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Abstract

This IQP was an eclectic development of various features for the ASSISTments online learning platform.
We designed features to identify student gaming behaviors, used trigram matching to determine similarity
between hints and explanations of problems, concatenated data to find streaks of correctly answered prob-
lems, and clustered Common Core descriptions based on embeddings from MathBERT. We also simulated
using deep Bayesian bandits to recommend content in the form of supports to struggling students. Our
models were able to predict whether or not a student would get the next problem correct more frequently
than random using an epsilon-greedy (RMS) model. All features were completed successfully and integrated
into the ASSISTments Automatic Personalized Learning Service (APLS). These results all had significant
findings to be expanded upon in further research.
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1 Introduction

ASSISTments is a popular math tutoring software developed to help K-12 students and is utilized in many

schools across the world. Our goal with this project was to develop features and models to personalize

student learning experiences and improve learning rates.

1.1 TeacherASSIST

Previous work on ASSISTments has already explored personalizing student learning experiences. One such

example was the exploration of TeacherASSIST[1], a feature of ASSISTments that redistributes personalized

crowd sourced tutoring to other students on the ASSISTments platform. This study aimed to discover the

effectiveness of this crowd sourced tutoring, and to see if any further personalization of tutoring could be

done. The study ultimately concluded that tutoring provided through TeacherASSIST had a positive impact

on students’ learning[1]. The features used in the study’s models did not capture 100% of the variance in

problems and students[1], so in this project we aimed to create features that could increase the reliability of

predicting next problem correctness (NPC).

1.2 Automatic Personalized Learning Service (APLS)

Creating more personalized learning was also previously explored through research of APLS[2]. The study

tested the effectiveness of multiple multi-armed bandit algorithms at recommending the best tutoring sup-

port for a student. The study concluded that Beta-Bernoulli Thompson Sampling performed only slightly

better than random, and that Decision Tree Thompson Sampling performed the best out of the bandit-

algorithms explored[2]. In this project we aimed to expand on the research of effective bandit algorithms for

recommending personalized tutoring to students.

1.3 Features

Our goal with developing features was to improve the reliability of predicting NPC and to better understand

what effects student learning. By raising the accuracy of predicting NPC, we hoped that future work could

use it to evaluate the effectiveness of new personalized learning methods.
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1.3.1 Detecting Gaming Behaviors

Gaming the system is a term used when a student attempts to trick a system into progressing without

actually putting in the cognitive effort to solve the assigned problems[3]. We set out to create a detector for

some of these behaviors based on prior research.

1.3.2 Wheel-spinning/Answer Streaks

Wheel-spinning is a student behavior that occurs when a student has spent sufficient time practicing a skill,

but has made minimal progress in mastering that skill[4]. The correct/incorrect answer streak feature was

developed as an offshoot of a wheel-spinning detector. It was created as a simple statistic for estimating

student success.

1.3.3 Similarity Detection

Using strict trigram matching from PostgreSQL, we wished to find the similarity between hints, explanations,

and questions in the ASSISTments database. Similarity between these has numerous applications for further

research. There may exist correlations between similar questions/explanations and NPC.

1.3.4 Common Core MathBERT Clustering

The Common Core State Standards Initiative was created in 2010 to ensure that students had a fundamental

understanding of mathematics and English language arts at the end of each grade[5]. The Common Core

has a comprehensive website detailing the skills of many of these concepts in mathematics. Combining

MathBERT, a large language model, we set out to embed and cluster around 450 mathematical Common

Core skill descriptions using several different clustering methods.

1.4 Simulating the use of Contextual Bandits in ASSISTments

Our goal with evaluating deep learning models was to simulate using contextual bandit algorithms for

recommending tutoring support. By identifying and applying this support, student learning rates would be

improved as a result of the personalized learning environment.

Determining the NPC of a student is vital in discovering what tutor supports help or harm them and has

been an area of interest for ASSISTments. Our goal was to turn ASSISTments data into a contextual bandit
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problem and then apply several popular bandit algorithms from past research to maximize NPC among

students using tutor supports.
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2 Background

2.1 Detecting Gaming Behaviors

2.1.1 Defining Gaming the System

Gaming the system is a form of student disengagement that is seen often in online tutoring systems. It is

defined as “attempting to succeed in the environment by exploiting properties of the system rather than by

learning the material and trying to use that knowledge to answer correctly”[3]. Gaming the system has been

shown to have an immediately harmful impact on student learning outcomes[6]. Therefore, being able to

detect when students game the system and prevent them from continuing to do so quickly and efficiently is

imperative for online tutoring systems.

2.1.2 Methods For Detection

There are many well-researched methods for detection of gaming the system, with the most widely used

being forms of data mining/machine learning and knowledge engineering[7]. Data mining/machine learning

methods require large datasets pre-labeled by experts as gaming or non-gaming to train. Once trained,

they algorithmically identify relationships between student actions/behaviours and gaming the system. This

avoids the need to have explicit knowledge on the types of student behaviour that indicate gaming. Knowl-

edge engineering models are created by designing a set of rules that replicate known patterns of gaming.

These models do not require large pre-labeled datasets, since the rules for the model are elicited directly

from experts. Since the knowledge engineering models are developed from known behaviours/patterns that

indicate gaming, they are more applicable to other tutoring systems than machine learning models[8].

2.2 Wheel-spinning/Answer Streaks

2.2.1 Defining Wheel-spinning

Wheel-spinning is a student behavior that occurs when a student has spent significant time practicing a skill,

but has made minimal progress in mastering that skill[4]. Research has shown that wheel-spinning is related

to a decrease in flow and an increase in confusion in students[9], forming an unproductive work environment.

Since wheel-spinning is cognitive in nature, students will often need outside intervention in order to break out

of the cycle. This is why it is important for tutoring systems like ASSISTments to identify wheel-spinning
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quickly, so that intervention methods may be administered before students become too frustrated or lose

hope.

2.2.2 Methods for Detection

In general, wheel-spinning revolves around skill mastery. One simplistic approach to mastery is to assume

a student has mastered a skill once a student has correctly answered 3 questions in a row[4]. In a study

previously done on ASSISTments data, a student was considered to be wheel-spinning upon failing to master

a skill within 10 problems[4]. These rules define the bounds for determining whether or not a student is

wheel-spinning.

2.3 Similarity Detector

Trigram matching is a method of splitting two strings into every possible in-place group of three charac-

ters, and then determining how many matches between them exist. In the ASSISTments database, there

are records of every problem and explanation. We can use trigram matching to determine the similarity

between the problems and the hints/explanations written for them. We can then use this similarity metric

to determine trends in student learning.

2.4 Common Core MathBERT Clustering

BERT (Bidirectional Encoder Representations from Transformers) models have been widely praised for their

ability to understand and process NLP tasks and input, and have been used in numerous studies[10]. Math-

BERT is a BERT model trained again on mathematical texts, and has many potential uses for ASSISTments.

In ASSISTments, each problem is tagged with a common core skill like the following:

Compare two fractions with different numerators and different denominators, e.g., by creating common de-

nominators or numerators, or by comparing to a benchmark fraction such as 1/2.[11]

MathBERT is able to generate embeddings for these skills, which could then be clustered to determine the

main focuses of the Common Core for math education. Problems arise when attempting to determine which

clustering method categorizes these embeddings correctly, since MathBERT generates a significant amount

of dimensions to cluster on.
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2.5 Simulating the use of Contextual Bandits in ASSISTments

A contextual bandit is a derivative of a popular Computer Science problem known as the multi-armed bandit.

This problem details several ”one-armed bandits” (slang for slot machines) where the gambler has a finite

amount of money to spend, and needs to figure out which machine has the highest payout[12]. There is

a trade off between exploration and exploitation that must be balanced: If the gambler decides to spend

all his money on one machine, there might be others that payout better. If he spends it all equally on the

machines, he does not maximize the profit of the one machine that pays the most. A contextual bandit

problem is similar, except that there is some outside context affecting the payout of the machines. Perhaps

the machines pay out differently on different days, or the owner decides to cut down on the payout of the

machines if there are more people in the casino. The goal of each of these problems is to discover the trends

of the contexts and then use them to exploit the bandits for as much money as possible.

Deep Bayesian Bandits Showdown[13] details an analysis of several different bandit algorithms in an attempt

to find which performed best on several distinct and popular datasets. Previous research on contextual ban-

dits in personalized learning with ASSISTments data using Beta-Bernoulli Thompson Sampling or Decision

Tree Thompson Sampling has only performed slightly better than random[2].
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3 Methodology

3.1 Detecting Gaming Behaviors

3.1.1 Restrictions

When developing our gaming detector, there were some restrictions we had to be wary of. The current

APLS uses bandit algorithims that store thousands of actions in real time. As such, our gaming detector

needed to be computationally low cost in order to finish computing in a reasonable time frame. Another

restriction was the lack of time and resources to produce a dataset coded as gaming or non-gaming by an

expert. Without a large pre-labeled dataset, we would be unable to train any machine learning models to

detect gaming. Considering the restrictions, we decided that a form of knowledge engineering model would

be ideal, as they do not rely on pre-labeled datasets and are more efficient than machine learning models.

3.1.2 Eliciting the Knowledge Engineered Rule Set

The biggest challenge with knowledge engineering models is defining the set of rules elicited from an expert

that the model will follow. Through research we were able to obtain a knowledge engineered set of rules

to detect gaming[14]. This model first interprets the type of a student’s action, then identifies patterns in

sequences of actions that display gaming. Although the model was originally developed for Cognitive Tutor

Algebra, a math tutoring service, it was proven to be able to transfer and perform reasonably well on the

ASSISTments platform[15].

3.1.3 Creating a Simplified Model

Upon obtaining a reasonable set of knowledge engineered rules for detecting gaming on ASSISTments data,

we had to create a simplified model that would be able to deploy and run on the 150,000 student action logs

within a short time frame. This meant that we would have to sacrifice accuracy for speed by reducing the

amount of rules the model would follow. Upon further analysis, we found that a common attribute of the

rules was time taken between actions. We decided that time between actions would be the major rule our

model would follow in order to detect gaming. Based on the rule set, we concluded that an average time

of less than or equal to 3 seconds between wrong answer and tutoring request actions would be flagged as

gaming. This was derived from the rules on guessing and requesting help from the rule set. The second

major rule for our model was whether or not the student got the problem correct. In order to simplify
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our model, we decided that the model would only flag students as gaming if they incorrectly answered the

question. In summary, the model considers a student to have gamed the system on a particular problem if

the average time between wrong answer and tutoring request actions is less than or equal to 3 seconds and

their response was incorrect.

3.2 Wheel-spinning/Answer Streaks

3.2.1 Transitioning to Answer Streaks

Our research led to the conclusion that wheel-spinning revolves around correct and incorrect answer streaks.

We decided to transition from making a detector for wheel-spinning, to making a student answer streak

tracker that could be used more generally for future features. An answer streak is defined as getting the

same result (correct or incorrect) for multiple problems consecutively. For example, a student that got two

problems correct in a row would have a correct answer streak of two.

3.2.2 Calculating Answer Streaks

In order to calculate answer streaks, we retrieved all student responses and ordered them by time submitted

and counted consecutive correct and incorrect answers. These counts were then combined with the students’

current correct and incorrect median answer streaks to create a running median.

3.3 Similarity Detector

Creating this feature had several issues to overcome, specifically in parsing the data for NLP applications.

All of the data we were trying to use contained HTML body tags, extra spaces, newline characters, and

other noise. Filtering was accomplished with several distinct RegEx equations. These equations could be

concatenated together, but for simplicity’s sake they were separated to make understanding and iterating

upon them simpler. The code used to filter the HTML is shown below:
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create or r ep l a c e func t i on f i l t e r s t r i n g ( u n f i l t e r e d s t r i n g varchar )

r e tu rn s varchar

language p lpg sq l

as

$$
de c l a r e

f i l t e r e d s t r i n g varchar ;

begin

f i l t e r e d s t r i n g := trim (both from

r e g exp r ep l a c e (

r e g exp r ep l a c e (

r e g exp r ep l a c e (

r e g exp r ep l a c e (

u n f i l t e r e d s t r i n g , E ’<.∗?> ’ , ’ ’ , ’ g ’ ) ,

E ’&nbsp ; ’ , ’ ’ , ’ g ’ ) ,

E ’ [\\n\\ r ]+ ’ , ’ ’ , ’ g ’ ) ,

E ’ [ ]+ ’ , ’ ’ ) ) ;

r e turn f i l t e r e d s t r i n g ;

end ;

$$ ;

Figure 1: PostgreSQL Similarity Detector Code

Each RegEx had a specified goal to filter a specific part of HTML. First, we remove all data within the less

than/greater than signs (≷), then all tab/newline characters (&nbsp, \n), and finally remove extra spacing

left after the previous operations. We then enter the filtered text into strict word similarity trigram matching

from PostgreSQL[16]. The result was a fast, effective, and reliable method to determine the text similarity

between questions and their tutoring strategies.

3.4 Common Core MathBERT Clustering

Using similar RegEx code described in the similarity detector, as well as some Python code for determining

the location of the skill in the HTML webpage, we were able to extract Common Core skillcode descriptions

from the Common Core webpage shown in Figure 2.
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Figure 2: Common Core Skill (with the desired text outlined in red)

We could then use the body tags in HTML to grab the desired text and then discard the rest. Once filtered,

we then ran the skills through MathBERT, which embedded the semantic information of each skill in an

array with 3072 dimensions. Clustering was done in several different ways, each with varying levels of

success. PCA (Principal Component Analysis) was done due to the high number of dimensions, and led to

significantly better results both in clustering and further analysis. The links, filtered skills, and PCA data

can be found in the appendix.

3.5 Simulating the use of Contextual Bandits in ASSISTments

We decided to run each algorithm from the Deep Bayesian Bandits Showdown paper through 5 trials, each

with 10,000 randomly selected and normalized data points. The goal of the algorithms was to correctly

identify when a tutor strategy would be helpful. When the algorithm correctly identified a tutor strategy

as helpful it would be given a reward of 1. When the algorithm incorrectly identified a tutor strategy as

helpful it would be given a reward of -1. When the algorithm identified a tutor strategy as unhelpful it

would be given a reward of 0. We also studied variations with these rewards in powers of 10, but found that

significant gaming occurred in these models as they would simply maximize their scores by abusing higher

rewards where the punishments were negligible, leading to unusable results for our purposes.

Tutor strategies helped a student answer the next problem correctly roughly 33% of the time. Therefore,
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we can calculate the optimal choice by assuming our algorithm guess correctly in every instance (around

3333 times) and chooses to abstain in every other instance where supports will be unhelpful. This can be

represented with equation 1:

10000 ∗ ((2
3
∗ 0) + (

1

3
∗ 1)) = 3333 (1)

We can calculate random choice by assuming half the time the model chooses no supports and half of the

time it will roll the dice: 33% of the time the reward will be positive and 67% of the time the reward will

be negative. This can be calculated using equation 2:

10000((
1

2
∗ 0) + 1

2
(1 ∗ 1

3
+−1 ∗ 2

3
)) = −1667 (2)

Our models need to compete against these two scores to determine if contextual bandits are a viable option

for predicting NPC.
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4 Findings

4.1 Detecting Gaming Behaviors

After running the gaming detector on around 1.03 million different users and assigning users an average

gaming frequency score ranging from 0 (never games) and 1, (games on every problem) we obtained the

following results:

Summary of Average Gaming Frequency
Variable Value
count: 1,035,000
mean: 0.00307
std: 0.01667
min: 0
25% 0
50% 0
75% 0
max: 0.8

Figure 3: Summary of the Distribution of Mean Gaming Frequency

Figure 4: Mean Gaming Frequency Distribution

The data 3,4 suggests that users up to the 75th percentile have an average gaming frequency of 0; 100% of

all gaming is done by less than 25% of students on the ASSISTments platform. This conclusion is supported
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by the mean and standard deviation. The mean is extremely low at 0.003 and the low standard deviation

suggests that the majority of users gaming scores are clustered around 0.003.

4.2 Wheel-spinning/Answer Streaks

After running the answer streak tracker on around 1.03 million different users and calculating the median

right and wrong answer streaks for each user we obtained the following results:

Summary of Median Answer Streaks
Var Correct Incorrect
count: 1,035,000 1,035,000
mean: 12.0237 4.1763
std: 19.5762 4.7423
min: 0.0 0.0
25% 2.0 1.50
50% 5.5 2.6363
75% 13.750 5.0
max: 635.50 155.0

Figure 5: Summary of the Distribution of Median Correct and Incorrect Answer Streaks

Figure 6: Median Incorrect Answer Streak Distribution
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Figure 7: Median Correct Answer Streak Distribution

As shown in Figures 5,6,7 the mean for the correct answer streaks is much higher than the mean for the

incorrect answer streaks. This could relate to the idea of skill mastery, showing that once 3 problems are

answered correctly in a row, a student has mastered a skill[4]. The standard deviation for correct answer

streaks is also much higher than incorrect answer streaks suggesting that there is a greater variety in student

correct answer streak length. Both incorrect and correct answer streaks are right skewed, however the correct

answer streaks contain many more outliers.

4.3 Similarity Detector

There was an average similarity of 0.22 across tutor strategies to the problems they were created for. The

majority of similarity scores were less than 0.5, with only a small percentage reaching 1.0 similarity. These

outliers can likely be attributed to teachers copying and pasting content from a problem into the tutoring

for the problem when creating problem sets in ASSISTments.
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Figure 8: Similarity Between Tutor Strategies and Their Problem

There are also significant correlations between other tutor strategy features and similarity. Running tutor

data through RapidMiner Studio attempting to predict text similarity showed that Deep Learning models

and Gradient Boosted Trees were the most successful in determining trends with a correlation of 0.718 and

0.732 respectively. However, there was significant relative error in both models of 41%. Number of messages,

containing a question, and color use was positively correlated with text similarity. Hints containing a video,

images, and different font usages were negatively correlated with text similarity. Curiously, text length had

no effect on similarity whatsoever.

4.4 Common Core MathBERT Clustering

4.4.1 K-means

K-means clustering was the least successful clustering algorithm applied to this dataset, with high levels

of variance in both the Calinski-Harabasz score, Davies-Bouldin score, and the silhouette score, even after

filtering 95% of the non-variant data points.

15



Figure 9: Scores of Common Clustering Metrics

These results led us to believe that K-means was not a viable method of clustering MathBERT embeddings

given the erratic silhouette score. The failure of this method of clustering led to the idea to try hierarchical

clustering instead, operating under the hypothesis that a single skill could belong to multiple clusters, and

that in essence all of these skills fall under one large cluster of mathematical terms/phrases.

4.4.2 Hierarchical-Linkage Clustering

Linkage clustering showed significantly more appealing results, with clusters being much more qualitatively

reasonable.
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Figure 10: Hierarchical-Linkage Clustering of MathBERT Embeddings

We can clearly see that there are similarities between the two below statements, which both belong to the

same node of the dendrogram:

”Understand that a two-dimensional figure is similar to another if the second can be obtained from the first

by a sequence of rotations, reflections, translations, and dilations; given two similar two-dimensional figures,

describe a sequence that exhibits the similarity between them.”[17] (119)

”Understand that a two-dimensional figure is congruent to another if the second can be obtained from the

first by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence

that exhibits the congruence between them.”[18] (190)

We can also observe similarities between the above statements and other statements from leaf nodes belonging

to the same parent node:

”Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g.,

graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a

given figure onto another.”[19] (397)

However, we can observe significantly less similarity between the above statements and other statements

from leaf nodes of different roots:
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Use ratio reasoning to convert measurement units; manipulate and transform units appropriately when mul-

tiplying or dividing quantities.[20] (66)

Linkage clustering provides results for categorizing MathBERT embeddings for Common Core descriptions,

and these results seem to suggest that NLP categorization is best done hierarchically due to the heavy

amount of semantic overlap in sentences.

4.4.3 Agglomerative-Ward

Figure 11: Agglomerative Clustering of MathBERT Embeddings

Agglomerative clustering also showed more visually appealing results than KMeans. We can clearly observe

and quantify specific clusters even though several thousand contextual dimensions are missing from our field

of vision.
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4.5 Simulating the use of Contextual Bandits in ASSISTments

The majority of the Bayesian bandits seem to perform better than random chance, with RMS (epsilon

greedy) performing the best, predicting 92% more effectively than random chance. This is significantly

better than current research done with contextual bandits on ASSISTments data, which only showed marginal

improvements over random chance. [2]

Bandit Performance

Bandit Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Sum

Optimal 3295 3376 3417 3325 3379 16792

RMS -117 -166 -115 -164 -109 -671

Dropout -99 -144 -106 -222 -176 -747

LinFullPost -182 -212 -215 -213 -197 -1019

BootRMS -152 -284 -182 -236 -243 -1097

NeuralLinear2 -207 -267 -214 -257 -232 -1177

BBB -269 -86 -120 -168 -547 -1190

NeuralLinear -246 -248 -204 -239 -268 -1205

fixed1 -837 -761 -798 -882 -820 -4098

BBAlphaDiv -1367 -1265 -1105 -1412 -1359 -6508

Uniform Sampling -1730 -1616 -1510 -1648 -1621 -8125

ParamNoise -1683 -1718 -1619 -1606 -1643 -8269

Random Choice -1667 -1667 -1667 -1667 -1667 -8333

Uniform Sampling 2 -1788 -1718 -1556 -1715 -1675 -8452

MultitaskGP -1654 -1668 -1694 -1744 -1708 -8468

fixed2 -2549 -2478 -2298 -2551 -2402 -12278

Figure 12: Deep Bayesian Bandits on ASSISTments Data

It should also be noted that most of these results are far from the optimal scores that could be achieved with

perfect models. This is likely due to the limitations of contextual bandit models as well as the complicated

dataset fed to the algorithms. There was only 881 rows out of 160 thousand that contained no empty data in

each row. Normalizing the dataset and then filling these empty cells with zeros may have led to a significant

source of error for our models. It should also be noted that there are many variables that we do not have

access to that are crucial in determining NPC. Despite these setbacks, our models are still able to perform

better on ASSISTments data than current research, leading us to postulate that epsilon-greedy models may

perform better when significant randomness is present into a dataset.
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5 Conclusion

5.1 Features

The gaming, similarity and streak detectors are currently added into the APLS and can now be used in

further research to determine trends in student learning as well as NPC. There is also significant potential

for improvement in these models.

5.2 Clustering MathBERT Embeddings

Our findings show that embeddings from BERT based models are clustered more effectively using hierarchical

methods. K-means and other non-hierarchical clustering methods are not nearly as effective. Further research

in this area will involve using these results to explore the discovered Common Core trends in ASSISTments.

Other online math tutor services like Khan Academy make use of these Common Core skills[21], as such it

may be beneficial to implement a similar feature for ASSISTments.

5.3 ASSISTments as a Contextual Bandit Problem

Simulating ASSISTments data using deep Bayesian bandits is best done using an epsilon-greedy (RMS)

model and is significantly better than random chance. Since this model cannot detect close to an optimal

level, it still needs improvement. Perhaps adding additional context (such as gaming, wheel-spinning, affect,

etc...) may lead to more reliable results. Contextual bandits are potentially not be the optimal way to

predict NPC, and other methods should be tested as well.
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• Links to Common Core Skills

• MathBERT Embeddings of Common Core Skills
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• ASSISTments Contextual Bandit Data
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