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1. BACKGROUND 

1.1 The Plant Cell  

 
Comprised of several different organelles and bound by a complex and penetrable wall, the plant 

cell is a unique eukaryote that comes in various forms and sizes. The cell wall itself is composed 

of cellulose, a 14-carbon compound that is difficult to break down mechanically and chemically. 

Each compartment of the plant cell has a specific and specialized purpose, and while each 

compartment is fascinating to research, there are two main organelles that are of interest for this 

research: the plastid and the vacuole (1). The plastid is a double membrane bound organelle that 

has various subclasses with different functionalities including the chloroplast that supports 

photosynthesis. The vacuole is also a double membrane bound organelle that primarily consists of 

water containing inorganic and organic molecules that are hydrophilic. The vacuole usually 

functions as a vessel that contains waste, water, and harmful materials that may threaten the cell, 

and is used to maintain turgor pressure in the cell. Figure 1 depicts the plant cell with its labeled 

organelles (1). 

 
Figure 1. The plant cell highlighting each organelle (1) 
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Most plant cells have similar morphology and their essential biosynthetic pathways are 

understood; however, in the Taxus plant system under study in our laboratory, relatively little is 

known about cellular metabolism and its compartmentalization. Unlike a traditional plant cell, 

Taxus cells were found to have a variety of plastids including proplastids, leucoplasts, and 

amyloplasts, each of them derived from one another (2). Using transmission electron microscopy, 

it was discovered that that proplastids and leucoplasts were formed around the nucleus, and once 

the cells were mature, the leucoplasts exit the nucleus to the vacuole as shown in Figure 2. Since 

amyloplasts contain starch and leucoplasts contain oil, both hydrophobic compounds, paclitaxel is 

more likely to be contained in these types of plastids due to its hydrophobicity (2). 

 
Figure 2. Transmission Electron Microscopic view of proplastids, leucoplasts, and amyloplasts 

in callus cells of Taxus cuspidata (2) 
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1.2 Specialized Metabolism in Plants 

   
While conserved metabolites are essential for plant cellular growth and development and 

maintenance, specialized metabolites (formerly secondary metabolites) are formed through a 

separate set of metabolic pathways and are synthesized for various reasons, many associated with 

induction of a stress response (2). Specialized metabolites aid plants in important functions such 

as competition, inter and intra species interactions, and UV protection. Specialized metabolites in 

plants are largely specific to each species, although general classes of specialized metabolites have 

been classified. Specialized metabolites can be broadly divided into three subgroups: flavonoids, 

phenolics, and alkaloids (3). Flavonoids, a subsection of phenolics known as bioflavonoids, are 

comprised of over 5,000 hydroxylated polyphenolic compounds that aid plants with combating 

environmental stresses such as attracting insects to pollen and regulating cell growth. Their 

physicochemical properties are crucial to human nutrition because of their metabolic predictability 

in digestion, absorption, and biotransformation. They exhibit antithrombogenic, anticancer, and 

neuroprotective activities throughout different in vitro and animal models (3). These molecules are 

commonly found in a variety of fruits and vegetables. Phenolic compounds participate in 

morphological development and physiological processes. Also known as polyphenols, 8,000 

known structures of plant phenolics have been discovered; many are useful in minimizing skin 

aging, disease, and damage (4). Alkaloids are cyclic organic nitrogen containing compounds that 

occur in 15% of all land plants. In plants, these compounds typically exist as salts of organic acids 

and sugars. The nitrogenous element of alkaloids helps protect plants from insects and animals (5).  

1.3 Introduction to Paclitaxel 

 

Paclitaxel (Taxol™) is a diterpenoid plant metabolite found originally in the Pacific Yew tree, or 

Taxus brevifolia. The extracts from the bark of the tree demonstrated unique, antitumor behavior 

https://docs.google.com/document/d/1CB6kmbTUEH7PbMdNsH4DDTzARTqPWlY153Waa9G9Z0I/edit#heading=h.23ckvvd
https://docs.google.com/document/d/1CB6kmbTUEH7PbMdNsH4DDTzARTqPWlY153Waa9G9Z0I/edit#heading=h.ihv636
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with the potential to treat various types of cancer. In current practices the anticancer compound, 

paclitaxel, is supplied commercially through plant cell culture technology (6). Paclitaxel is an FDA 

approved drug for the treatment of numerous cancers, specifically breast, lung, and ovarian cancer. 

 
 

Figure 3. Chemical structure of paclitaxel (7) 

  

The chemical name of paclitaxel is 5β, 20-epoxy-1,2α,4, 7β,10β,13α-hexahydroxytax-11- en-9-

one4, 10-diacetate 2-benzoate 13-ester with (2R,3S)-N-benzoyl-3-phenylisoserine. The chemical 

formula is C47H51O14 resulting in a molecular weight of 853.918 g/mol. Paclitaxel has a melting 

point range of 215-217°C (7). The complex structure of the compound makes it difficult to 

synthesize at scale using traditional organic chemistry methods. Paclitaxel has a cyclodecane 

structure that is composed of a diterpene, a taxane ring system, an ester side chain, and a four-

membered oxetane ring at the C4 and C5 positions as shown in Figure 3. The hydrocarbon rings 

throughout the chemical structure make the molecule hydrophobic, or insoluble in water.  

1.4 History of Paclitaxel 

 
Paclitaxel was discovered in 1962 by researchers from the U.S. Department of Agriculture and the 

National Cancer Institute (NCI). Testing bark extract revealed that the compound had the potential 

to cure cancer. In 1964, scientists at the Research Triangle Institute's Natural Product Laboratory 

confirmed that the bark extract exhibits cytotoxic activity. Years later, researchers were finally 

able to prove antitumor activity in a mouse model, and Dr. Susan Horwitz of the Albert Einstein 
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College of Medicine discovered that paclitaxel inhibits cell division by stabilizing microtubules 

and preventing growth (8). Paclitaxel binds to the cell’s microtubule assembly and blocks the 

segregation of chromosomes (9). At the time, this discovery was revolutionary in the field of anti-

cancer drugs because the mechanism paclitaxel uses to prevent cell division is extraordinarily 

different and complex compared to the other antimitotic drugs (10). In 1992, paclitaxel was FDA 

approved to treat ovarian cancer and approved to treat breast cancer in 1994. While the drug 

provided great success in cancer treatments, the production of the compound was challenging due 

to the low yields of inefficient production methods (11). After years of research, plant cell culture 

emerged as the most efficient commercial production method, beating out chemical synthesis, 

semi-synthesis from precursors extracted from yew needles, heterologous expression of pathway 

genes in microbial systems and extraction from natural sources. 

1.5 Biosynthesis of Paclitaxel  
1.5.1 MEP and MVA Pathway 

 

As mentioned previously, paclitaxel is a terpenoid, which is a diverse class of natural compounds 

that has many functions in human health and nutrition. There are over 40,000 terpenoid structures 

that have been discovered, with paclitaxel being one of most studied terpenoids (12). Isopentyl 

diphosphate (IPP) and dimethyl diphosphate (DMAPP) are of significant interest in the formation 

of the diterpene. As shown in Figure 4A, the two precursors form other complex compounds such 

as the diterpenoid geranylgeranyl pyrophosphate that serve as the starting point for terpenoid 

synthesis. Figure 4B demonstrates the compartmentalization of terpenoid synthesis and highlights 

the redundancies of pathways that are often observed in plant systems. As research in specialized 

metabolism increased, scientists began to focus heavily on IPP and DMAPP synthesis and 

conversion and found that they were part of two distinct metabolic pathways within two distinct 

compartments of the cell: the mevalonate (MVA) pathway and 2-C-methyl-D-erythritol-4-
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phosphate (MEP) pathway. The two pathways are still not well defined; however, evidence has 

revealed that the two precursors IPP and DMAPP, flux in and out of different compartments of the 

cell. The two precursors in each pathway have mostly been shown to appear in the cytosol and 

plastid compartments of a plant cell. The MVA pathway has been of significant interest because 

IPP can control plastidic terpenoid synthesis. The enzymes in the MEP pathway have been found 

to influence the rate at which terpenes are formed (12).  

 

Figure 4. A) Schematic of the two main precursors in the MEP and MVA pathways B) Depiction 

of the MEP and MVA pathways within different compartments of the cell (2) 

 

These two pathways and precursors are of significant interest to scientists and metabolic engineers 

since the biosynthetic pathway to paclitaxel is still not fully understood. Our project has been 

designed to better understand the distribution of paclitaxel in these two important compartments. 

Information on the localization of paclitaxel in the cell will allow researchers to better understand 

the pathway and design engineering strategies to both increase yield and transport of paclitaxel out 

of the cell to simplify product purification. 

 

 

 

 

https://docs.google.com/document/d/1CB6kmbTUEH7PbMdNsH4DDTzARTqPWlY153Waa9G9Z0I/edit#heading=h.23ckvvd
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1.5.2 Important Taxane Precursors 

 

Paclitaxel is one of a class of molecules called taxanes, all with similar core structures. In the 

biosynthetic pathway of paclitaxel, there are two precursors that accumulate in the needles of the 

yew tree as well as in cell culture: baccatin III and 10-deaceytlbaccatin III. Due to their increased 

accessibility, the two precursors have been heavily studied and efforts have been made to 

synthesize paclitaxel from these precursors (13). Although the biosynthetic pathway is not fully 

known, the acetylation of 10-deactyelbaccatin to baccatin III has been studied. The reaction and 

conversion is highly dependent on the addition of 10-deacetylbaccatin III as is important to the 10-

hydroxyl group for the formation of the taxane ring as a product of paclitaxel (13). These two 

related taxanes are depicted in Figure 5. Because of their high industrial importance, these two 

precursor compounds, along with paclitaxel, are commercially available for purchase, facilitating 

future studies of precursor location in the cell.  

 

 
Figure 5. Chemical structures of 10-deacetylbaccatin III and baccatin III (13) 

 

 

1.5.3 Paclitaxel Biosynthetic Pathway Enzymes  

   

The biosynthesis of paclitaxel is estimated to be a 19-step process. While not all steps are known, 

there are 9 main steps that have been identified. From the MVA or MEP pathway, the next step is 

production of geranylgeranyl diphosphate, which is then cyclized to form taxadiene. This step 
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establishes the taxane skeleton followed by oxidation shown in Figure 6. The C9 in the 

intermediate step is oxidized, forming baccatin III, which is hydroxylated and benzoylated to yield 

the final product of paclitaxel (14) 

 
Figure 6. The known steps in the paclitaxel biosynthetic pathway (13) 

 

 

1.6 Paclitaxel Production Methods 
1.6.1 Harvest and Bark Extraction 

 

The first method to obtain paclitaxel was by crude extraction from the bark of the Pacific Yew 

tree. To obtain the extract from the bark, researchers used solvent extraction and combined bark 

stripped from the Taxus tree in solution with methanol (7). Because Taxus grows at a slow rate, a 

tree must be at least 80 years old to provide enough bark and paclitaxel to undergo bark extraction 

for crude product (15). Figure 7 depicts a picture of the Pacific Yew tree and associated needles. 

The slow growth rate coupled with the low yield of paclitaxel makes bark extraction an 

unsustainable method for paclitaxel production. The low yield from the bark is best illustrated in 

the preparation for the first clinical trial at the National Cancer Institute (9). Researchers and 

clinicians were able to acquire approximately 60,000 lbs of bark from the Pacific Yew tree but 
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were only able to extract 9 lbs of paclitaxel in the crystalline form (15). The low yield disappointed 

researchers, as it was not enough to conduct even the first phase of the clinical trials. Continuation 

of such research drew negative attention from environmentalists as the tree neared endangerment 

as a species, forcing the NCI to acknowledge that crude extraction was not a feasible method. Due 

the many challenges of low yields, the negative environmental impact, and the large amount of 

space needed to grow the necessary number of trees, researchers continued to investigate other 

methods for paclitaxel production that would allow them to conduct clinical trials. 

 

Figure 7. A) Largest pacific yew found in Seattle, WA B) Needle of Taxus brevifolia tree where 

10-deacetylbaccatin III and baccatin III accumulate 

 

1.6.2 Total Organic Synthesis  

 

While paclitaxel can be extracted and produced from bark extract, in its early discovery, 

researchers searched for other methods of production. In 1994, K.C. Nicolaou and colleagues at 

the University of California San Diego discovered and published the first method to fully 

synthesize paclitaxel (16). Despite their success, researchers concluded that the steps to synthesize 

paclitaxel were far too complex, utilize harsh chemicals, and are too expensive to produce the 

anticancer drug at scale. Figure 8 shows the formation of the C-Ring and A-Ring via the Nicolaou 

synthesis method. The synthesis of the C-ring includes 10 steps to construct the complex C-ring 

while the A-ring structure includes four steps. The complexity of this synthesis drove researchers 
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to investigate other ways to synthesize paclitaxel that would be less expensive, faster, and more 

environmentally sound. Overall, these methods produce lower yields, making it difficult to obtain 

adequate amounts of paclitaxel for production and supply (6).   

 

 
Figure 8. A) C-ring semi-synthesis via Nicolaou synthesis, B) A-ring synthesis via Nicolaou 

synthesis (16) 

 

1.6.3 Semi-Synthesis 

 

Another approach to synthesize paclitaxel is through semi-synthesis. This process was first used 

after it was discovered that two precursors of paclitaxel, baccatin III and 10-deacetylbaccatin III 

could be found in large amounts in the needles of the tree, a fast growing and renewable part of 

the plants. These diterpenoid taxanes have a similar structure to paclitaxel (9) and can be converted 

to paclitaxel in the laboratory. Because extraction from needles eliminates the step of sacrificing 

an entire tree, the semi synthesis process has been used to synthesize paclitaxel as well as related 

taxanes, shown in Figure 9 (10). However, because the semi-synthesis method used several harsh 

solvents, it was eventually deemed too environmentally toxic for continued supply of paclitaxel. 

https://docs.google.com/document/d/1CB6kmbTUEH7PbMdNsH4DDTzARTqPWlY153Waa9G9Z0I/edit#heading=h.3fwokq0
https://docs.google.com/document/d/1CB6kmbTUEH7PbMdNsH4DDTzARTqPWlY153Waa9G9Z0I/edit#heading=h.1v1yuxt
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Figure 9. The chemical structures of different taxanes (17) 

 

1.6.4 Heterologous Expression 

 

Researchers have discovered a large part of the paclitaxel biosynthetic pathway and have 

investigated heterologous expression of the pathway in bacteria and yeast. Scientists began with 

expressing taxadiene synthase (the first committed step in the paclitaxel pathway) in alternate 

systems. For example, a functional taxadiene synthase from T. chinensis was successfully 

expressed in S. cerevisiae; however, an insufficient amount of GGPP was available to support 

synthesis (18).  Although the entire biosynthetic pathway has yet to be identified, individual 

enzymes in the pathway have also been expressed in microbes (19). 
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1.6.5 Plant Cell Culture  

 

 

Figure 10. Process of how plant cell culture is initiated in three steps: tissue extraction, callus 

culture, and lastly cell suspension (20) 

It has been determined that the most cost-productive and time efficient way to produce paclitaxel 

is through plant cell culture. The process, unlike the other production methods, is sustainable and 

provides the opportunity to increase yields through strategic manipulation. Taxus plant cell culture 

utilizes less environmentally toxic compounds and reduces byproducts that could potentially harm 

the environment (15). Cells are suspended in a liquid media (i.e., suspension culture) and can 

produce paclitaxel as well as other compounds that the plant may not synthesize in nature, shown 

in Figure 10. Plant cell culture has many advantages, including the ability to manipulate any 

physio-chemical and physiological environmental parameters as well as the ability to monitor and 

study the production of specialized metabolites. Plant cell culture has been used since the 1950s, 

and its use has continually increased, especially with the development of advanced bioreactors 

(16). Although plant cell culture is the best current option for paclitaxel production, the process is 

still lacking optimization. For example, certain cell lines can have as little as a 7-10% of the total 

paclitaxel released into the cell media (17). To increase the yield of paclitaxel in our system, an 

“elicitor” is added to the culture medium. Elicitors are compounds that can activate specialized 

metabolism through inducing a stress response resulting in increased expression of genes involved.  

https://docs.google.com/document/d/1CB6kmbTUEH7PbMdNsH4DDTzARTqPWlY153Waa9G9Z0I/edit#heading=h.28h4qwu
https://docs.google.com/document/d/1CB6kmbTUEH7PbMdNsH4DDTzARTqPWlY153Waa9G9Z0I/edit#heading=h.nmf14n
https://docs.google.com/document/d/1CB6kmbTUEH7PbMdNsH4DDTzARTqPWlY153Waa9G9Z0I/edit#heading=h.37m2jsg
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Figure 11. The biosynthetic pathway of paclitaxel with the addition of the elicitor methyl 

jasmonate, which induces regulation of GGPP synthase and taxadiene synthase (21) 

 

In Taxus cell suspension, methyl jasmonate, a plant hormone, can induce specialized metabolism, 

including increasing yields of 10-deacetylbaccatin III, baccatin III and other taxanes such as 

paclitaxel (18) (Figure 11). While elicitation increases the production of specialized metabolites 

through upregulation of the relevant biosynthetic pathways, product yields can still be improved 

(21). To gain a better understanding of why secretion of paclitaxel into the extracellular medium 

is low, the transport of paclitaxel both within and outside of the cell should be investigated. 

Localization of paclitaxel within the plant cell will allow for optimization of secretion to increase 

transport to the extracellular media and later improve downstream processing.  

1.7 Paclitaxel Transport in Cell Culture 

 
Several studies were conducted to determine how paclitaxel is transported in the cell and out of 

the cell to either the cell wall or medium compartments. Studies with competitive inhibition 

suggested that only paclitaxel could inhibit the cellular uptake of itself, indicating that the transport 

mechanism for paclitaxel likely discriminates between paclitaxel and related taxanes with similar 

structures (17). This specificity suggests that there is a specific transport protein allowing the 

movement of the hydrophobic compound across the cell membrane. Identification of this protein 

is critical to future engineering research of paclitaxel transport. Reports have shown that 

https://docs.google.com/document/d/1CB6kmbTUEH7PbMdNsH4DDTzARTqPWlY153Waa9G9Z0I/edit#heading=h.1mrcu09
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extracellular secretion of paclitaxel can range from 10% in T. x media suspension cultures to nearly 

90% in T. baccata suspension cultures (22). Researchers have been working to develop more 

specific strategies to increase secretion of paclitaxel to the cell media. To complete this goal, we 

must understand not only the paclitaxel transport mechanism, but also determine where paclitaxel 

is located in the cell (23). 

1.8 Method Development: Summary of the Different Approaches Employed in this 

MQP 
1.8.1 Approach I: Localization using Digestion Enzymes & Fractionation  

 

Multiple studies have attempted to determine the intracellular location of paclitaxel. One study 

used cell wall digesting enzymes to determine the content of paclitaxel and found that most of the 

cell-associated (i.e., either intracellular or localized to the cell wall) paclitaxel was located in the 

cell wall matrix or within the space between the cell wall and plasma membrane (24). In T. 

chinensis culture, about 50% of the paclitaxel was localized to the cell-associated fraction. Studies 

using T. cuspidata suspension cells in both growth and stationary phases showed that 30-35% of 

the paclitaxel was cell-associated. For cells grown in solid culture (i.e., callus), 30% of paclitaxel 

was cell-associated in exponential growth phase cells as opposed to 43% in stationary phase cells 

(25). 

Studies were conducted on T. chinensis suspension cultures to further resolve the cell-associated 

fraction of paclitaxel. Results showed that 54.8% of paclitaxel was in the cell wall, 25.3% was 

inside the plastids or nuclei, 4.8% inside starch grains, 3.2% in ER and microsome, and 11.9% 

inside smaller particles (26). Cell cultures were homogenized and sampled using HPLC to quantify 

the amount of paclitaxel in each fraction. Dry cells were homogenized with a mortar and pestle in 

chilled Tris-HCl buffer. The homogenate was then filtered through a 40µm mesh and washed with 

Tris-HCl buffer and water to separate the cell wall fraction from the intracellular components. The 
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intracellular components were immersed in the same buffer and separated based on differential 

centrifugation. This cell homogenization technique was adapted and used in this MQP to further 

explore intracellular paclitaxel localization.  

1.8.2 Approach II: Localization using Histology  

 

In the 1995 study that used immunocytochemical methods to localize paclitaxel in Taxus cuspidata 

(26), researchers found that many of the methods they tried failed due to difficulties with traditional 

histological techniques. For example, when trying to use antibodies that would bind to paclitaxel, 

they found that the available antibodies did not have the ability to differentiate between the 

different taxanes (e.g., paclitaxel and baccatin III), hence complicating localization studies. In 

addition, they found that paclitaxel was soluble in most solvents that are used to fix and dehydrate 

microscopy samples (25). Hence, histological studies need to be carefully designed and results 

verified to ensure that paclitaxel is not mobile during sample preparation.  

1.8.3 Approach III: Localization using Subcellular Fractionation 

 

To determine the distribution of subcellular metabolites in Arabidopsis thaliana leaf tissue, 

researchers utilized a procedure that we adapted here for paclitaxel localization. The methods from 

the A. thaliana leaf tissue are applicable here because of the focus on quantification of enzymes in 

the plastids, vacuole, and cytosol (27), to ensure sufficient compartment separation. Cell 

lyophilization and homogenization were used prior to fractionation. The lyophilization process 

freeze dries the cells and allows them to be homogenized and stored for subsequent experiments. 

Because paclitaxel synthesis is known to occur in both the cytosolic and plastidic compartments, 

the quantification of paclitaxel in these cell organelles is important to understand cell localization.  

1.8.4 Approach IV: Localization by Subcellular Fractionation and Ultracentrifugation  
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A procedure for ultracentrifugation followed by a sucrose gradient was adapted from a National 

Institute of Health (NIH) study on mammalian cell fractionation (1). Utilization of a sucrose 

gradient works best with organelles or particles that differ greatly in size. To gain a better 

separation, the sucrose is used to create a density gradient that separates components into distinct 

bands. The sucrose gradient method was adapted and used to separate the intracellular components 

of Taxus cells after they had been lyophilized and homogenized (28).  
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2. INTRODUCTION TO THE MAJOR QUALIFYING PROJECT 

 
The purpose of this MQP is to develop and implement methods to determine where paclitaxel is 

stored and produced in Taxus cells. This research is significant to the broader goal of paclitaxel 

production optimization in that research will inform engineering strategies to increase secretion to 

extracellular media. This MQP can be divided into four parts: cellular fractionation, organelle 

analysis through assay development, quantification of paclitaxel, and finally the combination of 

the data to determine paclitaxel localization. The first objective was to ensure that the cells are 

properly cultured, elicited, lyophilized, and lysed to accomplish cellular fractionation. The second 

objective was to analyze the cell fractions and determine where the two main organelles significant 

to this research, the plastid and vacuole, are located within the sucrose gradient. Although it is 

suggested in literature that paclitaxel is not produced or found in the vacuole, it is important to 

verify there is no paclitaxel located in the vacuole because the vacuole is a typical storage site for 

specialized metabolites in plant cells. The presence of the two organelles in distinct fractions was 

determined using different enzyme assays. Because alkaline pyrophosphatase is stored in the 

plastid, an enzyme assay that tests the abundance of alkaline pyrophosphatase was developed and 

used to confirm the presence of plastids in the cellular fractions. Acid phosphatase is an enzyme 

that is found in the vacuole and was used to quantify vacuole activity (28). The third objective was 

to analyze which fractions contain paclitaxel using ultra-performance liquid chromatography 

(UPLC). Since plastids store and manufacture metabolites for the cells, we hypothesized that the 

concentration of paclitaxel in this fraction will be highest.  Due to the hydrophobic nature of 

paclitaxel, we did not expect to see paclitaxel in the vacuole-rich fraction. Because plastids are 

less dense than vacuoles it was hypothesized that the amount of alkaline pyrophosphatase would 

be highest in the lower density sucrose fractions. Conversely, the acid phosphatase concentration 
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was hypothesized to be greatest in the higher density sucrose fractions. Figure 12 shows the 

hypothesized distribution of alkaline pyrophosphatase, acid phosphatase, and paclitaxel 

throughout the sucrose gradient.  

 

Figure 12. Hypothetical results expected from both enzyme assays and UPLC analyses 
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3. METHODOLOGY 

 

 

Figure 13. Schematic of the methodological process for localization of paclitaxel 

 

3.1 Maintaining Plant Cell Culture  

 
The cell line used in this study was T. chinensis line 48-82A-4. Cells were suspended in an aqueous 

solution containing 20 g/L of sucrose, 3.21 g/L Gamborg’s B5, 8.3×10-3M BA, and 1.03×10-3M 

NAA. 40 mL of cell media was measured into 125 mL flasks, which were autoclaved at 121ºC for 

3 minutes to ensure the sterility of the media and flask. Antioxidants were prepared sterile with 

1.42×10-3M ascorbic acid, 1.3×10-3M citric acid and 9.99×10-3M L-glutamine. 2.5 mL of 

antioxidants and 10 mL of cell suspension (cells plus conditioned media; approximately 10 mL of 

cells and 40 mL of media) were transferred to each flask, to ensure that the cells remained healthy 

and viable for experimentation. The flasks containing cells were cultured in the dark at ambient 

temperature on an orbital shaker at 125 rpm, and subcultured every 14 days to ensure their 

longevity and viability. For experimentation, cells were elicited on day 7 with 200 µM methyl 

jasmonate. On day 14 or 21 cultures were tested for paclitaxel using standard UPLC methods in 
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our laboratory. On day 15 or 22 cells were harvested via vacuum filtration in a Buchner funnel. 

The cells were put into 15mL Falcon tubes to prepare for subsequent lyophilization.   

3.2 Lyophilization and Cell Lysis 

 
Lyophilization. A benchtop lyophilizer (Sp Scientific) was used to freeze dry the cells. Before use, 

the machine was defrosted and brought to operating -30 to -40°C temperature and 100 -200 mTorr 

pressure. The suspended cells were obtained from the incubator and the media removed via 

vacuum filtration. Cells were then rinsed with 0.1 M phosphate buffered saline (PBS) three times, 

utilizing the vacuum filtration to remove excess PBS. 15 mL of dried cells were added to 50 mL 

polycarbonate Falcon tubes. Before connecting to the lyophilizer, the Falcon tubes were dipped in 

liquid nitrogen to snap-freeze the cells. The tube was then connected to the lyophilizer and the 

lyophilizer was run for 8-10 hours. Freeze dried cells were stored at -80ºC until ready for use (27).  

Cell Lysis. Lyophilized cells (0.1 g) were added to 3 mL of PBS. The mixture was lysed using 

mortar and pestle for approximately 5 minutes. To ensure that cells were efficiently lysed, 

homogenized solutions were observed under a light microscope. Once properly lysed, the mixture 

was added to the sucrose gradient using a 1 mL pipette.  

3.3 Cellular Fractionation 

To achieve separation of the cellular components, procedures developed and published from the 

University of California at Davis and the NIH were adapted and combined (28). To determine the 

concentration of sucrose that would be best for Taxus cells used here, different solutions of sucrose 

concentrations were made. Each sucrose layer was prepared in a 50 mL flask using PBS as the 

solvent. All sucrose mixtures were heated for 1 minute using a microwave to supersaturate the 

solutions and dissolve the large amount of sucrose. The ultracentrifuge tubes were stored at 4°C 

for one hour before combining to create a sucrose gradient. From heaviest on the bottom to lightest 
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density on top, 1 mL of each layer was pipetted into a 10.3 mL Beckman polycarbonate 

ultracentrifuge tube. The sucrose gradient was then stored at 4°C for 12-16 hours (28). 1 mL of 

the processed cells (described above) was added to the top of each ultracentrifuge tube. This was 

done very carefully to allow the lysed cells to slowly enter the sucrose gradient. Once the cells 

were layered on top of the sucrose gradient, the sample was centrifuged at 50,000 rpm for 4 hours 

in the Beckman Coulter ultracentrifuge (1). After ultracentrifugation, the tubes were stored at 4ºC 

for 2 hours. After the refrigeration period, a pipette was used to separate each 1 mL layer. Each 

fraction was compiled with the other fractions of the same density from replicate ultracentrifuge 

tubes to provide a larger volume to work with. Once compiled, the fractions were aliquoted into 1 

mL samples to be tested using each assay (see below). The results from these experiments were 

used to determine which sucrose layer would be best for separating Taxus cell components. 

3.4 Alkaline Pyrophosphatase Enzymatic Assay 

 
All reagents in this assay were prepared fresh for each use. A stock solution of 40 mM Tris-HCl 

at pH 8.5 was prepared and brought to the correct pH by adding NaOH. The assay buffer was 

prepared with 1 mM of Na4P2O7, 5 mM MgCl2, 100 mL of Tris-HCl. In a centrifuge tube, 450 µL 

of buffer solution was added to 50 µL of cell lysis and incubated in a controlled room at 37ºC for 

2-4 hours until a color change was observed. 250 µL of ice cold 10% trichloroacetic acid was 

added to the mixture to stop the reaction. Then 100 µL of the sample was added to a 96-well plate 

to measure the absorbance between 405-414 nm using Fisher Scientific AccuskanGO microplate 

reader. This assay was used to quantify the plastid presence in each sucrose layer (29). 

3.5 Acid Phosphatase Colorimetric Assay 
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Acid Phosphatase Colorimetric Assay Kit (Cayman Chemical #10008051) was utilized to quantify 

the vacuole presence in each sucrose layer. The kit was stored at 4ºC away from any light exposure. 

The working solution of the assay buffer was prepared with 1.67 mL of acid phosphatase buffer 

and diluted with 15 mL of nanopure water and stored at room temperature. Acid phosphatase 

substrate solution was prepared with one tablet of p-nitrophenyl phosphate (pNPP) dissolved in 

1.5 mL of Assay Buffer and stored on ice. Acid phosphatase stop solution was prepared with 2.0 

M NaOH diluted to 15 mL of nanopure water. In a centrifuge tube, 100 µL of buffer solution was 

added to 50 µL of cell lysis and incubated in a controlled room at 37ºC for 12-15 hours until a 

color change was observed. After incubation, 100 µL of stop solution was added to the mixture. 

100 µL of the sample was added to a 96-well plate to measure the absorbance between 405-414 

nm (30) using Fisher Scientific AccuskanGO microplate reader. 

3.6 Extraction of Paclitaxel 

 
Before the samples could be analyzed for paclitaxel, a method for extraction of paclitaxel from the 

sucrose layers needed to be developed. Prior research has shown that the best way to extract 

paclitaxel is via a methanol rinse. The procedure used was adapted from the Roberts laboratory 

general procedure for paclitaxel extraction from culture broth using methanol. 1 mL well-mixed 

samples were placed into a 1.5 mL centrifuge tube and dried in the evaporative centrifuge 

(Eppendorf Vacufuge Concentrator) for approximately 6 hours. The evaporative centrifuge was 

set to the V-AQ setting and the condensation trap was placed on ice to accelerate the process. Once 

the aqueous layer was evaporated, the pellet was resuspended in 1 mL acidified methanol (0.01% 

acetic acid in MeOH). To effectively mix the methanol with the sample to extract paclitaxel, a 

combination of mixing techniques was used such as incubation via hot water bath, and sonication 

via water bath. These mixing techniques were performed between 2-3-minute time intervals and 
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repeated if mixing did not occur. To ensure that the paclitaxel completely separates from the cell 

matter, the samples are also manually broken up using a small spatula and then centrifuged for 20 

minutes at 15,000 rpm. After centrifugation, 800 µL of supernatant were removed and transferred 

to a 1.5 mL centrifuge tube. The samples were then placed into the evaporative centrifuge again 

and dried for approximately one hour. Samples were then resuspended in a mixture of 25 µL 

methanol, 35 µL acetonitrile, and 40 µL water and sonicated in a water bath for approximately one 

minute. The samples were then vortexed to assure that each sample was completely dissolved. 

Once dissolved, each sample was syringe filtered through a 0.22 µM polyvinylidene fluoride 

(PVDF) filter into a low-volume UPLC vial (Thermo Fisher Scientific 11 mm Clear Glass Crimp 

Top Vial [Catalog Number C4012-1W]). The samples were then stored at -80℃ until UPLC 

quantification.  

3.7 Quantification of Paclitaxel Using UPLC 

 
UPLC was used to quantify paclitaxel, baccatin III, and 10-deacetylbaccatin III in different cell 

fractions. Authentic standards were prepared for comparison with retention time and UV spectrum. 

1 mg of each authentic compound was measured and placed into a 1.5 mL microcentrifuge tube. 

1 mL of methanol was added, and the sample mixed via vortexing to create a 1 mg/mL stock 

solution. The standard set was created by first diluting with 70:30 water and acetonitrile at a 

volume of 500 µL in a 1.5 mL centrifuge tube as shown in Table 1.    
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Table 1. Concentrations of Water and Acetonitrile needed for UPLC Samples  

Concentration (mg/L) Stock Solution  (µL) 70:30 water/acetonitrile 

(µL) 

0 0 500 

10 5 490 

25 12.5 487.5 

50 25 575 

75 37.5 462.5 

100 50 550 

150 75 525 

 

Each standard was then syringe filtered through a 0.22 µM PVDF filter into a low-volume UPLC 

vial. The standards were run under the same conditions and at the same time as the experimental 

samples under the conditions listed in Table 2. These standards were used as reference points for 

the experimental data. All standards and samples were injected into the UPLC at a 10 µL injection 

volume. The UPLC was set to run with two different solvents – water and acetonitrile.  

Table 2. UPLC parameters for flow rate, time, and solvent composition  

Time (minutes) Flow (mL/min) %Water %Acetonitrile 

Initial 0.500 70% 30% 

0.05  0.500 70% 30% 

4.50 0.500 20% 80% 

5.00 0.500 70% 30% 

6.00 0.500 70% 30% 
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The pressure limits were set to be 10,000 psi for the high and 0 psi for the low. Once the UPLC 

run was complete, results were analyzed to determine which fraction yielded the highest 

concentration of paclitaxel, baccatin III, and 10-deacetylbaccatin III by comparison against the 

standard curve. An example chromatograph for a standard sample is shown in Figure 14. A 

standard curve is created for each individual compound using the data from the standard run trials. 

To create the standard curve, a plot is generated with the x-axis representing the concentration of 

the standard (
𝑚𝑔

𝐿
) and the y-axis representing the area under the peak (𝑢𝑉 × 𝑠). The line of best 

fit is determined from the plot ensuring that the y-intercept is set to 0.  

 

Figure 14. Chromatogram showing elution times of 10-deacetylbaccatin III, baccatin III, and 

paclitaxel  

Once the standard curve is created, the concentration of each sample can be calculated using the 

linear equation of fit. The final concentrations of the samples are determined by dividing the 

calculated concentration by eight because the samples were concentrated eight times when 

prepared (see above). The percentage of paclitaxel in each fraction (i.e., layer n) was determined 

using the following equation: 
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4. RESULTS AND DISCUSSION 
4.1 Creating the Standard Curve for Alkaline Pyrophosphatase  

 
Before employing the assay on the collected fractions, a “standard curve” of alkaline 

pyrophosphatase was created with cell samples; this was done to confirm the assay was working 

as expected in the Taxus cell system. This assay was performed on both the lysed living cells and 

the lyophilized cells to ensure that enzymatic activity was not affected by lyophilization. 

Lyophilized and living cells had the same results as shown in Figure 15. To ensure that the samples 

were not over-saturated, multiple ratios of cell lysate to PBS were assayed. These ratios are 

represented as percent dilution on the x-axis in Figure 16. At 100%, a mixture containing no PBS 

and cell lysate was added, and at 0%, no cell lysate was added, only PBS.  

 
Figure 15. 24-well plate of alkaline pyrophosphatase activity in lyophilized and lysed living 

cells. The darker color indicates the presence of alkaline pyrophosphatase  

Through experimental trials, it was determined that the alkaline pyrophosphatase assay took 

approximately 12 hours of reaction time to generate visible results. It was also noted that the stop 

solution, trichloroacetic acid, diluted the yellow color, causing a lower absorbance reading. The 

assays were tested using a plate reader (Fisher Scientific AccuskanGO) at an absorbance range of 

405 to 414 nm as shown in Figure 16. Because there was no significant difference observed 

between the absorbances, 405 nm was used for all future assays. 
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Figure 16. A) Linear curve of different concentrations of lysed living cells in the alkaline 

pyrophosphatase assay, B) Linear curve of different concentrations of lyophilized cells in the 

alkaline pyrophosphatase assay 

4.2 Creating the Standard Curve for Acid Phosphatase  

 

Before employing the assay on the collected fractions, a “standard curve” of acid phosphatase was 

created with cell samples; this was done to confirm the assay was working as expected in the Taxus 

cell system. Again, the assay was performed on both living cells and lyophilized cells (both 

processed with mortar and pestle) to ensure that enzymatic activity was not affected by 

lyophilization. To ensure that the samples were not over-saturated, a ratio of cell lysate to PBS 

was added. At 100%, a mixture containing no PBS and cell lysate was added, and at 0%, no cell 

lysate was added, only PBS. Figure 17 shows that the lyophilized and alive cells follow a similar 

trend.  
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Figure 17. 96-well plate of acid phosphatase activity in lyophilized and lysed living cells. The 

darker color indicates the presence of acid phosphatase   

 

 

Figure 18. A) Linear curve of different concentrations of lysed living cells in the acid 

phosphatase assay, B) Linear curve of different concentrations of lyophilized cells in the acid 

phosphatase assay 

Statistical analysis was performed on the linear trend line for each graph; the R2 value for lysed 

living cells was 0.75, while the R2 value for lyophilized cells was 0.56. Linear regression statistical 

analysis was performed to ensure the linearity of the line to ensure that the line did not reach a 

horizontal asymptote. Typically, with enzymatic assays, if the solution is over-saturated, the 

absorbance readings will plateau and reach a horizontal asymptote as concentration is increased, 

as shown above in Figure 18. As shown in Figure 18, there were two linear portions of the graph, 
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between 0 to 0.2 and 0.5 to 1. However, because absorbance readings lower than 0.600 AU was 

unfavorable (based on literature studies), a second curve was generated with concentrations 

between 0 to 20% of cell lysate to determine if a more linear line could be achieved. This more 

linear region is observed in Figure 19. An R2 value of 0.98 was achieved with a linear fit and there 

is no longer a “non-linear curve” that. Hence, the acid phosphatase assay showed to be compatible 

with our cell system. In addition, enzyme activity was not adversely affected upon lyophilization. 

The raw data can be seen in Appendix A. 

 

Figure 19. Standard curve of acid phosphatase activity in different concentrations of lyophilized 

cells 

 

4.3 Cellular Fractionation Method Development 

 

The first sucrose gradient tested contained a bottom layer of 1.6 g/mL and a top layer of 1.2 g/mL. 

The results from the two assays are shown in Figure 20. To standardize each experiment for 

comparison across experiments, the distributions within each layer were calculated using the 

following formula: 

y = 2.5962x
R² = 0.9815
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𝑨𝒃𝒔𝒐𝒓𝒃𝒂𝒏𝒄𝒆 𝒊𝒏 𝒍𝒂𝒚𝒆𝒓 𝒏

∑(𝑨𝒃𝒔𝒐𝒓𝒃𝒂𝒏𝒄𝒆 𝒓𝒆𝒂𝒅𝒊𝒏𝒈𝒔)
= 𝒑𝒆𝒓𝒄𝒆𝒏𝒕𝒂𝒈𝒆 𝒊𝒏 𝒍𝒂𝒚𝒆𝒓 𝒏 

 

Recall, that the plastid concentration was expected to decrease with increasing sucrose density 

(due to the low density of plastids) and hence alkaline pyrophosphatase activity was hypothesized 

to also decrease with increasing sucrose density. The opposite trend was expected for acid 

phosphatase activity. The raw can be found in Appendix B. 

 

                 

Figure 20. Distribution of acid pyrophosphatase and alkaline phosphatase in a sucrose gradient 

(1.2-1.6 g/mL) 

From Figure 20 both the alkaline pyrophosphatase and acid phosphatase have a similar distribution 

in the gradient.  Because acid phosphatase is the enzyme found in the vacuole, it was expected that 

the distribution would trend in the opposite direction. It was noted that the concentration of the 

alkaline pyrophosphatase was consistently high at the lower concentrations with over 40% 

remaining in the top layer. Based on these results, we decreased the concentrations used in the 
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sucrose gradient. The sucrose concentration was altered to 0.2 g/mL to 1.0 g/mL and 0.7 g/mL to 

1.1 g/mL; results are shown in Figure 21.  

 

 

Figure 21. A) Distribution of acid phosphatase and alkaline pyrophosphatase using sucrose 

concentrations ranging from 0.7g/mL to 1.1 g/mL. B) Distribution of acid phosphatase and 

alkaline pyrophosphatase using sucrose concentrations from 0.2 g/mL to 1.0 g/mL  

The results for both gradients showed a clearer separation of the two enzymes tested with the 

hypothesized distribution observed. The alkaline pyrophosphatase is more concentrated in the less 

dense layers of sucrose and the distribution decreases as the density increases. Nearly 45% of the 

enzyme was present in the 0.2 g/mL sucrose and less than 5% was found in the densest layer of 

1.0 g/mL (Figure 21B). For alkaline pyrophosphatase, over 35% of the enzyme was found to be in 
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the densest layer of 1.0 g/mL, while only 10% was found in the least dense layer of 0.2 g/mL 

(Figure 21B). Similar trends were observed in Figure 21A. These results support the hypothesis 

that the plastids would be found in the least dense layers and the vacuoles would be found in the 

densest layers. Figure 21 demonstrates the feasibility of cell fractionation for Taxus plant 

suspension cultures, which is critical for the proposed localization studies. Density ranges from 

0.2g/mL to 1.0g/mL showed a better separation because there was a broader range which allows 

for better separation, while the 1.0g/mL to 1.6g/mL may not have accounted for lighter organelles. 

Based on these results, it was decided that the sucrose gradients for all future experiments will be 

0.3, 0.5, 0.7, 0.9, 1.1 g/mL. 

  
Figure 22. A) Distribution of acid phosphatase and alkaline pyrophosphatase in day 15 elicited 

cells. B) Distribution of acid phosphatase and alkaline pyrophosphatase in day 22 elicited cells 
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Figure 22A shows the experimental results using cells that were elicited with methyl jasmonate on 

day 7 and sampled on either day 15 (8 days post-elicitation) or day 22 (15 days post-elicitation). 

We conducted these studies to increase paclitaxel concentration in all samples to minimize 

difficulties with assay sensitivity. From Figure 22A, the concentration of alkaline pyrophosphatase 

is higher in the least dense sucrose fraction and lower as the density increases. Because alkaline 

pyrophosphatase is present in plastids, these results suggest that the plastids are most present in 

the lower density sucrose fractions. Figure 22B depicts cells on day 22 (15 days post-elicitation) 

that were fractionated. While the trend is similar to the day 15 results, there were difficulties with 

keeping the cell lysate fractionated in the older cell population. After removing samples from the 

ultracentrifuge, cellular components were clearly fractionated, floating in each distinct fraction. 

Originally, the layers could settle to ensure clear separation between density gradients (as shown 

in Appendix C). However, after settling on ice for approximately 2 hours, the cell lysate settled at 

the bottom of the tube. This yielded unusual results because there was not a clear differentiation 

between the two assays. Further trials would need to be completed with day 22 elicited cells with 

an adjusted settling time after removing the tubes from the ultracentrifuge.  

4.4 Methanol Extraction Method Development 

 
All samples were processed using methods adapted from the methanol extraction process 

developed in the Roberts lab to quantify paclitaxel in cell culture samples. When the samples were 

processed using the revised protocol (Section 3.7), the samples crystallized in the evaporative 

centrifuge. Because of the high concentration of sucrose in the cell fractions, the sucrose was 

hardened into a solid pellet. Once methanol was added, the sample remained crystallized, making 

the extraction of paclitaxel from the samples challenging. The samples were broken up manually 

using a spatula, vortexed, centrifuged, and vigorously shaken to break up the thick sucrose. After 
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the sucrose had been broken up and mixed with the methanol, the samples were prepared for UPLC 

analysis as described in Section 3.7. To obtain better results and a higher yield of paclitaxel from 

the fraction, this procedure could be replicated in 0.5 mL aliquots instead. This will allow for 

greater extraction of paclitaxel into the methanol, as it will be more manageable to disrupt the 

sucrose at a smaller volume.  

4.5 UPLC Results 

 
Due to laboratory equipment complications, the samples were unable to be run on the UPLC. 

Based on the UPLC protocol proposed, it was expected that 10-deacetylbaccatin III would elute at 

approximately 1.0 minutes, baccatin III would elute at approximately 1.9 minutes, and paclitaxel 

would elute at approximately 3.3 minutes. It is expected that the lower density fractions will show 

greater peaks in the UPLC data at the 1.0, 1.9 and 3.3-minute marks than in the densest fractions, 

as paclitaxel is hypothesized to be localized to the plastid fraction. Figure 23 shows the expected 

distribution of paclitaxel in the sucrose gradient. Future experiments can be directed towards 

further resolving paclitaxel localization through the study of additional organelle fractions. 

 

Figure 23. Expected results of paclitaxel localization in a sucrose gradient  
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5. CONCLUSION  

 
The methods developed here can be used to identify paclitaxel and precursor location in Taxus 

plant cells. We successfully adapted the alkaline phosphatase and acid pyrophosphatase assays to 

identify the plastid and vacuole fractions, respectively. A procedure for creating a sucrose gradient 

for cellular fractionation was developed using ultracentrifugation, and methods for the extraction 

of hydrophobic compounds (e.g., paclitaxel) from these fractions were optimized. With these 

methods in place, the intracellular distribution of paclitaxel and related precursors can be 

determined, and engineering strategies designed to enhance secretion of paclitaxel to the 

extracellular space.  

6. FUTURE RECOMMENDATIONS   

 
Future experiments should include assaying the cellular fractions using phosphofructokinase to 

indicate which fractions contain cytosolic cell components, which literature has suggested has a 

density between that of plastids and vacuoles (31). This would be beneficial data to include, since 

literature suggests that paclitaxel is more abundant in the cytosol than plastid. If this were found 

to be true, the production and extraction of paclitaxel would be targeted to towards these main two 

organelles.  
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8. APPENDIX  

Appendix A: Raw Data of Creating a Standard Curve for Enzymatic Assays  

 
Alkaline Pyrophosphatase 

405nm        

Dilution   1 0.5 0.25 0.1 0.05 0 

Absorbance 0.334 0.1705 0.081 0.021 0.016 0 

406 nm       

Dilution   1 0.5 0.25 0.1 0.05 0 

Absorbance 0.3335 0.17 0.0805 0.0205 0.0155 0 

407nm        

Dilution   1 0.5 0.25 0.1 0.05 0 

Absorbance 0.335 0.1705 0.0805 0.02 0.0155 0 

408 nm       

Dilution   1 0.5 0.25 0.1 0.05 0 

Absorbance 0.3365 0.171 0.08 0.02 0.015 0 

409 nm        

Dilution   1 0.5 0.25 0.1 0.05 0 

Absorbance 0.3385 0.1725 0.081 0.0205 0.016 0 

410 nm       

Dilution   1 0.5 0.25 0.1 0.05 0 

Absorbance 0.3395 0.173 0.0815 0.0205 0.015 0 

411nm        

Dilution   1 0.5 0.25 0.1 0.05 0 

Absorbance 0.3435 0.174 0.0815 0.02 0.0155 0 

412 nm       

Dilution   1 0.5 0.25 0.1 0.05 0 

Absorbance 0.347 0.1745 0.082 0.02 0.0155 0 

413nm        

Dilution   1 0.5 0.25 0.1 0.05 0 

Absorbance 0.3475 0.175 0.082 0.0195 0.0155 0 

414 nm       

Dilution   1 0.5 0.25 0.1 0.05 0 

Absorbance 0.35 0.176 0.0825 0.02 0.015 0 
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Acid Test I 

Absorbance 405       

Alive (avg) 1.655 1.05 0.792 0.6045 0.3975 0.008 

Dead (avg) 1.907 1.566 1.085 0.689 0.55 0.034 

Dilution 1 0.5 0.25 0.1 0.05 0 

Absorbance 406       

Alive (avg) 1.56 1.04 0.783 0.5945 0.391 0.007 

Dead (avg) 1.859 1.548 1.089 0.689 0.544 0.033 

Dilution 1 0.5 0.25 0.1 0.05 0 

Absorbance 407       

Alive (avg) 1.556 1.023 0.776 0.589 0.388 0.007 

Dead (avg) 1.757 1.484 1.092 0.682 0.538 0.033 

Dilution 1 0.5 0.25 0.1 0.05 0 

Absorbance 408       

Alive (avg) 1.558 1.002 0.768 0.581 0.383 0.005 

Dead (avg) 1.733 1.441 1.086 0.679 0.532 0.03 

Dilution 1 0.5 0.25 0.1 0.05 0 

Absorbance 409       

Alive (avg) 1.577 0.99 0.763 0.577 0.379 0.005 

Dead (avg) 1.735 1.42 1.09 0.682 0.53 0.03 

Dilution 1 0.5 0.25 0.1 0.05 0 

Absorbance 410       

Alive (avg) 1.586 0.981 0.758 0.573 0.376 0.005 

Dead (avg) 1.755 1.417 1.091 0.681 0.527 0.03 

Dilution 1 0.5 0.25 0.1 0.05 0 

Absorbance 411       

Alive (avg) 1.583 0.972 0.752 0.567 0.372 0.004 

Dead (avg) 1.763 1.411 1.09 0.68 0.522 0.03 

Dilution 1 0.5 0.25 0.1 0.05 0 

Absorbance 412       

Alive (avg) 1.569 0.961 0.748 0.563 0.369 0.004 

Dead (avg) 1.78 1.42 1.093 0.681 0.52 0.029 

Dilution 1 0.5 0.25 0.1 0.05 0 

Absorbance 413       

Alive (avg) 1.552 0.952 0.742 0.558 0.365 0.003 

Dead (avg) 1.801 1.418 1.089 0.679 0.515 0.029 

Dilution 1 0.5 0.25 0.1 0.05 0 

Absorbance 414       

Alive (avg) 1.542 0.943 0.737 0.552 0.361 0.003 

Dead (avg) 1.798 1.411 1.083 0.678 0.512 0.029 

Dilution 1 0.5 0.25 0.1 0.05 0 
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Acid Test II 

405nm       

Dilution   0.25 0.2 0.1 0.05 0 

Absorbance 0.647 0.561667 0.336667 0.117667 0 

406 nm      

Dilution   0.25 0.2 0.1 0.05 0 

Absorbance 0.646333 0.56 0.336 0.117667 0 

407nm       

Dilution   0.25 0.2 0.1 0.05 0 

Absorbance 0.644333 0.557333 0.332667 0.116667 0 

408 nm      

Dilution   0.25 0.2 0.1 0.05 0 

Absorbance 0.64 0.555333 0.329667 0.115667 0 

409 nm       

Dilution   0.25 0.2 0.1 0.05 0 

Absorbance 0.636 0.555 0.327667 0.113667 0 

410 nm      

Dilution   0.25 0.2 0.1 0.05 0 

Absorbance 0.632667 0.554 0.324667 0.113 0 

411nm       

Dilution   0.25 0.2 0.1 0.05 0 

Absorbance 0.630333 0.553 0.324 0.112 0 

412 nm      

Dilution   0.25 0.2 0.1 0.05 0 

Absorbance 0.625333 0.549 0.320667 0.110667 0 

413nm       

Dilution   0.25 0.2 0.1 0.05 0 

Absorbance 0.620667 0.545333 0.318667 0.109667 0 

414 nm      

Dilution   0.25 0.2 0.1 0.05 0 

Absorbance 0.614667 0.539667 0.315667 0.108 0 
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Appendix B: Raw Data of Acid Phosphatase and Alkaline Pyrophosphatase 

Absorbance readings  
Obtained on January 24th, 2018 

 

Obtained on January 26th, 2018 
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Obtained on January 30th, 2018 

 

Obtained on February 7th, 2018 
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Obtained on February 9th, 2018 

 

Obtained on January 10th, 2018 
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Obtained on February 27th, 2018 
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Appendix C: Sucrose Gradient Separation Layers  

 

 

 

 

A) B) 


