is a type of time-series clustering, it shares the

commonality that interpreting clustering results is somewhat subjective in nature. Hence,

the choice of an appropriate metric will directly affect the formation of the clusters. While

density and dispersion properties can be measured in various ways, they are inherently

positively related to the number of gaze points in a fixation, and negatively related to

the area occupied by the constituent points. We next discuss some important metrics to

evaluate density and dispersion properties within fixations.
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2.3 Methodology

We consider two representative ways of measuring fixation inner-density, both of which are

advocated in Section 1.4.3. The first density metric (ρ1) is the average pairwise distance

between points within a fixation. The second density metric (ρ3) is the minimum area

square bounding box surrounding the fixation divided by the number of fixation points it

contains.

For both the ρ1 and ρ3 density metrics, small values imply greater density. A third met-

ric, Standard Distance (SD), measures the dispersion of gaze points around the fixation

center. SD is a common metric in the Geographic Information System (GIS) literature,

that evaluates how points are distributed around the fixation center [33]. Similar to stan-

dard deviation, SD quantifies the dispersion of a set of data values. Hence, the SD score

is a summary statistic representing the compactness of point distribution. Smaller SD

values correspond to gaze points that are more concentrated around the center (Xf , Y f )

of fixation f, expressed as:

Xf =

∑T k

i=1 xi
T k

, Y f =

∑T k

i=1 yi
T k

. (2.1)

The standard distance of fixation f , SDf , is:

SDf =

√∑T k

i=1(xi −Xf )2

T k
+

∑T k

i=1(yi − Y f )2

T k
. (2.2)

Spatial pattern analysis can also be examined in measuring the fixation gaze point

distribution pattern. The Average Nearest Neighbor (ANN) [33] is used to measure the

degree to which fixation gaze points are clustered, versus randomly distributed, within

a fixation bounding area. A fixation resulting from focused gaze toward a single area of

interest would tend to exhibit a more uniformly distributed pattern, with greater ANN

values. The ANN ratio is calculated as the average distance between each point and its

nearest neighbor, divided by the expected average distance between points if a random

pattern is assumed. ANN values greater than one imply that the fixation gaze points are

dispersed; as this ratio decreases, fixation gaze points increasingly exhibit clustering.

The four metrics ρ1, ρ3, SD and ANN will be used to evaluate three aspects of inner

fixation patterns: fixation inner-density, fixation points dispersion, and their distribution.

We expect fixations identified with the FID filter to be denser and more uniformly dis-

tributed than those identified with the I-VT filter. Our density assertion, which stems

from the method of fixation identification, helps to test whether the FID filter does indeed

more accurately group individual gaze points into focused attention. Our assertion that
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Gaze Points
Fixation Center
Standard Distance

Figure 2.1: An illustrative depiction of standard distance, SD. When considering an
identical number of gaze points, SD is smaller when points are more compactly distributed
around the center (left); when they are more dispersed, SD becomes larger (right).

gaze points identified with the FID filter are more randomly distributed stems from the

argument that if a fixation is compact, that is it has high inner-density, it is more likely

to have a more uniform distribution around its center.

In addition to the above assertions, we also examine the impact of FID and I-VT

filters on fixation duration δ and center location λavg.

2.4 Experimental Evaluation

We begin this section by describing the specific context of our eye tracking datasets and

experiments. We then compare the I-VT and FID filters with the aforementioned four

metrics, and discuss our findings.

2.4.1 Dataset and Equipment

We perform our experiments on eye movement datasets obtained from a total of 28 uni-

versity students who were assigned to read a text passage shown on a standard desktop

computer monitor. Prior to the experiment, each participant completed a brief eye-

calibration process lasting less than one minute. We used the Tobii X300 eye tracker [29]

to collect participants eye-movements. The software version is 3.2.3 and the sampling rate
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Gaze Points

Dispersed
(ANN Ratio > 1)

Clustered
(ANN Ratio < 1)

Figure 2.2: Illustrating the ANN ratio as the distribution of gaze points change within
an identical minimum square bounding box.

was set to 300 Hz. The 28 recordings were further analyzed using an Intel core i7-6700MQ

computer with 3.40 GHz and 16.0 GB RAM running 64-bit Windows 10. Matlab 2016a

and Python 2.7 were used for additional data analysis and processing.

2.4.2 Data Preprocessing

For each eye tracking record, we used the Tobii Studio I-VT filter [17] to generate I-VT

fixation identification results. The velocity threshold V was set to 30/s, which is the

recommended threshold in [17]. The minimum fixation duration is set to 100ms which is

the theoretical minimum fixation duration suggested by other eye tracking studies [9, 13].

We further used the results of the I-VT fixation identification as the input data chunks

for the mixed integer programming formulation (MIP) for minimizing square area of

fixations from formulation (1.11a)–(1.11f). The Gurobi Optimizer 7.5.1 [30] is used as the

solver. The FID filter is parametrized by a manually assigned constant a that enables

decision-makers to have fine-tuned control over the density. We varied a from 0 to 1

by steps of 0.1 on one randomly selected eye tracking record and examined the fixation

identification results manually. When α=0.1, the clustering result appeared the most

reasonable, and averaging ρ3 values over all fixations yielded the smallest value, suggesting

the algorithm finds the (averaged) densest fixations at α=0.1 comparing to other a levels.

Therefore, we set α=0.1 when running the FID filter on the other 27 records. In the

following evaluations, we discard the record used for selecting a to avoid data snooping.

2.4.3 Experimental Results

After discarding the single record above, in this section we first report our statistical

analyses from the point of view of a single record. Subsequently, we expand it to all 27

of the (remaining) records in our dataset.
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2.4.4 Comparing I-VT and FID Filters for a Single Record

Fixation inner-density and the distribution of gaze points within an individual fixation

are micro-patterns in gaze data. Such patterns are relatively difficult to evaluate by

averaging over all eye tracking records. To more thoroughly investigate micro-patterns,

we first illustrate the comparison results on the eye tracking record of one randomly

selected participant. Toward the end of this section, the comparison summary over all

recordings is also included.

For this gaze data record, there are 9,788 gaze points and 110 fixations. We calculated

fixation inner-density metrics ρ1 and ρ3 on each individual fixation. The resulting average

of both ρ1 and ρ3 from the I-VT filter is larger than that of FID, which indicates that

fixations from the FID filter are denser than those in I-VT filter result. We performed a

paired t-test with the following hypothesis:

H0 : ρI−V T = ρFID,

Ha : ρI−V T > ρFID.

The t-test on both ρ1 and ρ3 returns a p-value smaller than 0.05, so at a 95% confidence

level we reject H0, which implies ρI−V T is statistically larger than ρFID.

Fixation
Density

I-VT FID (α = 0.1) t-test
Mean
(pixel)

STD
(pixel)

Mean
(pixel)

STD
(pixel)

p-value Result

ρ1 6.769 2.382 5.994 1.961 <0.0001 Reject
ρ3 7.690 10.450 5.112 3.920 0.0025 Reject

Table 2.1: Comparison of fixation density for I-VT and FID filters.

The SD metric measures the dispersion of fixation points around their center. Ta-

ble 2.2 reveals that the SD mean and standard deviation for the I-VT filter are larger

than that of the FID filter. We also performed a paired t-test when comparing the SD

metric. The hypotheses are:

H0 : SDI−V T = SDFID,

Ha : SDI−V T > SDFID.

With the same 95% confidence level as the previous test, the t-test result rejects the

H0. It indicates that the FID filter tends to identify fixations having points that are

more dispersed around the center. It further demonstrates that identifying fixations by
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optimizing for fixation inner-density yields fixations with more compact regions.

I-VT FID (α = 0.1) t-test
Mean
(pixel)

STD
(pixel)

Mean
(pixel)

STD
(pixel)

p-value Result

SD 5.5033 2.189 4.746 1.616 <0.0001 Reject

Table 2.2: Comparison of SD for I-VT and FID filters.

Finally, we perform a hypothesis test using the ANN ratio [33] to see if the gaze points

are randomly distributed in a fixation region:

H0 : gaze points are randomly distributed within fixation region,

Ha : gaze points are not randomly distributed within fixation region.

If the hypothesis test results in a small p-value, we would reject the H0 because of the

small probability that the fixation gaze points are randomly distributed in their fixation

region. The ANN hypothesis test is rather sensitive with respect to the bounding region

used to cover all fixation points in an individual fixation. Therefore, we perform two

experimental results using Asq and Art, respectively, to represent fixation area. Table 2.3

reports the count of fixations (out of 110) for which H0 is rejected at 95% confidence

level, implying that there is statistical evidence that fixation points are not randomly

distributed. Table 2.3 reveals that, under both fixation regions, more fixations appear to

not be randomly distributed when using the I-VT filter. Moreover, the difference between

the I-VT and FID filters is greater under the Asq region. This may be due to Asq typically

being larger than Art, as the FID filter specifically minimizes the square area of fixations.

I-VT FID (α = 0.1)
Asq Art Asq Art

# of Fixations Rejecting H0 95 60 61 50

Table 2.3: Comparison of ANN for I-VT and FID filters, reporting the count of fixations
(out of 110) for which H0 is rejected.

We now compare fixation duration δ and fixation center for the I-VT and FID filters.

Fixation duration (δ) is a commonly used metric in eye tracking research. We compare

the average fixation duration on I-VT and FID filters with the hypotheses that

H0 : FDI−V T = FDFID,

Ha : FDI−V T > FDFID.
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The paired t-test result shows that FDFID is significantly smaller than FDI−V T at

a 95% confidence level. This outcome may be due to the FID filter eliminating fixation

points and refining the fixation region of each of the fixation chunks from the I-VT filter.

I-VT FID (α = 0.1) t-test
Mean

(second)
STD

(second)
Mean

(second)
STD

(second)
p-value Result

Fixation Duration 0.250 0.151 0.204 0.167 <0.0001 Reject

Table 2.4: Comparison of fixation duration for I-VT and FID filters.

Fixation center is also a basic feature to represent fixation location, used in the de-

piction the scan path of eye movement. We introduce the center shift(λavg), which is the

Euclidean distance between the fixation center of the I-VT filter and that of the FID filter.

The 110 fixations within the eye tracking record generates mean and standard deviation

(STD) of the center shift data as reported in Table 2.5.

Mean (pixel) STD (pixel)
Center Shift 0.881 1.617

Table 2.5: Statistics of fixation center shift between I-VT and FID filter.

When examining the mean and STD of center shift, it may be inferred that the differ-

ence of fixation center is negligible. The bivariate distribution of center shift depicted in

Figure 3 displays the long tail distribution in both x and y axis. The 90% quantile of x,

y is 0.922 and 1.308 respectively. It shows that while the refined results of the FID filter

can skew some I-VT fixation centers, most of the time the center shift remains in a fairly

small range.

2.4.5 Comparing I-VT and FID Filters for All 27 Remaining

Records

The results reported above were for a single eye tracking record. The average number of

gaze points for all remaining 27 records is 10,959, and the average number of fixations is

127.7. Table 2.6 reports the results of the corresponding hypothesis tests for ρ1, ρ3, SD

and fixation duration on all the 27 eye tracking records. We find that zero record does

not reject the corresponding H0 in the t-test for ρ1, SD and fixation duration, and two

for ρ3. This analysis shows that the FID filter finds denser and more compact fixations

than I-VT filter holds for most of eye tracking records in our dataset in terms of for ρ1,
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Figure 2.3: The bivariate distribution of center shift in x, y coordinates.

ρ3 and SD.

ρ1 ρ3 SD Fixation Duration
# of Records That Do Not Reject H0 0 2 0 0

Table 2.6: Summary of hypothesis test results for 27 eye tracking records.

ρ1 ρ3 SD
# of Records That Do Not Reject H0 0 2 0

Table 2.7: Summary of hypothesis test results for 27 eye tracking records.

We calculate the center shift between all I-VT and FID filter fixation pairs; the bivari-

ate distribution result is shown in Figure 2.4. The distribution on either x or y direction

is again a long tail distribution. The 90% quantile value of x, y is 2.095 and 2.411 respec-

tively. Figure 2.4 shows only a few points that are far away from the origin, indicating

that the FID filter identification results can indeed change the fixation center location,

though this occured relatively infrequently in our dataset.

We also run the ANN hypothesis test on each recording and calculate the count of
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Figure 2.4: The bivariate distribution of center shift for all fixations.

fixations (FC) for which the ANN hypothesis test H0 (FC − ANN) is rejected over

all recordings. The average is reported in Table 2.8. Both the mean and the standard

deviation resulting from the FID filter are smaller than that of the I-VT filter. We compare

the FC results from the I-VT and FID filters by the paired t-test with 95% confidence

level and the following hypotheses:

H0 : FCI−V T = FCFID,

Ha : FCI−V T > FCFID.

The first row in Table 2.8 shows that when bounding the fixation region by Asq, FCFID

is significantly smaller than FCI−V T . It indicates the general trend that the inner gaze

points of fixations resulting from the FID filter tend to be randomly distributed. As for

Art, the t-test result also reject H0, implying that the same conclusion could be drawn on

Art.
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Fixation
Region

I-VT FID (α = 0.1) t-test
Mean

(count)
STD

(count)
Mean

(count)
STD

(count)
p-value Result

Asq 109.1 40.0 70.2 27.4 <0.0001 Reject
Art 74.5 30.1 64.2 24.6 0.0002 Reject

Table 2.8: Comparison of FC − ANN for I-VT and FID filters over all recordings.

2.5 Conclusions

Our results show that the FID filter, as compared to I-VT filter, does indeed identify fixa-

tions that are denser and more compact around the center, and more uniformly distributed

patterns found in fixation bounding regions. These properties have major implications

for two important fixation metrics that are widely used in eye tracking analysis: Fixation

duration and location. Our results show that the two filters tend to result in signifi-

cantly different fixation durations. The results displayed in Figure 2.3 and Figure 2.4

provide evidence that in some cases FID filter can result in quite different fixation centers

comparing to I-VT filter. It is important to note that the data used in our study was

gathered when users were reading an online text passage, which typically generates more

focused fixations. Future investigation using different stimuli are needed to extend the

generalizability of these results and to see whether the micro-level differences, including

fixation duration and center location, observed in this study between FID and I-VT filters

change for different tasks (e.g., reading more challenging text passages, viewing a picture,

or browsing a website). For example, in this study we used a reading task which typically

results in compact fixations. Using a browsing task may result in much larger differences

in fixation center location, because gaze points within fixations in browsing tasks tend to

more dispersed. The metrics introduced in this study to compare fixations at a micro level

serve to refine the analysis of eye movements to a deeper level. Future studies, however,

are needed to validate and extend our findings.

The results of this study contribute in two ways to eye tracking studies that examine

user behavior. First, they show that researchers can identify focused attention with the

FID filter and thereby improve the sensitivity of their analysis with regard to duration and

center location of intense attention. Second, the micro-analysis introduced in this study

provides a new way to compare gaze points within a fixation. This is important because

it allows researchers to examine relationships between eye movements and behavior at a

much smaller unit of analysis, namely fixation micro-patterns.
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Chapter 3

Outlier-Aware, Density-Based Gaze

Fixation Identification

Of great interest in eye-tracking studies and behavioral research are fixation events, which

are indicative of attention and awareness. While fixations enable downstream interpre-

tation of gaze phenomena, and empower decision making, eye-tracking imprecision, such

as what arises from system noise, calibration errors or erratic eye movements, can lead

to outlier points. To resolve such inaccuracies, we propose FID+: outlier-aware fixation

identification via fixation inner-density. This work extends the FID filter in Chapter 1.

We represent this problem through a novel mixed-integer optimization formulation, and

subsequently strengthen the formulation using two geometric arguments to provide en-

hanced bounds. We show that neither bound dominates the other, and that both are

effective in reducing the overall solution runtime. Our experiments on real gaze record-

ings demonstrate that accommodating for the reality of fixation outliers enhances the

ability to identify fixations with greater density.

3.1 Introduction

The purpose of fixation identification is to recognize distinct eye movement events in raw

gaze data. Primary methods for identifying fixations are those based on velocity, and

those based on gaze dispersion. Velocity-based methods group consecutive gaze points

into fixations by using the fact that fixation points have lower velocities than saccade

points. The I-VT filter is the classic velocity-based method [8]. Dispersion-based methods

use the assumption that fixation points usually lie closer to each other than saccade

points. The I-DT filter is a well-known dispersion-based method [8]. While these methods

serve as baseline implementations for separating fixations and saccades, their abilities to

identify fixations have limited precision, thus skewing fixation properties [7, 34] that hinder
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downstream research relying on these foundational properties.
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Figure 3.1: Illustration of fixation and its
apothem (side half-length) identified in a gaze
data chunk; FID filter: minimizing apothem of
fixation bounding box.

To overcome these limitations, Chap-

ter 1 introduces the notion of fixation

inner-density. Inner-density, as a repre-

sentation of fixation micro-patterns, in-

corporates both the temporal and spa-

tial aspects of the fixation. When com-

bined, these aspects reveal significant

and previously undiscovered informa-

tion about attention. Inner-density ad-

dresses limitations of existing methods,

such as lack of sensitivity to peripheral

fixation points, as well as the misrepre-

sentation of fixation properties. Chap-

ter 1 used integer optimization techniques to identify fixations in a sequence of gaze

points by optimizing for inner-density, also known as the FID filter. In particular, the for-

mulation (1.11a)–(1.11f) presented minimizes the square area of a bounding box around

the constituent fixation points. Minimizing the square area, which can be observed in

Figure 3.1, is equivalent to minimizing the apothem r (half of the side length, as intro-

duced in Chapter 1) due to monotonicity. Computational results demonstrated that this

optimization-based approach is efficient and effective in identifying denser fixations than

the current I-VT method. Though promising, one limitation of the FID filter is handling

noise within gaze data, as well as erratic eye movements within fixations. The optimiza-

tion model in Chapter 1 enforces that within a single fixation, all fixation points must

be temporally adjacent. However, in reality there at times exists occasional noise within

fixation events. Hence, it is worthwhile to allow for some small deviations in the sequence,

for example if a stray gaze point exists between two larger clusters of gaze points in the

same region. In this case, it may be preferable to omit this gaze point. Doing so requires

an adaptation of the mathematical formulation in Chapter 1 to allow for outliers between

successive sequences of fixation points.

This chapter augments the FID filter by allowing noise points to be eliminated within

the fixation. We propose an enhanced mathematical optimization formulation (FID+) to

account for this outlier sensitivity. To the best of our knowledge, this work and Chap-

ter 1 are the first, and only, approaches to identify fixations in gaze data by optimizing

for density. The addition of a new set of budget-constrained binary variables accounts

for the condition of where a gaze point is labeled as an outlier. In conjunction with the

existing binary variables that indicate whether a gaze point is labeled as a fixation point,
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we introduce two new constraint sets that together represent time consistency in light of

outlier gaze points. While the new formulation accurately remedies the aforementioned

limitation, it does so at the cost of additional complexity. Thus, we present two algorith-

mic techniques to tighten lower bounds on the size of the apothem (which is minimized)

to improve the computational performance.

The remainder of this chapter is organized in the following manner. In Section 3.2

we provide background on data quality and fixation outliers. In Section 3.3 we present

FID+, a novel mixed integer programming (MIP) formulation for detecting fixations with

outlier sensitivity. We subsequently provide two geometric arguments to strengthen the

optimization formulation by enhancing the lower bounds on the apothem of the bounding

box, and demonstrate that both are advantageous (we show that neither technique dom-

inates the other). Section 3.4 details the computational experiments on real eye-tracking

data, including a discussion on its observed performance. Finally, we conclude the chapter

and discuss future work in Section 3.5.

3.2 Background

High-quality gaze data is the foundation of generating valid and reproducible behavioral

research results. As illustrated in Figure 3.2, Accuracy and precision are the two high-

lighted aspects measured for eye-tracking data quality. The reference location, denoted

with a “+”, is where the participant is asked to fixate. Accuracy, also called offset, refers

to the shift between the recorded gaze position location, and the actual reference location.

Precision refers to the variance of the recorded positions to the reference location [35–37].

Recorded Gaze Points

High Accuracy
Low Precision

Low Accuracy
High Precision

High Accuracy
High Precision

Reference Fixation Location

Figure 3.2: Illustration of accuracy and precision for measuring gaze data quality. Ac-
curacy is the difference between the centroid of grouped recorded gaze points, and an
actual reference fixation location. Precision is the variance of the gaze point dispersion
in a fixation.

Inaccuracy and imprecision can be attributed to multiple factors: eye-tracking cam-

eras [36], algorithms for capturing eye movements [36], experimental design [38], system
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issues (such as sensor noise, data loss) [39], and various participant characteristics (such as

glasses, astigmatism, eye color, head movements) [36]. Poor data precision leads to noisy

gaze samples, which can challenge the reliability of fixation identification algorithms.

Figure 3.3(a) illustrates a raw gaze sequence with 425 points collected by a Tobii Pro

TX300 [29] eye-tracking device, while Figure 3.3(b) shows a noisy raw gaze sequence with

the same length also from the same device. Gaze points in Figure 3.3(a) show explicit

clusters at the location of fixations. However, the clusters in Figure 3.3(b) contain multiple

stray points, and those points appear to drift to the same direction from their temporally

adjacent points. The fixation patterns in Figure 3.3(b) will inevitably contain some noise

points in a long fixation gaze point sequence. Such noise points should be viewed as

Fixation Outliers, and subsequently be eliminated from fixations.
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(a) Well-calibrated gaze data in two dimensions recorded by eye-tracking device.
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(b) Noisy raw gaze data in two dimensions recorded by eye-tracking device.

Figure 3.3: Comparison between normal gaze data and noisy data.

Fixation outliers can have substantial effects on the precision of fixation metrics, such

as the number, and duration, of fixations [35]. Also impacted is dwell time, a commonly

used measurement of gaze duration in eye-tracking research for entering and remaining in

an area of interest [12]. As illustrated in Figure 3.4(a), when the point C is included as a

fixation point, the square fixation bounding region increases significantly and the fixation

centroid shifts away from its original position. Figure 3.4(b) shows an actual example of

possible fixation outliers appearing in real gaze data.

The FID filter described in Chapter 1 is unable to account for fixation outliers because

the strict nature of the constraint set (1.3) that every fixation contains only consecutive
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(a) When excluding fixation outlier point C,
we get a tighter, denser fixation, with better
metrics: the center shifts from the red trian-
gle to the green; the density increases as the
bounding region decreases.
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(b) Example in raw gaze data: the interme-
diate red gaze points (top left) are far from
the main cluster of gaze points, indicating the
potential to be fixation outliers.

Figure 3.4: Influence of fixation outliers on fixation metrics.

gaze points in time. However, Figure 3.4 highlights the benefits of eliminating fixation

outliers. Therefore, to enable the FID filter to account for outlier sensitivity, we extend

the approach in Chapter 1.

3.3 Mathematical Developments

From a gaze sequence S with T points (xt, yt), t = 1, . . . , T , we seek to identify fixation

points to constitute F fixations. The fixation identification problem discussed in Chapter 1

requires each fixation to contain at least N points for information processing to occur, and

those points must be temporally adjacent. Define T F binary variables z, with ztf = 1

if gaze point t is included in fixation f , and 0 otherwise. Of the three formulations

presented in Chapter 1 for FID filter in finding dense fixations, we focus on Minimize

Square Area of Fixations (formulation (1.11a)–(1.11f)). The formulation bounds each

fixation with a two-dimensional square box of minimal area; it achieves a minimum area

by equivalently minimizing the apothem of the square, rf . The model incorporates a

non-negative parameter α into the objective function that balances the trade-off between

the inclusion of additional gaze points and the compactness of the fixation region.

3.3.1 Decomposition Principle

The gaze sequence length T can easily reach the hundreds of thousands gaze points, and

the number of fixations can likewise be in the thousands. Formulation (1.11a)–(1.11f)
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is valid for any number of gaze points T and fixations F . This includes subsequences

obtained after applying the decomposition principle discussed in Chapter 1. This process

separates a gaze data sequence into distinct data chunks Ck, k = 1, . . . ,K, with data

chunk separated by one or more saccade points as identified by benchmark filters such

as the I-VT filter. After the decomposition, minimal fixations remain within each data

chunk, and formulation (1.11a)–(1.11f) can identify α-densest fixations efficiently in each

chunk. Again, we term this approach the FID filter. We also apply this decomposition

principle in the FID+ filter.

3.3.2 FID+ Filter: Detecting Fixation Outliers in Gaze Data

In this section we present the insights for extending the mathematical formulation to

identify fixations with outlier sensitivity.

New Variables for Outlier Detection

We extend formulation (1.11a)–(1.11f) to additionally classify a small portion of gaze

points within the identified fixations as fixation outliers. Although they lie in the interior

of a fixation time sequence, they are not identified as fixation points (i.e., ztf = 1). Define

T F binary variables q, with qtf = 1 if gaze point t is an outlier in fixation f , and 0

otherwise.

Fixation Outlier Budget

We propose a budget P to allow some small number of outlier points. One reasonable

value for P is a percent p of the total number of gaze points T in the chunk, so that

P = dpT e. Hence, the sum of outlier points over all fixations should be less or equal to

P :
F∑
f=1

T∑
t=1

qtf ≤ P . (3.1)

Alternatively, P can be set to any user-defined, positive integer.

Relaxation from Absolute Time Consistency

Constraint set (1.3) in Chapter 1 ensures the included points within each fixation must

be consecutive in time. Fixation f terminates once a consecutive time pair (ztf , zt+1,f )

appears as (1,0) among all the possible values {(0, 0), (0, 1), (1, 1), (1, 0)}. When (ztf ,

zt+1,f ) equals to (1,0), the right-hand side becomes zero, ensuring that zjf = 0, for all

j : t + 1 ≤ j ≤ T . It guarantees that the reminder of the points in the chunk are not
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included in this fixation. For the other possible values of (ztf , zt+1,f ), the right-hand side

is either (T − t) or 2(T − t), so the constraint set becomes vacuous. Thus, for a fixation f ,

a starting gaze point at time a and an ending point at time b, constraint set (1.3) ensures

ztf is assigned in the following fashion: i) ztf
t:t6∈{a,...,b}

= 0, ii) ztf
t:t∈{a,...,b}

= 1.

However, when a set of outlier gaze points E ⊂ {a+ 1, . . . , b− 1} appears between

the starting and ending fixation points, as indicated by qtf
t:t∈E

= 1, the corresponding ztf
t:t∈E

should be assigned to zero. The assignment ii) changes to ztf
t:t∈E

= 0 and ztf
t:t∈{a,...,b}\E

= 1.

The consecutive pair (ztf , zt+1,f ) equals to (1,0) not only happens at the termination of f ,

but can also occur when point t+1 is identified as an outlier, i.e., qt+1,f = 1. When fixation

f terminates, (ztf , zt+1,f ) is (1,0) and qt+1,f should be assigned as zero. Following this

interpretation, we extend the constraint set from (1.3) to (3.2) by relaxing the assumption

that fixation points must be consecutive in time:

T∑
j=t+1

zjf ≤ (T − t)(1− ztf + zt+1,f + qt+1,f ), t = 1, . . . , T − 1; f = 1, . . . ,F . (3.2)

When qt+1,f = 0, indicating point t+ 1 is not an outlier for fixation f , the right-hand

side in (3.2) equals zero when consecutive time pair (ztf , zt+1,f ) equals (1,0). Thereby it

ensures the following variable zjf , for all j : t + 1 ≤ j ≤ T must be zero, which means

fixation f terminates as it may no longer include any gaze points. When qt+1,f = 0, the

constraint set has the same impact as constraint set (1.3). However when qt+1,f = 1, the

constraint set induces no restrictions under any alternatives of (ztf , zt+1,f ), because the

right-hand side is always at least (T − t). Thus, the consecutive variables zjf , for all

j : t + 1 ≤ j ≤ T may still be assigned to one. Therefore, the subsequent gaze points

from t + 1 to T can be included in fixation f and the assignment of (1, 0) to the pair

(ztf , zt+1,f ) no longer delineates the end of the fixation.

Controlling the Position of Outliers

While constraint set (3.2) generalizes the condition of strict time consistency, there is

no implication on the values that points zjf , for all j : t + 1 ≤ j ≤ T can take when

qt+1,f = 1. In the absence of any other constraints, this may cause a fixation to be

decomposed into multiple components. To ensure that every fixation f has consecutive

gaze points formed by only fixation points (ztf = 1) and outlier points (qtf = 1), the

following set of constraints can be incorporated:

qtf ≤ qt+1,f + zt+1,f , t = 1, . . . , T − 1, f = 1, . . . ,F . (3.3)
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Constraint set (3.3) ensures that if qtf = 1, the next gaze point at t + 1 must be

classified as a fixation point (zt+1,f = 1) or a fixation outlier (qt+1,f = 1). When qtf = 0,

the constraint is always valid. While this constraint set technically allows both zt+1,f = 1

and qt+1,f = 1, there are scarce outlier points available by (3.1), and so gaze points are

classified as outliers only when it is beneficial for the objective, that is, when subsequent

gaze points are classified as fixation points. Constraint set (3.3) introduces T F − F
additional constraints.

3.3.3 Minimizing Square Area of Fixations with Outlier Sensi-

tivity

We now present the final MIP formulation for FID+: outlier-aware fixation identification

via density optimization. Note that the extensions discussed in Section 3.3.2 can also

be applied to Minimize Average Intra-Fixation Sum of Distances (formulation (1.10a)–

(1.10f)) and Minimize Circle Area of Fixations (formulation (1.12a)–(1.12d)).

minimize
F∑
f=1

[
rf + α

T∑
t=1

(1− ztf )

]
, (3.4a)

subject to
F∑
f=1

ztf ≤ 1, t = 1, . . . , T , (3.4b)

T∑
t=1

ztf ≥ N , f = 1, . . . ,F , (3.4c)

T∑
j=t+1

zjf ≤ (T − t)(1− ztf + zt+1,f + qt+1,f ),

t = 1, . . . , T − 1, f = 1, . . . ,F , (3.4d)

qtf ≤ qt+1,f + zt+1,f , t = 1, . . . , T − 1, f = 1, . . . ,F , (3.4e)

F∑
f=1

T∑
t=1

qtf ≤ P , (3.4f)

xf − rf −Mx(1− ztf ) ≤ xt ≤ xf + rf +Mx(1− ztf ), t = 1, . . . , T , (3.4g)

yf − rf −My(1− ztf ) ≤ yt ≤ yf + rf +My(1− ztf ), t = 1, . . . , T , (3.4h)

rf ≥ 0, lx ≤ xf ≤ ux; ly ≤ yf ≤ uy, f = 1, . . . ,F , (3.4i)

ztf ∈ {0, 1}, qtf ∈ {0, 1}, t = 1, . . . , T , f = 1, . . . ,F . (3.4j)

Formulation (3.4a)–(3.4j) uses binary variables ztf to assign time point t to fixation f .

It incorporates binary variables qtf to identify outlier points in each fixation f . Objective
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function (3.4a) minimizes the sum of fixation square apothems, penalizing the number

of excluded points with parameter α. Constraints (3.4b) and (3.4c) are the fundamental

constraints indicating that a time point can be assigned to at most one fixation, and each

fixation contains at leastN points. Constraint set (3.4d) relaxes fixation point assignment

from absolute time consistency, while constraint set (3.4e) ensures points identified as

outlier points are succeeded by either outlier or fixation points. Constraint set (3.4f)

ensures the number of identified outlier points is within the fixation outlier budget P .

Constraints (3.4g)–(3.4h) ensure that the identified points in fixation f present in the

fixation bounding box with center (xf , yf ) and apothem rf . Variable definitions and

bounds are listed in (3.4i)–(3.4j).

While formulation (3.4a)–(3.4j) is correct and detects fixation and outlier points, initial

computational testing on larger instances revealed that, while strong feasible solutions

were quickly found, the MIP solver Gurobi [30] experienced difficulty proving optimality.

3.3.4 Deriving Lower Bounds on rf

Objective function (3.4a) minimizes the apothem rf of the bounding box encompassing

the fixation points. While feasible solutions to (3.4a)–(3.4j) representing strong upper

bounds are quickly computed using the MIP solver Gurobi [30], the lower bounds often

exhibit only gradual progress toward convergence, likely due to poor relaxation strength

from constraint set (3.4d).

To accelerate the computational proof of optimality, we present geometric arguments

that can strengthen lower bounds on rf . We algorithmically preprocess the gaze point

sequences to identify lower bounds ` on rf , f = 1, . . . ,F .

Deriving Lower Bounds on rf via Sliding Windows

Consider identifying F fixations from a gaze sequence with T total points, each of which

requires at least N fixation points to ensure cognitive processing occurs [1]. Further,

suppose the entire budget of P outlier points is used in a fixation with the minimum

number of pointsN . Lemma 1 states that there will be at least one subsequence separated

by outlier points that contains at least
⌊ N
P+1

⌋
consecutive gaze points.

Lemma 1 Suppose for fixation f , the fixation point sequence sf has length Nf , and it is

decoupled into subsequences by Pf fixation outliers. There always exists a subsequence s

of sf with length of at least
⌊ N
P+1

⌋
points.

Proof. The average length of all subsequences in fixation f is
Nf

Pf+1
, hence there is at

least one subsequence s whose length is greater than or equal to
Nf

Pf+1
. Because Nf ≥ N
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and Pf ≤ P by (3.4c) and (3.4f), this implies
Nf

Pf
≥ N
P ≥

N
P+1
≥
⌊ N
P+1

⌋
. Thereby the

length of s is also greater than or equal to
⌊ N
P+1

⌋
.

For fixation f , the apothem rf represents a minimum bounding box covering all in-

cluded fixation points, starting from a gaze point at time a to an ending gaze point at

time b. The apothem of the bounding box must satisfy rf ≥ 1
2

max {|xi − xj|, |yi − yj|}
for all the point pairs (i, j) : a ≤ i < j ≤ b. The apothem rf of the bounding box is

monotonically nondecreasing as the number of points in the range [a, b] increases. Thus, a

conservative global lower bound `1 on rf can be derived from the individual lower bounds

originating from the distance arising from t, to t shifted by the minimum number of

consecutive gaze points, b NP+1
c. By considering all pairs of points

(
t, t+ b NP+1

c − 1
)

for

t = 1, . . . , T − b NP+1
c + 1, we obtain a lower bound on rf . Finding `1 can be accom-

plished in polynomial time. For each begin-end point pair, we compute the corresponding

minimum bounding length `′1:

`′1 =
1

2
max

{
|xi − xj|, |yi − yj|, t ≤ i < j ≤ t+

⌊
N
P + 1

⌋
− 1

}
. (3.5)

When a smaller `′1 is found, we update `1 to be `′1. The cost of this method isO
(
T −

⌊ N
P+1

⌋)
,

that is, it is linear in the number of gaze points T . This method is summarized in Algo-

rithm 3.

Algorithm 3 Determine Valid Lower Bound `1

Input: Gaze sequence S with length T ; fixation outlier budget P ; minimum number of
fixation points N .

Output: Lower bound `1 on the fixation apothem rf .
1: Set `1 ←∞.
2: for t = 1, . . . , T −

⌊ N
P+1

⌋
+ 1 do

3: Calculate the minimum bounding length
`′1 = 1

2
max

{
|xi − xj|, |yi − yj|, t ≤ i < j ≤ t+ b NP+1

c − 1]
}

.
4: if `′1 < `1 then
5: Set `1 ← `′1.
6: return `1.

Theorem 1 For a gaze sequence S, `1 is a valid lower bound for rf , f = 1, . . . ,F , i.e.

`1 ≤ rf .

Proof. Suppose there exists `1 > rf from Algorithm 3. By Lemma 1, we can find

a subsequence s with length of at least
⌊ N
P+1

⌋
. We further truncate s by sequentially

eliminating the points from either the beginning or the end, until the remaining sequence

length is exactly
⌊ N
P+1

⌋
. The remaining sequence constitutes a new sequence s′, and let its
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bounding region apothem be `1
′. Because s′ is contained in s, it has fewer fixation points

than fixation f . The lower bound on the bounding box apothem, by the construction

in (3.5), is a nondecreasing function in the number of points in the fixation, thus we

conclude that `′1 ≤ rf . Therefore, `′1 < `1, which contradicts the fact that `1 is the

minimal bounding box apothem for all the consecutive gaze subsequences with length of⌊ N
P+1

⌋
. Thus, the original statement holds.

Deriving Lower Bounds on rf via Smallest Enclosing Squares

For a gaze sequence of T points, the apothem length of the smallest enclosing square

covering N points, irrespective of temporal adjacency, is a valid lower bound `2 for rf , f =

1, . . . ,F . We adapt Algorithm 4 from [40] for finding the smallest square bounding box

of N points for each input gaze sequence. Algorithm 4 first sorts the gaze points at x-

decreasing order and sweeps each point. Hence, the algorithm sweeps points from right

to left. When sweeping at point t, the current xt is recorded as p1. From the points lying

at the right-hand side of the vertical line drawn by p1, it finds a set of points V whose

x-axis value is in the range of [xt, xt + `2], y-axis value is in the range of [yt − `2, yt + `2],

where `2 is the smallest apothem of the enclosing square identified thus far. It then finds

the squares which exactly cover N points and their left side is on the vertical line through

p1 and bottom side is on the line through a point in V . At each p1, the algorithm sweeps

a horizontal line q2 from the top point to the bottom point of V . Two binary search trees

A and B are maintained to store every point (x, y) above q2. If the horizontal distance

x − p1 is greater than the vertical distance y − q2, the point is stored in A in increasing

x-order. Otherwise it is stored in B in increasing y-order. For each q2, the element at

rank k in the set (A− p1) ∪ (B − q2) is selected. This is the side length for a square that

covers k points in the area from the top of V to q2. We compute `′2 as the half of the side

length, and if `′2 < `2, we update `2 to be `′2.
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Algorithm 4 Determine Valid Lower Bound `2

Input: Gaze sequence point set S with length T ; minimum number of gaze points N .
Output: Lower bound `2 on the fixation apothem rf

1: Sort points in S at x-decreasing order.
2: Set `2 ←∞.
3: Set P ← empty balanced binary search tree.
4: for t = 1, . . . , T do
5: p1 = xt.
6: xMax = xt + `2
7: yMax = yt + `2.
8: yMin = yt − `2.
9: Insert a new node into P , key=yt, value=(xt, yt).

10: Set V ← ∅
11: for node p ∈ P do
12: Select the value of node p, (xp, yp) from P .
13: if xp ≤ xMax then
14: if yMin ≤ yp ≤ yMax then
15: Add (xp, yp) to V .
16: else
17: Delete p from P , i.e., P = P \ p.
18: if |V | ≥ N then
19: Sort points in V at y-decreasing order.
20: Set A← empty balanced binary search tree.
21: Set B ← empty balanced binary search tree.
22: for i = 1, . . . , |V | do
23: Select q = V [i] = (xq, yq) from V .
24: Set q2 = yq.
25: Insert a new node into A, key=xq, value=(xq, yq).
26: for a ∈ A do
27: Select a.value, (xa, ya) from A.
28: if ya − q2 > xa − p1 then
29: Delete a from A, i.e., A = A \ a.
30: Insert a new node into B, key=ya, value=(xa, ya).
31: if i ≥ N then
32: Find the key k at rank N in (A− p1) ∪ (B − q2).
33: `′2 = 1

2
k.

34: if `′2 < `2 then
35: Set `2 ← `′2.
36: return `2.

Theorem 2 For a gaze sequence S, `2 is a valid lower bound for rf , f = 1, . . . ,F , i.e.

`2 ≤ rf .

Proof. Consider the contrary, a fixation f has `2 > rf by Algorithm 4. A different `2
′

can be calculated by randomly choosing exactly N of the fixation points in f , as there
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are at least N fixation points in the box bounded by rf . The enclosing square apothem

can only decrease when reducing to N of the enclosed points. Hence, we can conclude

that `2
′ ≤ rf . It suggests that these N points have a smaller bounding box apothem `2

′

than `2, which contradicts the fact that `2 is the apothem of the minimum bounding box

covering N points in the given gaze data for fixation f . Hence, the original statement

holds.

Comparison of Two Lower Bounds

In this section, we discuss the relation between `1 and `2 and we find that neither bound

dominates the other. Hence for rf , f = 1, . . . ,F , we have ˆ̀≤ rf , where ˆ̀ is defined as

one of `1 or `2.

Proposition 1 Neither lower bound `1 or `2 dominates the other.

Example 1. Consider the examples of identifying one fixation in a gaze sequence with

seven points, as depicted in Figure 3.5. Supposing that N is four and the outlier budget

P is one, `1 is determined by the x, y distances between
⌊ N
P+1

⌋
=
⌊
4
2

⌋
= 2 consecutive

points, while `2 is the apothem of the smallest square bounding box covering N = 4

points in the plane. The relationship of `1 and `2 varies based on the distribution of gaze

points: (a) shows `1 < `2; (b) shows `1 = `2; and (c) shows `1 > `2.
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Figure 3.5: Comparison of lower bounding approaches. The gaze sequence length T = 7,
minimum number of covering points N = 4, and outlier budget P = 1. As shown in
(a), (b) and (c), depending on how the points are distributed, the effectiveness of lower
bounds `1 and `2 vary.
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3.4 Computational Experiments

Formulation (3.4a)–(3.4j) with the decomposition principle described in Section 3.3.1

represents the FID+ filter, which extends the earlier FID filter. We now discuss our

computational experiments using real eye tracking data. We use a dataset obtained from

the visual task of answering Graduate Record Examination (GRE) Math reading questions

on a computer display in Chapter 1. Algorithms 3 and 4 are introduced to derive lower

bounds on rf to improve the computational performance for solving the new formulation.

3.4.1 Experimental Setup and Data Preprocessing

The GRE Math dataset contains ten recordings collected by a Tobii Pro TX300 eye-

tracking device at 300 Hz. Each recording is approximately five minutes in duration.

Table 3.1 summarizes this dataset. We used the same data preprocessing strategy as

discussed in Chapter 1. For each recording, we separate the data sequence S into chunks

Ck, k = 1, . . . ,K` using the Tobii Studio I-VT filter [17] with the default velocity threshold

of V = 30◦/s. The minimum number of gaze points is set to N = 30 (100ms), which is

necessary for information processing to occur [13]. As shown in Table 3.1, this setting

eliminates some data chunks and remain approximately 721 valid data chunks in each

recording on average. We set Fkmin = Fkmax = 1 for formulation (3.4a)–(3.4j). The

fixation outlier budget P is set as 1% of the total number of gaze points in each data

chunk Ck, that is, outlier budget Pk =
⌈
0.01 · |Ck|

⌉
. This value of Pk allows for at least one

point per data chunk to be identified as a fixation outlier in formulation (3.4a)–(3.4j). As

depicted in Figure 3.6(a), the distribution of data chunks is long-tailed. Of the total 7,208

data chunks with at least N points, there are 1,860 data chunks having more than 100

points (25.8% of total), and 59 data chunks with length of greater than 500 points (0.8%

of total). As the size of the data chunk increases, so does the expected computational

effort in solving formulation (3.4a)–(3.4j). All computational experiments were conducted

using an Intel core i7-6700MQ computer with 3.40 GHz and 16.0 GB RAM running 64-

bit Windows 10. Gurobi Optimizer [30] with Python 2.7 was used for the optimization

modeling, algorithm development and solution process. For each optimization problem,

we use the default parameter setting of Gurobi MIPGap (1e-4) and MIPGapAbs (1e-10)

for pursuing global optimality. We also set a time limit of one hour (wall-clock) for solving

the optimization model for each data chunk. MATLAB 2016a [31] was used for additional

data processing and analysis.

49



Stimuli
Avg # of All

Points in Sequence
Avg # of

Data Chunks
Avg # of

Valid Data Chunks
Avg # of Points in
All Data Chunks

Avg # of Points in
Valid Data Chunks

GRE Math Reading Data 90,580 3,612 721 80,956 66,677

Table 3.1: Summary results on 300 Hz GRE Math Reading data with I-VT filter, averaged
over ten recordings per dataset.
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Figure 3.6: Depicting the distribution of data chunk size (left panel) and the average
runtime using formulation (3.4a)–(3.4j) in each bin under α = 0, 0.1, 1 (right panel). The
right panel also shows that with the increase of α, the runtime decreases; with the increase
of
∣∣Ck∣∣, the runtime increases substantially, and becomes especially apparent when

∣∣Ck∣∣
exceeds 100.

3.4.2 Computational Results and Discussion

Table 3.2 highlights the computational results of running the FID+ filter on the 300 Hz

GRE Math reading dataset, as well as formulation (3.4a)–(3.4j) using lower bounds from

Algorithms 3 and 4. The rows of Table 3.2 are indexed by parameter α, and the columns

display the evaluation metrics, budget usage and runtime, and are to be compared with

those of Table 1.4 in Chapter 1, depicting similar results without outlier detection. As

in Table 1.4, the evaluation metrics are averaged over all data chunks in each of the ten

data recordings. The evaluation metrics we consider are: fixation duration δ; cover rate

γ; three fixation inner-density metrics: ρ1, ρ2, and ρ3; and center shift λ.

The average fixation duration δ is the average number of fixation points in each fix-

ation divided by the sampling frequency. The cover rate γ measures the ratio of points

recognized as fixations points to the total number of points in a recording. We consider

the three density metrics in Chapter 1. All of them are inversely proportional to density.

That is, they represent greater density as the magnitudes get smaller. The first metric ρ1
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is the average pairwise distances between fixation points within one fixation.

ρ1 =

∑P−1
p=1

∑P
q=p+1 dpq(P
2

) . (ρ1)

The second density metric ρ2 has the same numerator with ρ1: the pairwise distances of

all identified fixation points. The denominator is simply the number of fixation points.

Hence, as the number of included points increases, ρ2 experiences greater amplification

as compared to ρ1. The reason that ρ2 is considered is due to the relationship with

the objective function of the first formulation, Minimize Average Intra-Fixation Sum of

Distances (formulation (1.10a)–(1.10f)). Though our demonstration for detecting fixation

outliers focuses on the formulation (1.11a)–(1.11f), we retain ρ2 in our comparison for the

sake of completeness.

ρ2 =

∑P−1
p=1

∑P
q=p+1 dpq

P
. (ρ2)

The third density metric ρ3 is the minimal square area covering the fixation divided by

the number of included fixation points.

ρ3 =
(2r̂)2

P
. (ρ3)

The center shift λ measures the Euclidean distance between the FID fixation centroid

to the I-VT filter centroid. Additionally, we report the fixation outlier budget usage β,

which is the ratio of the total number of identified fixation outliers to the cumulative

outlier budget over all data chunks in the ten data recordings. The reported runtime is

the average of the cumulative runtime of all data chunks in each of the ten data recordings.

300 Hz GRE Math Reading Data

α
Duration Density Measures Cover Rate Center Shift Budget Usage Avg Runtime (s) Avg Runtime (s) w/ `1 Avg Runtime (s) w/ `2

δavg (s) ρavg1 ρavg2 ρavg3 γavg λavg β Gurobi Overall Gurobi Overall Gurobi Overall

0 0.1038 5.3981 81.2267 10.4529 0.2539 1.9494 0.91 12,548.8 12,647.9 10,624.0 10,724.8 10,729.2 10,969.9
0.1 0.2597 6.1667 231.2483 9.7190 0.6510 1.0814 0.87 1,898.2 2,006.3 1,637.5 1,742.5 1,560.6 1,802.7
0.2 0.2744 6.4515 259.4887 9.4059 0.6863 0.8331 0.82 315.5 430.6 242.3 345.5 249.3 493.9
0.3 0.2787 6.5700 268.5097 10.0599 0.6956 0.7397 0.75 186.3 305.6 145.9 253.6 150.9 398.1
0.4 0.2806 6.6383 273.4140 10.2574 0.6997 0.6916 0.74 147.1 267.0 116.3 226.0 115.6 363.2
0.5 0.2831 6.7417 279.7678 10.0763 0.7056 0.6213 0.45 128.8 247.6 96.3 205.4 99.7 347.4
0.6 0.2840 6.7941 282.5965 10.2516 0.7076 0.5861 0.41 108.9 225.9 82.3 191.0 83.9 331.7
0.7 0.2844 6.8136 283.7578 10.3622 0.7084 0.5750 0.41 97.7 214.7 71.8 181.6 73.0 320.3
0.8 0.2848 6.8364 284.9439 10.4752 0.7094 0.5603 0.39 88.4 205.7 63.1 172.5 64.5 311.6
0.9 0.2850 6.8465 285.3952 10.5318 0.7098 0.5541 0.38 80.3 197.3 56.9 164.8 58.4 306.7
1.0 0.2859 6.9006 288.2015 10.8704 0.7122 0.5151 0.24 73.4 190.7 51.2 158.4 52.9 303.1

Table 3.2: Results of the FID+ filter, (3.4a)–(3.4j) with lower bound `1, and (3.4a)–
(3.4j) with lower bound `2 on 300 Hz GRE Math reading dataset. The entries in the
evaluation metrics columns report the average metrics over all data chunks in each of the
ten recordings; the entries in the runtime columns report the total runtime averaged over
each each recording, containing approximately 721 data chunks.
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Each entry in the evaluation metrics columns in Tables 3.2 and 1.4 is averaged over

ten recordings and all data chunks per recording. Each entry in the runtime columns

reports the averaged cumulative runtime for solving approximately 721 data chunks of

the α-densest fixations. For higher level of α, e.g. α = 0.8, the average runtime of each

data chunk is less than 0.13 second. For the most time-consuming α level, α = 0, each

chunk solved average of 17.8 seconds. In Table 3.2, all but twelve optimization models

(eleven for α = 0, and one for α = 0.1) solved to global optimality within the one-hour

time limit for formulation (3.4a)–(3.4j). The addition of the lower bound `1 and `2 enabled

two additional models at α = 0, and the sole model with α = 0.1, to be solved to global

optimality.

The general trend of evaluation metrics and runtime from α = 0 to α = 1 are similar

in Tables 3.2 and 1.4. It indicates that α has a similar effect on fixation identification and

fixation properties in both formulations.

When compared to Table 1.4, the entries in the initial columns of Table 3.2 demon-

strate the effect of removing outliers. In particular, values of the average fixation duration

δavg rate are smaller in Table 3.2, indicating that less gaze points are identified as fixation

points by the FID+ filter. The difference of δavg is actually rather small, roughly akin to

a single gaze point, between Tables 3.2 and 1.4. Similar to δavg, the average cover rate

γavg value under every α level is slightly smaller in Table 3.2. Both Tables 3.2 and 1.4

have the same increasing trends on δavg and γavg when α increases.

The three density metrics appear with smaller values in Table 3.2, as compared to

Table 1.4. Recalling that density is larger for smaller values of ρ1, ρ2 and ρ3, it demon-

strates that when allowing outliers within fixations, the mathematical formulation can

further refine gaze points to identify denser fixations. It is worth noting that ρavg3 is two

to three times smaller in Table 3.2 than in Table 1.4. ρavg3 is the ratio of the minimal area

bounding box of the identified fixation, to the number of points this fixation contains, is

identical to the objective in formulation (3.4a)–(3.4j). ρavg3 becomes smaller either when

the fixation bounding area is smaller, or when the fixation duration decreases.

This trend of ρavg3 is strong evidence for the impact of outlier points on fixation density.

Using the outlier budget Pk =
⌈
0.01 · |Ck|

⌉
as specified in the experimental setup, 74.2%

of the fixations by formulation (3.4a)–(3.4j) identify only a single outlier point per fixation

(chunk size less than or equal to 100 points). This is further underscored in Table 3.2, as

the change in fixation duration is relatively minimal. However, ρ3 reduced by nearly two

thirds. This indicates that a small group of outlier points are substantially skewing the

size of the minimum apothem r and so the minimum fixation bounding box, and should

be eliminated in the fixation.

For all values of α, the center shift λavg reported in Table 3.2 is larger than λavg in
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Table 1.4; λavg measures the Euclidean distance (in pixels) between the FID fixation cen-

troid (as specified by (xf , yf )), and the I-VT filter centroid. This increase in λavg reflects

stray data points being eliminated via the outlier budget in the FID+ filter, so as to better

concentrate around the actual fixation. The outlier budget ratio β in Table 3.2 decreases

as α increases, due to identified fixation outlier points being penalized in objective func-

tion (3.4a). Therefore, the penalty parameter α not only serves for balancing the trade-off

between density and number of fixation points in for formulation (3.4a)–(3.4j), it also has

significant influence on the number of fixation outliers identified by the formulation. One

notable finding is that the budget P is not always used, even for small α levels.

The improved fixation metrics come with the trade-off of increased computational run

time. The Gurobi runtime in Table 3.2 increases substantially compared with Table 1.4.

The increase appears between α = 0 and α = 0.1, where much more effort is consumed

in balancing the objective function trade-off of including a point, or incurring the penalty

of α. As shown in Figure 3.6(b), the average runtime at each level of data chunk size

increases significantly at α = 0 and α = 0.1.

The last four columns in Table 3.2 report the average Gurobi runtime and overall

runtime when using lower bounds derived from Algorithms 3 and 4. Under all α lev-

els, the reported Gurobi runtime from formulation (3.4a)–(3.4j) with Algorithms 3 and 4

is less than the Gurobi time from solely solving the formulation (3.4a)–(3.4j), which

demonstrates that the bounds produced by both of the algorithms are effective in reduc-

ing the computational difficulty to the solver. However, because Algorithm 4 requires

additional computational cost for processing the dataset, the average overall runtime for

formulation (3.4a)–(3.4j) with Algorithm 4 only outperforms the experiment using solely

formulation (3.4a)–(3.4j) for the α = 0 and α = 0.1 levels. Moreover, the additional time

cost for running Algorithm 4 averages around 246s. On the other hand, the time cost for

running Algorithm 3 per chunk is negligible, and thus does not contribute to much ad-

ditional time in Table 3.2. The average overall runtime of formulation (3.4a)–(3.4j) with

Algorithm 3 is still smaller than the runtime for running the formulation (3.4a)–(3.4j)

solely. The runtime comparison indicates that both of the algorithms contribute to re-

ducing the runtime of solving optimization models. That said, because Algorithm 4 incurs

additional computational cost for data processing, only formulation (3.4a)–(3.4j) with Al-

gorithm 3 outperforms in both Gurobi optimization time and overall runtime at every α

level than only using formulation (3.4a)–(3.4j). Future work may focus on improving the

computational efficiency of the implementation of Algorithm 4.
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3.5 Conclusions

This chapter introduces outlier aware fixation identification for gaze data by extending the

FID (fixation-inner-density) filter that identifies the densest fixations in gaze data. Our

new FID+ filter enables stray gaze points within fixations to be flagged and eliminated

from fixation consideration, thereby increasing the accuracy and precision of key metrics

relate to the actual fixation. Gaze data collected by eye-tracking devices is collected as

sequence of points representing the locations where eyes focus. Spatially and temporally

adjacent points are clustered as fixations. Fixation features – such as location, duration

and inner-density – carry information about user attention and awareness in behavior

research. Such features are inherently influenced by how fixations and saccades (gaze

points between fixations) are labeled by the fixation identification algorithms. Down-

stream behavioral properties, such as dwell time, fixation heatmap and pupil dilation

during fixations, are impacted by the accuracy and precision of the fixation identification

approach that is used.

Two popular fixation identification methods in practice are the I-VT and I-DT filters.

They use relatively simple properties of gaze data and can be implemented efficiently in

commercial eye-tracking devices. However, they can lead to inaccurate fixation results,

which will result in misrepresenting behavioral patterns. The FID filter in Chapter 1 over-

comes the limitations of these baseline methods by integer optimization to optimize for

fixation inner-density, with an iterative algorithm that exploits the ability to decompose

an entire gaze stream into components, or chunks. In this chapter we augment the FID

optimization formulation with a new set of variables that indicate whether gaze point

t is an outlier for fixation f . Moreover, we carefully design enhanced constraints that

enable the strict fixation time consistency condition to be relaxed, by allowing for a small

budget of fixation outlier points to be admitted. The enhanced integer optimization for-

mulation (3.4a)–(3.4j) can recognize stray gaze points as fixation outliers, a concept that

is underexplored in fixation identification algorithms. Raw gaze data contains inevitable

noise (as depicted in Figure 3.3(b)), and we demonstrate that the FID+ filter outlined

in this chapter can robustly identify within-fixation outlier points, which is a significant

enhancement to the existing FID filter in Chapter 1.

We conduct computational experiments to compare the new FID+ filter with the

FID filter with formulation (1.11a)–(1.11f) on the 300 Hz GRE Math reading dataset

used in Chapter 1. The result shows that the FID+ filter can identify fixations with

substantially greater density. In particular, when comparing the density metric ρ3, the

ratio of minimal area bounding box and fixation point number, the FID+ filter featured a

2-3 times reduction in ρavg3 while considering a small number of points as outliers within

each fixation. Thus, these developments hold much promise for outlier-aware fixation
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Saccadic Points

Fixation Points by  Both Formulations
Fixation Points by  Formulation (6a)–(6j)

Fixation Boundary by  Formulation (1a)–(1h)
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Fixation 1
Fixation 2

Fixation 3

Figure 3.7: Fixation identification result with the FID+ filter versus the FID filter, α =
0.5, on the gaze sequence in Figure 3.3(b).

identification.

Figure 3.7 highlights the comparison of fixation identification results from the FID+

filter and the FID filter. The illustrated gaze stream segment contains three fixations.

For Fixation 1, while the identified fixation boundary looks identical for both methods,

it turns out that, due to the ability to eliminate outlier points, the enhanced formula-

tion contains 50% more points than the original formulation. This has the unexpected

effect that formulation (3.4a)–(3.4j) has a slightly larger area, because such increased area

greatly increases the number of included fixation points after outlier removal. Formula-

tion (1.11a)–(1.11f) identifies all gaze points appearing before the outlier point flagged

by formulation (3.4a)–(3.4j) as non-fixation points, while balancing the inherent trade-off

present in objective function (3.4a). The gaze points at Fixation 2 are well clustered, so

the two formulations have fairly similar results. For Fixation 3, formulation (3.4a)–(3.4j)

identifies two fixation outliers and the fixation area decreases significantly as compared

with the area identified by formulation (1.11a)–(1.11f). The outlier-aware identification

results of formulation (3.4a)–(3.4j) likely have substantial impacts on the number of iden-

tified fixation points, as well as fixation bounding regions. This behavior is similar across

chunks in the gaze data stream.

The approach outlined in this chapter does have some limitations. Due to the addi-

tional variables and constraints, the runtime for solving formulation (3.4a)–(3.4j) is slower

than formulation (1.11a)–(1.11f) at each level of α, and substantially so for α = 0 and
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α = 0.1. We introduce two geometric arguments, and algorithms, for deriving lower

bounds on rf to accelerate the speed of reaching global optimality. Both algorithms find

stronger lower bounds (`1 and `2) that are able to reduce Gurobi runtime, although more

work is needed to improve the competitiveness for a small number of instances at α = 0

and α = 0.1. Moreover, more work remains for refining Algorithm 4 to reduce its overall

run time for computing lower bound `2. Another possible direction of future work is to

more carefully investigate suitable budget values for each data chunk. While we set the

outlier budget value to approximately 1% of the length of the data chunk, other features

such as data chunk dispersion, and the average velocity of points, could suggest improved

estimates for the number of fixation outliers. Each data chunk could thereby have a

data-driven budget value based on its features.
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Chapter 4

Exploratory Data Analysis for

Recommending α to the FID Filter

users

The optimization-based formulations in Chapters 1 through 3 are all parametrized by

the density parameter α that enables decision-makers to have fine-tuned control over

the density. There is significant opportunity for recommending suitable levels for α to

users. In this chapter, we first describe a manual method for creating two labeled datasets

that leverages an interactive tool developed specifically for this purpose. We discuss our

exploratory data analysis of the suitable α levels for the data chunks in these datasets

based on statistical measurements. We then explore the development of a machine learn-

ing model to automate the assignment of α based on features of gaze data, which will

subsequently fed into the optimization formulations. After, we run the FID filter with

the Minimize Square Area of Fixations formulation from Chapter 1 for various levels of

α on the training dataset, recording the α level(s) providing an outcome most closely

resembling the labels. Next, we extract various features of the data. These features are

used to predict a suitable α level for the optimization models, thereby eliminating the

effort required to manually adjust α. The final validation step demonstrates the model

performance on the test dataset. We conclude our current findings and discuss potential

directions for future work and improvements.

4.1 Introduction

Identifying fixations in gaze data is similar to the problem of determining sensible clusters,

which is known to be subjective in nature and difficult to evaluate. One common approach

to evaluate fixation identification algorithms is by comparing the algorithmic results with
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the event detection results obtained from eye-tracking experts. Comparing the algorithmic

performance with that of a human, is a check on its effectiveness. Moreover, fixation

identification algorithms typically incorporate parameters or thresholds determined by

users during the process. Tuning parameters requires some domain knowledge about

fixation identification, such as the angular velocity of eye movement, that is, how the

eye tracker projects gaze onto the 2D plane. A small subset of those parameters might

have substantial influence on identification result, which makes the choice of such key

parameters both critical for algorithmic performance, and challenging to estimate by

hand. Deciding what parameters should be used under different eye-tracking experimental

environment is cumbersome to users, especially to novice users, who may not know what

values to use by default. The ability to suggest reasonable parameter settings is thus

attractive to most users. Measuring the performance agreement with human experts while

tuning parameters can provide useful information about suitable parameters. Inspired

by [34, 41], we label a portion of gaze data by human experts in eye tracking research.

The computational performance of the FID filter under various α levels can thereby be

evaluated by comparing with the labels marked by human experts. In addition to fixation

and density metrics, we explore the implementation of supervised learning methodologies

to recommend suitable α levels for users of the FID filter.

4.2 Dataset and Equipment

In Section 1.4.2, we introduced the 300 Hz GRE Math dataset that contains the eye track-

ing recordings of ten participants. For each recording, we sample ten subsequences, each

of which contains 1,000 points. We also study a second dataset containing 47 eye-tracking

recordings at 300 Hz from different participants under an Online Shopping task. The vi-

sual stimulus is a static webpage (Figure 4.1) showing the items and their attributes in a

tabular arrangement. The participants are asked to choose the best item they would like

to purchase after comparing the item information. We sample one hundred subsequences

from the online shopping recordings, with each subsequence containing 1,000 points. Each

recording is at least sampled once.

Both of the datasets were collected from the User Experience and Decision Making

(UXDM) lab at WPI. We employed three expert eye tracking researchers to manually

identify whether gaze points in the randomly sampled sequences are categorized as fixa-

tions (labeled as 1) or saccade points (labeled as 0).
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Figure 4.1: The webpage for the Online Shopping task in the eye-tracking experiment.

4.3 Data Labeling Toolbox

We develop a toolbox using Python 3 and Tkinter, a standard GUI (Graphical User

Interface) package. Figure 4.2 shows our data labeling toolbox panel. A user first chooses

a .csv file with a (x, y) pair at each line. The labeling program goes through the gaze

sequence point by point. After clicking Generate Graphs, the toolbox displays four panels

for user to review the gaze point category. These panels provide different information for

users to inspect each gaze point. The upper left panel shows the current gaze point by

highlighting it as red, with the trajectory of the next 50 points. The upper right panel

shows previously labeled fixation and saccade points. The lower left panel shows the gaze

point velocity and the lower right panel presents the whole path of the gaze sequence.

Users can mark the current gaze point as a fixation point or a saccadic point and then

click the confirm button and continue to label the next gaze point. The user also can go

back to previous labeled gaze point by point index navigation, if desired, to make some

changes.
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Figure 4.2: Data Labeling Toolbox Panel.

4.4 Exploratory Data Analysis

In Section 1.4.2, we described the data preprocessing method to separate data sequence

into data chunks. Each data chunk is the input data for our optimization approach and

may have properties that can suggest an appropriate alpha setting. Because we randomly

select the beginning of the gaze point sequence from each data recording, some labeled

gaze points belong to data chunks that are not fully enclosed in the labeled data. Within

the 200 thousand labeled gaze points, we distilled 865 data chunks from the GRE Math

dataset and 1,206 data chunks from the Online Shopping dataset. Each gaze point from

each of these chunks is manually labeled according to expert opinion. We find that the

classes of fixation points and saccade points are highly imbalanced in both of the GRE

Math and Online Shopping recordings. Of all the labeled gaze points, approximately 90%

points are fixation points, which might be because the visual stimulus are static in both

eye-tracking tasks. Our finding is consistent with the description in [41].

For each data chunk, we run formulation (1.11a)–(1.11f) for α with the range from zero

to a number large enough so that the identified fixation includes all the data chunk points.

That is, when α is large enough, formulation (1.11a)–(1.11f) has the same identification

result with the I-VT filter used for data preprocessing. For the sampled data chunks from

the GRE Math dataset, we find α = 50 is such a number for the formulation that all the

identified fixations are identical with the data chunks, whereas α = 22 is large enough for
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all the data chunks from the Online Shopping data. Thus, we run α from 0 to 50 and 0 to

22, respectively, on the two types of data chunks. The step size is set as 0.1. We consider

the F1 score as the measure for fixation identification performance because it accounts for

both the precision and the recall in classification result.

For each data chunk, we record all of the α levels that can reach the maximum F1

score by comparing with the fixation point labels in this data chunk. The preprocessing

procedure already filtered most of the saccade points, so the number of points labeled

as saccade points in the data chunks is quite low. The F1 score at appropriate α levels

is particularly high for measuring fixation point labels; many of the largest F1 scores

are greater than 0.98. One interesting finding is that the α levels with the highest F1

scores are consecutive, e.g., α = 0.1, , 0.2, . . . , 3.0. We name this range of α levels as

the optimal range. We also find that 82.3% of the data chunks have the highest α level

(respectively, α = 50, or α = 22) in their optimal α range. It indicates that categorizing

all points as fixation points in those data chunks best matches with the labels of fixation

points measured by the F1 score. Thus, implementing the FID filter on those data chunks

could not further enhance the fixation identification performance because when α is large

enough, the fixation identified by Formulation (1.11a)–(1.11f) is precisely identical to the

data chunk. Hence, the optimal α range for those data chunks is actually left-bounded

and right-unbounded. That said, for the data chunks having a right-bounded optimal α

range, Formulation (1.11a)–(1.11f) is effective to refine the data chunks. Figure 4.3 shows

the histogram of the mean value of their optimal α ranges. The histogram is right-skewed,

which illustrates a few values are much larger than the rest.

Figure 4.3: Histogram of the mean value of the optimal α range for the data chunks
needing further refinement by Formulation (1.11a)–(1.11f).
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4.5 Predictive Modeling

Based on these observations, we could conclude that recommending a suitable α value for

processing the remaining 17.7% of the data chunks carries actual meaning for increasing

fixation identification agreement with human experts. Therefore, we explore a two-step

machine learning model for automatically tuning α for Formulation (1.11a)–(1.11f) based

on the labeled data. The first step is to build a binary classifier using the data chunk

features to recognize whether an input data chunk needs to be refined by Formulation

(1.11a)–(1.11f). The second step is to build a regression model to predict the mean α of

their optimal range for those data chunk needing for further refinement.

4.5.1 Training and Testing Datasets

We randomly select 30% of participants and their eye-tracking recording in each of the

datasets to formulate a testing set for final performance evaluation of the machine learn-

ing model. Three participants with 30 subsequences in the GRE Math dataset and 14

participants with 17 subsequences from the Online Shopping dataset are held for testing.

The testing set contained 655 data chunks. The rest of recordings will be used as training

data for selecting the learning models and parameter tuning with cross-validation. We

use Scikit-learn [42], a Python module that provides state-of-the-art machine learning

algorithms for the predictive analysis.

4.5.2 Feature Extraction

We generate 28 representative features for each data chunk. Based on the feature extrac-

tion described in [43], the statistical features of gaze location, gaze velocity, and fixation

duration are extracted from the data chunks. The MIP formulation (1.11a)–(1.11f) we

are implementing in the FID filter optimizes for the apothem of fixation bounding square,

which is also monotonically with the density metric ρ3: the minimal area square bounding

box divided by the number of points within a data chunk. We calculate the apothem of

the bounding box and ρ3 of the data chunk as the features, as it is believed that they

may be correlated to the fixation apothem and α. As formulation (1.11a)–(1.11f) always

classify points at the beginning and ending location in a data chunk as saccade points

when using the experiment setting in Section 1.4.2, the velocity of the beginning and

ending points in a data chunk can be indicative to suitable α levels. We thus extract an

additional six features to describe their velocity. All of the generated features are listed

in Table 4.1.
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No. Features Description
1-4 Statistical features of gaze point velocity in X direction Mean, standard deviation, skewness, kurtosis of velocity
5-8 Statistical features of gaze point velocity in Y direction Mean, standard deviation, skewness, kurtosis of velocity
9 Data chunk duration Number of points divided by the sampling frequency
10 Standard deviation (X) Standard deviation of Xs
11 Standard deviation (Y ) Standard deviation of Y s
12 Skewness (X) Statistical skewness of Xs
13 Kurtosis (X) Statistical kurtosis of Xs
14 Skewness (Y ) Statistical skewness of Y s
15 Kurtosis (Y ) Statistical kurtosis of Y s
16 Path length Total length of scanpath for a data chunk
17 Dispersion Spatial spread for a data chunk: D = (max(X)−min(X)) + (max(Y )−min(Y ))
18 Dispersion of X direction Spatial spread for a data chunk: Dx = (max(X)−min(X))
19 Dispersion of Y direction Spatial spread for a data chunk: Dy = (max(Y )−min(Y ))
20 Average velocity Average amplitude of gaze movement velocity
21 Radius of square bound box Minimum radius for a square bound box to cover all points in a data chunk
22 Density metric The minimal area square bounding box divided by the number of points within a data chunk
23 Velocity of the first gaze point The amplitude of the first gaze point movement in a data chunk
24 Velocity of the second gaze point The amplitude of the second gaze point movement in a data chunk
25 Velocity of the last gaze point The amplitude of the last gaze point movement in a data chunk
26 Velocity of the second-to-last gaze point The amplitude of the second-to-last gaze point movement in a data chunk
27 Average velocity of the first five gaze points The amplitude of the first five gaze point movement in a data chunk
28 Average velocity of the last five gaze points The amplitude of the last five gaze point movement in a data chunk

Table 4.1: List of the 28 features generated for each labeled data chunk (note: top two
lines contain 8 features).

4.5.3 Step One: Classification Model

The first step of our predictive analysis is to build a binary classifier for recognizing

the data chunks needed for further refinement by Formulation (1.11a)–(1.11f). We label

these data chunks as positive class and the others as negative class. As described in the

beginning of Section 4.5, the sample size in the positive class is somewhat smaller than

the negative class. The scale of the two classes is about 1:4.6. Thus, balancing the two

classes is necessary before training the machine learning models. We perform Synthetic

Minority Over-sampling Technique (SMOTE) [44], a popular method to over-sample the

minority class. The sample size ratio is balanced to 1:1 for training. We then evaluate

the performance by nested cross-validation (CV) on a group of commonly used machine

learning models: Support Vector Machine, Logistic Regression, Random Forest, Gradient

Boosted Trees, and XGBoost. Nested CV performs a series of CV. The inner CV is used

for training the models and optimizing the hyperparameters. The outer CV is used for

final model selection. By this procedure, nested CV effectively avoids overfitting and data

snooping. Our performance metric is the area under the Receiver Operating Characteristic

curve (AUC) score from prediction scores for tuning hyperparameters and model selection.

The performance evaluation result shows that the Random Forest classifier reaches the

highest AUC score at 0.962 on the balanced training set with the parameter setting as

170 trees and maximal depth as 10.

In the testing dataset, 95 data chunks are in the positive class and 560 data chunks

are in the negative class. Figure 4.4 shows the confusion matrix of predicting the labels of

data chunks in the testing set. For the positive class, the precision is 0.45 and the recall
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is 0.54. Figure 4.5 shows the feature importances from the Random Forest classifier. One

interesting finding is that the most important feature is the statistical kurtosis of gaze

location in X-axis. The second and third important features are the average velocity of

the first five gaze points and the velocity of the first gaze.
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Figure 4.4: The confusion matrix of predicting data chunk categories in the test dataset.

Figure 4.5: Feature importances from the Random Forest classifier. The top three most
important features are: kurtosis (X), average velocity of the first five gaze points, velocity
of the first gaze point.

4.5.4 Step Two: Regression Model

For fitting a regression model of those data chunks that need to be further refined by

formulation (1.11a)–(1.11f), we implemented the Huber Regressor [45], a linear regression

64



model that is robust to outliers. The Huber Regressor minimizes a hybrid of linear loss

for the samples that are classified as outliers, and squared loss for the other samples. We

use CV to optimize the regularization parameter while fitting the regression model. The

model reaches a minimum mean squared error when the regularization parameter is 1.0.

The coefficient of determination (R2) is 0.568 when predicting mean of optimal α levels on

testing data chunks. There are 59 predictive values of α that lie in the observed optimal

α range.

4.6 Findings and Discussions

We cascade the trained Random Forest Classifier and Huber Regressor as a two-step

predictive model: the first step is using the Random Forest Classifier to predict the class

of an input data chunk; if this data chunk is classified as needing refinement, the regression

model in the second step predicts an α level for implementing formulation (1.11a)–(1.11f).

On the testing dataset, the classifier filters out 79 data chunks (43 true positive chunks)

for further processing. In the second step, 45 data chunks get a predicted α from the

regression model lying in their actual optimal α range. The correct predictions for the

negative class in the first step can be viewed as obtaining a significantly large α value in

the optimal α range that leads the FID identification result to be the same as the input

data chunk. The predictive model correctly recommends an α value to 569 data chunks.

Adjusting parameters for fixation identification algorithms is typically required for

each individual eye-tracking experiment. When considering the general accuracy for

identifying fixation points within data chunks via the predicted α levels with formula-

tion (1.11a)–(1.11f), we calculate an overall F1 score for all the subsquences from each

participant in the test dataset. The result shows that for the GRE Math dataset, the

average F1 score over participants obtained by the formulation (1.11a)–(1.11f) with pre-

dicted α values ranks at the first place with the value of 93.614%. The second highest

average F1 score, 93.607% is from running formulation (1.11a)–(1.11f) with a fixed α in

the range of [1.6, 1.9]. The third highest F1 score is obtained by α from 4.8 to 5.9. The

lowest F1 scores are at α = 0 and α = 0.1, with the value of 56.050% and 88.860%. When

examining the Online Shopping dataset, the highest average F1 score is 98.176%, which

is reached by α from 8.5 to 21. The formulation (1.11a)–(1.11f) with predicted α values

has the F1 score as 98.172%.

When comparing the α levels with the highest F1 score on these two types of eye-

tracking data, we find that the optimal α range is actually different. The GRE Math

dataset prefers α at smaller levels whereas the Online Shopping data favors higher α

levels. The identification result by the formulation (1.11a)–(1.11f) with the different
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predicted α values outperforms running the formulation with any fixed α level. However,

due to the limited GRE Math participants in the test data, we could not the draw the

conclusion that this result is statistically significant. For the performance comparison on

the Online Shopping dataset, the average F1 score gained from experiment with different

predicted α values is slightly lower than running with fixed α values. To evaluate if the

F1 score with the predicted α values is significantly smaller than the highest F1 score

obtained by the fixed α = 8.5 for all the participants, we ran a paired t-test on the 14

participants for the Online Shopping task in this testing data set. The p-value is 0.92,

indicating that the F1 score by the predicted α values is not significantly smaller.

4.7 Conclusions

This chapter introduces our findings for comparing the fixation identification results by

the FID filter with the Minimize Square Area of Fixations formulation on the eye-tracking

datasets with fixation and saccade points labeled by human experts. We demonstrate the

process for creating labeled datasets: the GRE Math dataset and the Online Shopping

dataset. We implement the FID filter that incorporates the data preprocessing using the

I-VT method to separate original data records into data chunks. Then, the optimization

formulation (1.11a)–(1.11f) parametrized over a range of density modulation parameter

values α is run to refine the I-VT identification result in each data chunk.

We first discuss our exploratory data analysis for recommending α at a micro level

– for each data chunk, we evaluate the identified fixation points with the human expert

labels. In the two labeled datasets, we find that 82.3% of the data chunks with their

gaze points are labeled as fixation points by human experts. When running the FID

formulations to refine the data chunk points, it might be more efficient to filter out those

data chunks and directly output them as fixations. We built a Random Forest classifier to

recognize those data chunks by the generated features and demonstrate the classification

performance. For the reminder of the data chunks, we find that the optimal α levels as

determined by the optimization performance lie in a range of values. That is, each data

chunk has an optimal α range for the FID filter that leads to the identified fixation points

most agreeing with human expert labels. We explore a Huber Regressor model, a linear

regression model that is robust to outliers, to predict the mean of their optimal α range

from the dataset.

We then discuss our exploratory findings at a more general level – for each eye tracking

recording in the dataset, we compare the identification results by the formulation (1.11a)–

(1.11f) with different α levels, with the human labeled results. We find that the GRE Math

dataset prefers α at smaller levels than the Online Shopping data, by observing random
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sampled participant eye tracking recordings. We may recommend α levels around 1.75 for

the GRE Math eye-tracking recordings and for similar scenarios. For the Online Shopping

dataset, we would recommend α levels over 8.5. When comparing the overall performance

between running formulation (1.11a)–(1.11f) with the predicted α levels and with each

single α level, we find that the result from the predicted α levels ranks at the highest

level as measured by the average F1 score. However, perhaps due to the limited number

of testing participants, we are unable to draw the conclusion with statistical significance.

For the Online Shopping dataset, the average F1 score by the predicted α levels ranks

lower than the results from several fixed α levels. We perform a paired t-test to see if

the difference is significant; the result shows that the average F1 score is not significantly

smaller than the scores by fixed α levels.

The discussions for recommending α levels outlined in this chapter have some limi-

tations. As mentioned in Section 4.4, we find that about 90% of the gaze points are as

fixation points. In both of our labeled datasets, the preprocessing procedure by the I-VT

filter eliminates most of the saccade points, so the class of gaze points in the data chunk

is highly imbalanced – nearly entirely points are fixation points. It leads to the F1 score is

exceptionally high when measuring fixation points. Therefore, it may be necessary to find

other proper performance metrics for evaluation purposes. Thus far, we could not draw a

definitive conclusion that our two-step predictive model performs better than than when

using a fixed α while running formulation (1.11a)–(1.11f). Another idea is to label more

gaze points in the currently used dataset.

Our discussions are all based on the sample-by-sample comparison with the human

expert labels. An additional research direction is the event-by-event comparison of fixa-

tions, that is, to compare the duration and location of the identified fixations with the

labeled fixations. Moreover, we only used formulation (1.11a)–(1.11f) for discussing op-

timal α levels. We may further adapt the formulation (3.4a)–(3.4j), Minimizing Square

Area of Fixations with Outlier Sensitivity in our experiment and evaluate the performance

on labeled datasets.
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Chapter 5

Conclusions and Future Work

The major theme of this dissertation research is the application of mathematical opti-

mization techniques and associated algorithms to identify fixations in eye gaze data. The

accurate classification of eye gaze data into its constituent components is a key factor

in behavioral studies, as eye gaze data forms the foundation for ensuing information pro-

cessing. Gaze data is commonly categorized into two main events: fixations are clusters

of points that are near in proximity and time, whereas saccades are higher velocity gaze

points that occur between fixations. The majority of behavioral analyses focus on study-

ing global fixation patterns. The distribution of gaze points within an individual fixation,

which we call micro-patterns, has thus far been largely ignored. Prior work in [10] shows

that these patterns can reveal significant information about focused attention and effort,

which our findings further support. This forms a key milestone of this research: optimizing

the classification of gaze data points using the notion of inner-density.

Fixation inner-density combines both the temporal and the spatial aspects of a fixa-

tion. These aspects are combined to form a measure of compactness of a fixation, which

reveals significant and previously undiscovered information about attention. Inner-density

can also overcome several limitations of existing methods, such as lack of sensitivity to

peripheral points of a fixation, as well as the misrepresentation of fixation properties. We

use integer optimization techniques to identify fixations in a sequence of gaze points by

optimizing for inner-density, which we call the FID filter. A key novelty is the guarantee

that there is no better gaze point identification according to the objective function of

maximizing inner-density. While optimizing the entire data stream is computationally

prohibitive, by exploiting the fact that saccades are natural separators of fixations, the

entire gaze stream can be decomposed into a series of chunks, which enables efficient pro-

cessing. Computationally speaking, extensive testing on real datasets demonstrates that

our optimization-based approach is efficient and effective, identifying densest fixations

in chunks in less than one second, on average. The identified fixations exhibit greater
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density than existing methods, reflecting the ability of our approach to refine fixations, as

well as more accurately represent gaze metrics such as fixation duration and center. The

refined, denser fixations better represent attention and awareness for further analysis in

eye tracking studies.

Building upon this initial milestone, in Chapter 2 we conduct extensive statistical

testing of the FID filter with a widely used method of fixation identification, namely the

I-VT filter, on a Text Reading eye tracking dataset. The results show that in general,

fixations identified by the FID filter are significantly denser and more compact around

their fixation center. They are also more likely to have randomly distributed gaze points

within the square box that spatially bounds a fixation. The results of this study suggest

that the FID filter increases the sensitivity of grouping gaze points into dense fixations,

which are better representations of user focused attention in eye tracking investigations.

In Chapter 3, we extend the mathematical optimization models in the FID filter to ac-

count for fixation outlier sensitivity. The enhanced mathematical optimization models for

the FID filter, which we call the FID+ filter, improve the fixation identification by elimi-

nating a small portion of fixation outliers. These conditions are captured by extending the

current mathematical model to incorporate additional variables and constraints. While

the addition of this extra flexibility introduces some additional complexity, we propose

and implement approaches to improve the computational performance, by developing two

arguments for tightening the lower bound of minimizing the square area of fixations.

The mathematical optimization formulations in our FID filter are all parametrized

by a unique, manually assigned parameter α that enables decision makers to have fine-

tuned control over the density. The α levels may have significant influence on the fixa-

tion identification results by the FID filter. In Chapter 4, we conduct exploratory data

analyses to discover suitable α levels for two eye-tracking datasets, GRE Math dataset

and Online Shopping dataset. To quantitatively measure fixation identification perfor-

mance by the mathematical formulation with different α levels, three expert eye-tracking

researchers were employed to label the subsequences randomly sampled from the eye-

tracking datasets. We compared the identification results by the formulation (1.11a)–

(1.11f) with different α levels to the ground truth, that is, the human-labeled results.

Our current finding is that the GRE Math dataset prefers α at smaller levels than the

Online Shopping data by observing random sampled participant eye tracking recordings.

We may recommend a low α value, such as 1.75, for the GRE Math recordings and a

relatively high α value, such as 8.5, for the Online Shopping recordings. Moreover, we

may be able to generalize such recommendations for eye tracking experiments with sim-

ilar tasks and static stimuli. Further verification will require additional datasets. We

subsequently explore the opportunity of building a machine learning model to assign a
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predictive α value based on features of each input data chunk. Comparing the results

from identifying fixation points in the GRE Math data chunks, reveals that running the

formulation (1.11a)–(1.11f) with the α levels predicted by the learning model outperforms

those with fixed α levels. However, due to the limited testing data, we could not draw

the conclusion with statistical significance. More eye tracking data is needed for further

improvement.

Future work consists of incorporating the above research into a real-time system for

gaze fixation detection using inner-density. This system aims to analyze and categorize

eye gaze data in near real-time, thereby establishing a basis for immediate feedback to

the user.

Tobii [29] Pro software development kit (SDK) serves as the fundamental SDK to cre-

ate our application for analyzing eye tracking data. It is compatible with Tobii Pro eye

tracker hardware [29] that we used for collecting eye gaze datasets in previous computa-

tional experiments. Based on the SDK, we will develop our own software for realizing the

FID and FID+ filter in practical use. The SDK provides raw gaze data stream with high-

precision timestamps. Once the data arrives, we can save data points into a data buffer to

form a data sequence. For each raw gaze point, the software could first pass it through an

I-VT filter to identify whether it is a saccade point. The data sequence in the data buffer

can then be separated into data chunks by sacade points. The distinct data chunks are

the input of the mathematical formulation in the FID/FID+ filter. Subsequently, fixation

points can be used to analyze, store or visualize user behavior and attention.

This real-time eye tracking feedback system has significant implications, and may

expand the application scope of eye tracking in affective computing and accessibility. For

example, if the system recognizes fixations in real-time and interprets user eye movement

mode as focused attention while viewing information, the system could then provide

explanatory feedback. With our advanced fixation detection algorithms, the system has

the potential to improve user experience by developing innovative, personalized human-

computer interactions. It may also enhance the performance of gaze-based alternative

and augmentative communication (AAC) devices, which promises significant benefits to

people with disabilities.
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