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Abstract

In this thesis we derive the convergence order of a regularized error functional for
reconstructing faults from boundary measurements of displacement fields. The con-
vergence was proved to occur as the regularization parameter converges to zero but
the convergence order was unknown. This functional is used to solve an inverse
problem related to a half-space linear elasticity model. We first discuss this related
model and review some basic properties of this functional and then we derive the
convergence order for small regularization parameters.
This study is a first, but essential, step toward analyzing the convergence order of
related numerical methods. The reconstruction method of faults studied in this the-
sis was built from a model for real-world faults between tectonic plates that occur
in nature. This model was first proposed by geophysicists and was later analyzed by
mathematicians who were interested in building efficient numerical methods with
proof of convergence.
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Chapter 1

Introduction and detailed review
of preliminary material

1.1 Introduction

The study of subduction zones and interfaces between plates is an important topic in
geophysics, as they are intimately related to the onset and evolution of earthquakes.
Although it is still impossible to predict when and where the next significant earth-
quake will occur, a better knowledge of the geophysical structure of regions prone
to seismic activity will go a long way toward helping scientists and policy makers
assess seismic risk. Aspects of this geophysical structure involved in this risk as-
sessment must include hidden features such as plate boundaries, slippage between
boundaries, and accumulated strain. In general, these hidden features cannot be
observed or measured directly, they are reconstructed from a model and measurable
quantities such as surface displacements. Thanks to techniques such as geodetic
and seismological networks, scientists are able to collect measurements on the sur-
face of Earth’s crust. These surface measurement of displacement fields can then
be used to reconstruct faults and slip fields on those faults. Initially, these model
reconstructions were done heuristically, but also occasionally with a deeper under-
standing of the underlying mathematical challenges in the much simpler case where
a fault geometry is assumed and a slip field has to be reconstructed. This leads
to a linear inverse problem. Linear inverse problems are related to the well studied
mathematical theory of undetermined and ill-posed linear systems. This theory may
also be related to mathematical statistics. Tarantola is an investigator who bridged
the gap between geophysical models and linear inference [5], section 3.2. [1] is just
one of a plethora of geophysics papers using Tarantola’s method. [1] shows a study
where slip fields are reconstructed from surface measurements of displacement fields
and regularization is achieved thanks to a regularization term based on the assumed
covariance of the solution. More recently, the combined linear and nonlinear inverse
problem consisting of reconstructing slip fields occurring on an unknown, to be de-
termined, fault has been studied from a rigorous mathematical perspective [9, 7, 8].
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The authors of [7] set forth to study the convergence order of related numerical
methods. However, at the time of writing of [7], stability results shown in [8] were
not yet available. Using these stability results to derive finer convergence orders is
precisely the goal of this thesis. Here is an outline of this thesis. In chapter 1 we
review the physical model of interest, and we give a brief introduction to the related
inverse problem. We recall results claiming that this inverse problem is uniquely
solvable. We introduce a regularized error functional which is used to approximate
the solution to our inverse problem. We show that the numerical method using this
functional is convergent. Chapter 2 includes the main results of this thesis. We prove
that under some conditions we can estimate the convergence order of the minimizer
of our regularized error functional as the regularization parameter tends to zero.
Chapter 3 contains the conclusion of this thesis. Chapter 4 is an appendix where
we cover important lemmas and theorems from functional analysis and specifically,
Tikhonov regularization. These results are critical for proving our main theorem.

1.2 Physical significance of the forward and in-

verse problems

In this thesis we will use the theory of elasticity in the case of linear, homogeneous,
isotropic media. First, consider the following forward problem. Let Γ be an open
surface included in R3− and n a continuous normal vector on Γ. Let u be the
displacement field in R3− solving,

µ∆u + (λ+ µ)∇divu = 0 in R3− \ Γ, (1.1)

Te3u = 0 on the surface x3 = 0, (1.2)

Tnu is continuous across Γ, (1.3)

[u] = g is a given jump across Γ, (1.4)

u(x) = O(
1

|x|2
),∇u(x) = O(

1

|x|3
), uniformly as |x| → ∞. (1.5)

Existence and uniqueness of the field u solving (1.1-1.5) was proved in [9]. Here,
(1.1) is the standard equation for linear elasticity with Lamé coefficients µ and λ,
where µ > 0, λ > 0. (1.2) signifies that this displacement field has zero traction
on the plane x3 = 0. (1.3) tells us that the stress vector in the normal direction n
is continuous across Γ, and (1.4) is the discontinuity condition of the displacement
field across the fault Γ given by g: it models a slip field on Γ. (1.5) requires this
displacement field to have finite energy. It is known from [4, 6] that there exists a
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unique Green’s tensor H such that,

u(x) =

∫
Γ

H(x,y)g(y)dσ(y), (1.6)

for all Γ, g, and u satisfying (1.1-1.5). We now turn to solving the related inverse
problem, that is, reconstructing the fault Γ and the slip field g from measurements
of u. The following theorem was proved in [9].

Theorem 1.1. Let Γ1 and Γ2 be two bounded open surfaces, with smooth boundary,
such that each of them is included in a rectangle contained in R3−. For i in {1, 2},
assume that ui solves the inverse problem for Γi in place of Γ and gi in place of g,
where we assume that gi has H1

0 (Γi) regularity. Assume that supp gi = Γi. Let V
be a non empty open subset of the plane with equation x3 = 0. If u1 = u2 in V ,
then Γ1 = Γ2, and g1 = g2.

In other words, this inverse problem is uniquely solvable. Using integral formula
(1.6), we can define a continuous mapping A, mapping g in H1

0 (Γ) to u(x1, x2, 0)
in L2(V ). According to the uniqueness theorem in [9], we find that this mapping
is injective, therefore we can define its inverse. However, it is known that such
an integral operator A is compact, thus its inverse is unbounded. If we want to
apply numerical methods to reconstruct g from the data we collect, in this case,
u(x1, x2, 0), we need to design a regularization process for g, even in the simpler
case where Γ is known.

1.3 A regularized error functional for the surface

measurement

In this thesis the coordinates of a vector x in R3 will be denoted by (x1, x2, x3).
Let R be a closed rectangle in in the plane with equation x3 = 0, and let B be a
closed and bounded subset of R3, so B is compact in R3. Denoting m = (a, b, d),
we assume that B is such that

ax1 + bx2 + d < 0,

for all m ∈ B, all (x1, x2, 0) ∈ R. We now define the set Γm for each m in B by the
following:

Γm = {(x1, x2, ax1 + bx2 + d) : (x1, x2, 0) ∈ R}.

Notice that Γm is a parallelogram under the plane with equation x3 = 0, it is the
projection of the rectangle R, on the plane with equation x3 = ax1 + bx2 + d in the
x3 direction, see figure 1.1.

Lemma 1.1. The distance between Γm and the plane with equation x3 = 0 is bounded
below by the same positive constant for all m in B.
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Figure 1.1: A sketch showing Γm and the rectangle R in the plane with equation
{x3 = 0}.

Proof. We define a function ρ as follows:

ρ : B ×R→ R,

ρ(m, (x1, x2)) = ax1 + bx2 + d.

To prove our statement, we show that ρ achieves its maximum value. Then, given
our assumptions on B and R this maxium value must be negative. Since both B
and R are closed and bounded in R, then both of them are compact so that B ×R
is compact. Therefore, the image of ρ is also compact, and thus closed and bounded
in R. Thus

sup
B×R

ρ = ρ(m0, (x
0
1, x

0
2))

for some m0 in B and (x0
1, x

0
2) in R. By the assumption on B, the lemma is proved.

As mentioned in section 1.2, in this inverse problem, g models a tangential slip
field on Γm which in turn produces the deformation field u. We will use the data u
on a subset of the plane with equation x3 = 0 to determine the geometric parameter
m and slip field g. Recall the definition of H , the Green’s tensor for linear elasticity
in half space as defined in section 1.2. Set m = (a, b, d) and

Hm(x, y1, y2) = H(x,y), where y = (y1, y2, ay1 + by2 + d).

To simplify notations we write g(y1, y2, ay1 + by2 + d) = g(y1, y2). It follows that
if u satisfies (1.1-1.5), after emphasizing the dependence of u on x, g, and m by
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writing it as u(x, g,m), we have

u(x, g,m) =

∫
R

Hm(x, y1, y2)g(y1, y2)σdy1dy2, (1.7)

where m is in B, and σ is the surface element on Γm.
Now, let V be a bounded open set of {x3 = 0}, fix ũ in L2(V ), and fix a positive

constant C. Let g be in H1
0 (R), m be in B, and u be defined by (1.7). We define

the regularized error functional,

Fm,C(g) =

∫
V

|(u(x, g,m)− ũ(x)|2dx + C

∫
R

|∇g|2. (1.8)

We define the linear operator,

Am : H1
0 (R)→ L2(V ),

g →
(
x→

∫
R

Hm(x, y1, y2)g(y1, y2)σdy1dy2

)
. (1.9)

One can show that Am is continuous and compact thanks to lemma 1.1.

Recall that the usual norm on L2(V ) is

‖u‖L2(V ) = (

∫
V

|u(x)|2dx)
1
2 .

We also need to define a norm on H1
0 (R). The usual norm on H1(R) is

‖g‖H1(R) = ‖g‖L2(R) + ‖∇g‖L2(R).

Now thanks to Poincare’s inequality, there is anM > 0, such that for any g ∈ H1
0 (R),

we have

‖g‖L2(R) ≤M‖∇g‖L2(R).

Thus we can use the equivalent norm on H1
0 (R),

‖g‖H1
0 (R) = (

∫
R

|∇g|2)
1
2 .

Now we can rewrite the functional Fm,C as

Fm,C(g) = ‖Amg − ũ‖2
L2(V ) + C‖g‖2

H1
0 (R).

Proposition 1.1. For any fixed m in B and C > 0, Fm,C achieves a unique mini-
mum hm,C in H1

0 (R).

Proof. This is a consequence of [3], chapter 16 section 2, see theorems 4.5 and 4.6
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in appendix 2 for details.

Now, we set
fC(m) = Fm,C(hm,C). (1.10)

Proposition 1.2. fC is a Lipschitz continuous function on B. It therefore achieves
its minimum value on B.

Proof. It is known that Green’s tensor Hm for (x,y) in R3−×R3− such that x 6= y
is C∞ in a neighbourhood of (x,y). Thus by lemma 1.1 Hm and its first derivatives
are uniformly bounded, for x in V and (y1, y2) in R, since the distance from V to
R is strictly positive, and V and R are bounded. Thus Hm is Lipschitz continuous
for m in B and (y1, y2) in R, so there exists a positive constant L0 such that,

|Hm(x, y1, y2)−Hm′ (x, y1, y2)| ≤ L0|m−m
′ |,

for all x in V , any m, m
′

in B and all (y1, y2) in R, and since the surface element
σ is a smooth function of m there exists a positive constant L such that,

|Hm(x, y1, y2)σm −Hm′ (x, y1, y2)σm′ | ≤ L|m−m′|, (1.11)

for all x in V , any m, m
′

in B and all (y1, y2) in R. Now, we also observe that

|Fm,C(hm,C)− Fm′ ,C(hm,C)| = |‖Amhm,C − ũ‖2 − ‖Am′hm,C − ũ‖2|
= |‖Amhm,C‖2 − ‖Am′hm,C‖2 + 2〈Amhm,C − Am′hm,C , ũ〉|
≤ |‖Amhm,C‖2 − ‖Am′hm,C‖2|+ 2|〈Amhm,C − Am′hm,C , ũ〉|.

Notice that, by the triangle inequality,

|‖Amhm,C‖2 − ‖Am′hm,C‖2|
= (‖Amhm,C‖+ ‖Am′hm,C‖)|(‖Amhm,C‖ − ‖Am′hm,C‖)|
≤ (‖Amhm,C‖+ ‖Am′hm,C‖)‖Amhm,C − Am′hm,C‖.

And thanks to Cauchy-Schwartz inequality,

2|〈Amhm,C − Am′hm,C , ũ〉| ≤ 2‖Amhm,C − Am′hm,C‖‖ũ‖.

We conclude that

|Fm,C(hm,C)− Fm′ ,C(hm,C)|
≤ (‖Amhm,C‖+ ‖Am′hm,C‖+ 2‖ũ‖)‖Amhm,C − Am′hm,C‖.

Notice that,

Amhm,C − Am′hm,C =

∫
R

(Hmσm −Hm′σm′)hm,Cdy1dy2.
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Thus, using (1.11),

‖Amhm,C − Am′hm,C‖ ≤ LK1|m−m
′|‖hm,C‖, (1.12)

where K1 is some constant independent of the choice of m and m
′

in B. Altogether
we now have

|Fm,C(hm,C)− Fm′ ,C(hm,C)| ≤ K2‖hm,C‖(‖hm,C‖+ ‖ũ‖)||m−m′|,

where K2 is some constant independent of the choice of m and m
′

in B.

By definition, hm′ ,C is the minimizer of Fm′ ,C , so Fm′ ,C(hm′ ,C) ≤ Fm′ ,C(hm,C),
therefore

K2‖hm,C‖(‖hm,C‖+‖ũ‖)|m−m
′ | ≥ Fm′ ,C(hm,C)−Fm,C(hm,C) ≥ Fm′ ,C(hm′ ,C)−Fm,C(hm,C).

Here the choices of m and m
′

are arbitrary, so we can also show that

Fm,C(hm,C)− Fm′ ,C(hm′ ,C) ≤ K2‖hm,C‖(‖hm,C‖+ ‖ũ‖)|m−m′ |.

Thus

|Fm′ ,C(hm′ ,C)− Fm,C(hm,C)| ≤ K2‖hm,C‖(‖hm,C‖+ ‖ũ‖)|m−m′ |.

Now, we are going to find the upper bound of ‖hm,C‖. Notice that hm,C is the
minimizer of Fm,C , thus Fm,C(hm,C) ≤ Fm,C(0), therefore

Fm,C(hm,C) = ‖Amhm,C − ũ‖2 + C‖hm,C‖2 ≤ ‖ũ‖2 = Fm,C(0).

Hence,
C‖hm,C‖2 ≤ ‖ũ‖2.

We have
‖hm,C‖ ≤ C−

1
2‖ũ‖.

Finally,
|Fm′ ,C(hm′ ,C)− Fm,C(hm,C)| ≤ 2K2C

−1‖ũ‖2|m−m′ |,

for 0 < C < 1. So we proved that fC is a Lipschitz continuous function on B, but
B is compact, thus fC achieves its minimum value on B.

Theorem 1.2. Assume that ũ = Am̃h̃ for some m̃ in B and some h̃ in H1
0 (R). Let

Cn be a sequence of positive numbers converging to zero. Let mn be any sequence in B
such that fCn(mn) minimizes fCn(m) for m in B and set fCn(mn) = Fmn,Cn(hmn,Cn).

Then mn converges to m̃, hmn,Cn converges to h̃ in H1
0 (R), and Amnhmn,Cn converges

to ũ in L2(V ).

Proof. This theorem was proved in [9]. In this thesis we give a more detailed proof
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of this theorem because the minutia of this proof are important in the derivation of
our main result.
We first note that∫

V

|Amnhmn,Cn − ũ|2 + Cn

∫
R

|∇hmn,Cn|2 = fCn(mn)

≤ fCn(m̃)

= Fm̃,Cn(hm̃,Cn)

≤ Fm̃,Cn(h̃)

= Cn

∫
R

|∇h̃|2.

(1.13)

From there, as Cn converges to zero, we observe that Amnhmn,Cn converges to ũ
in L2(V ), and the sequence ||∇hmn,Cn||L2(V ) is bounded, so hmn,Cn is bounded in
H1

0 (R). Now we want to show that mn converges to m̃, we argue by contradiction.
Assume that mn does not converges to m̃. As mn is a sequence in a compact set B,
we can extract a subsequence mnk

, such that mnk
converges to some m∗ in B with

m∗ 6= m̃. As hmnk
,Cnk

is bounded in H1
0 (R), a subsequence is weakly convergent

to some h∗ in H1
0 (R), so at this stage we can redefine the sequence mnk

so that it
converges to m∗ and hmnk

,Cnk
is weakly convergent to h∗ in H1

0 (R).
Next ,we want to show that Amnk

converges to Am∗ in operator norm, that is,

sup
ϕ∈H1

0 (R),‖ϕ‖=1

|(Amnk
− Am∗)ϕ| → 0,

as nk tends to infinity. To do that, we have to indicate explicitly the continuous
dependence of the surface element σ on the geometry parameter m. Notice that

|(Amnk
− Am∗)ϕ| = |

∫
R

(Hmnk
σmnk

−Hm∗σm∗)ϕdy1dy2|

≤
∫
R

sup
(x,y1,y2)∈V×R

|(Hmnk
σmnk

−Hm∗σm∗)||ϕ|dy1dy2

= J sup
(x,y1,y2)∈V×R

|(Hmnk
σmnk

−Hm∗σm∗)|‖ϕ‖H1
0 (R),

where J is some constant independent of m∗ and mnk
. Therefore∫

V

|(Amnk
− Am∗)ϕ|2 ≤ (J sup

(x,y1,y2)∈V×R
|(Hmnk

σmnk
−Hm∗σm∗)|‖ϕ‖H1

0 (R))
2|V |.

Here |V | is the area of V . We know that the function (x, y1, y2,m)→Hm(x, y1, y2)σm
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is continuous on the compact set V ×R×B, thus

sup
(x,y1,y2)∈V×R

|(Hmnk
σmnk

−Hm∗σm∗)|

converges to zero as k tends to infinity and Amnk
converges to Am∗ in operator norm.

Next, we notice that

‖Amnk
hmnk

,Cnk
− Am∗h

∗‖ ≤ ‖(Amnk
− Am∗)hmnk

,Cnk
‖

+ ‖Am∗(hmnk
,Cnk
− h∗)‖.

Both of these two terms tend to zero as nk tends to infinity. Thus Amnk
hmnk

,Cnk

converges to Am∗h
∗ strongly (for more details see appendix 1, theorem 4.4). Notice

that from (1.13) we have∫
V

|Amnk
hmnk

,Cnk
− ũ|2 + Cnk

∫
R

|∇hmnk
,Cnk
|2 ≤ Cnk

∫
R

|∇h̃|2.

Hence if we take limit on both sides of the above inequality , we have∫
V

|Am∗h
∗ − ũ|2 = 0.

Thus Am∗h
∗ = ũ. But we assumed that m∗ 6= m̃, so this result contradicts theorem

1.1. So we can conclude that mn converges to m̃.

We now want to show that hmn,Cn converges to h̃ in H1
0 (R). As we now know

that Amnhmn,Cn converges to ũ, since Amn is norm convergent to Am̃ and hmn,Cn is
bounded in H1

0 (R), we can claim that Am̃hmn,Cn converges to ũ. Let v be in L2(V ).
We have

〈hmn,Cn − h̃, A∗m̃v〉 = 〈Am̃hmn,Cn − ũ,v〉 → 0.

We also know that Am̃ is injective, so the range of A∗m̃ is dense (see theorem 4.1 in
appendix 1 for a proof), thus hmn,Cn converges weakly to h̃ in H1

0 (R). Now from

(1.13) we observe that ||hmn,Cn|| ≤ ||h̃||, so

‖hmn,Cn − h̃‖2 = ‖hmn,Cn‖2 − 2〈hmn,Cn , h̃〉+ ‖h̃‖2

≤ ‖h̃‖2 − 2〈hmn,Cn , h̃〉+ ‖h̃‖2

= 2〈h̃− hmn,Cn , h̃〉,
(1.14)

which converges to zero due to the weak convergence of hmn,Cn .
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Chapter 2

Estimates of the convergence
order

In this chapter we derive estimates for the convergence of mn, a minimizing sequence
of geometry parameters for fCn as defined in theorem 1.2 and estimates for the
corresponding minimizing field hmn,Cn as the regularization parameter Cn tends to
zero.

2.1 A preliminary result

In this section we review and prove in details a result from [7].

Proposition 2.1. Let ũ,mn,hmn,Cn be as in theorem 1.2. The following conver-
gence rate estimates hold

‖Amnhmn,Cn − ũ‖ ≤ C
1
2
n ‖h̃‖, (2.1)

‖hmn,Cn − h̃‖ ≤
√

2‖v‖‖h̃‖(C
1
4
n + (LK1)

1
2 |mn − m̃|

1
2 ). (2.2)

Here for (2.2) we assume that h̃ is in the image of A∗m̃ with h̃ = A∗m̃v, L was
previously introduced previously in (1.11), and K1 was introduced in (1.12).

Proof. (2.1) is clear due to (1.13). To show (2.2) we observe that

|〈hmn,Cn − h̃, h̃〉| = |〈hmn,Cn − h̃, A∗m̃v〉|
= |〈Am̃hmn,Cn − Am̃h̃,v〉|
= |〈Am̃hmn,Cn − Amnhmn,Cn + Amnhmn,Cn − ũ,v〉|
≤ |〈Am̃hmn,Cn − Amnhmn,Cn ,v〉|+ |〈Amnhmn,Cn − ũ,v〉|.

From estimate (1.12) we observe that

|〈Am̃hmn,Cn − Amnhmn,Cn ,v〉| ≤ LK1‖h̃‖‖v‖|m̃−mn|.
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And thanks to Cauchy-Schwartz inequality and (2.1),

|〈Amnhmn,Cn − ũ,v〉| ≤ C
1
2
n ‖h̃‖‖v‖.

Combining with (1.14) we have

‖hmn,Cn − h̃‖ ≤
√

2〈h̃− hmn,Cn , h̃〉

≤
√

2(LK1‖h̃‖|m̃−mn|‖v‖+ C
1
2
n ‖h̃‖‖v‖)

=

√
2‖v‖‖h̃‖

√
C

1
2
n + LK1|mn − m̃|

≤
√

2‖v‖‖h̃‖(C
1
4
n + (LK1)

1
2 |mn − m̃|

1
2 ).

(2.3)

As we can see here, if we can determine the convergence order of mn to m̃, we
will be able to estimate the convergence order of hmn,Cn . To do so we need to recall
a theorem from [8].

Theorem 2.1. Let B be defined as in section 1.3, m in B, and Am be defined as in
(1.9). Fix a non-zero h̃ in H1

0 (R) and m̃ in B. Assume that h̃ satisfies one of the
two following additional assumptions:

(i). h̃ is one-directional, that is, h̃ is parallel to a fixed tangential vector.
(ii). h̃ is the gradient of a function ϕ in H2(R).

Then there exists a positive constant C0 depending on m̃ and h̃ but not on m such
that

inf
h∈H1

0 (R)
‖Amh− Am̃h̃‖L2(V ) ≥ C0|m− m̃| (2.4)

for all m in B.

Proof. This is proved in [8], theorem 4.1.

2.2 Convergence order

The following theorem is the main new result of this thesis. By combining propo-
sition 2.1 and theorem 2.1, we are able to estimate the convergence order of mn.
This is an important result in practice since only mn can be computed and then
by playing with the regularization constant Cn, one can gauge how close mn is to
m̃, in other words one can claim with some degree of confidence how close one is
to having determined the geometry of the planar fault Γm. We also include sharper
convergence estimates further in this section, but these sharper estimates can be
skipped in a first reading.
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Theorem 2.2. Let Fm,C be defined as in (1.8) and fC as in (1.10). Let Cn be a
sequence of positive numbers converging to zero. Let mn be a sequence in B such
that fCn(mn) = Fmn,Cn(hmn,Cn) is the minimum of fCn(m) = Fm,C(hm,C) for m in
B, then there exists a constant C∗ such that,

|mn − m̃| ≤ C∗C
1
2
n ‖h̃‖. (2.5)

In addition, if h̃ is in the range of A∗m̃, then

‖hmn,Cn − h̃‖ = O(C
1
4
n ). (2.6)

Remark: Due to the definition of Am̃ we know from theorem 1.1 that Am̃ is
injective. Thus the range of A∗m̃ is dense in L2(V ) (see Appendix, theorem 4.1). The
assumption that h̃ is in the range of A∗m̃ can be interpreted as a regularity condition.

Proof. Starting from (2.4) we set C∗ = C−1
0 to obtain,

|mn − m̃| ≤ C∗ inf
h∈H1

0 (R)
‖Amnh− Am̃h̃‖L2(V ),

thus using (2.1), we arrive at (2.5).
Combining (2.2) and (2.5), we have

‖hmn,Cn − h̃‖ ≤
√

2‖v‖‖h̃‖(C
1
4
n + (LK1)

1
2 |mn − m̃|

1
2 )

≤
√

2‖v‖‖h̃‖(C
1
4
n + (LK1)

1
2‖h̃‖

1
2 (C∗)

1
2C

1
4
n )

=

√
2‖v‖‖h̃‖(1 +

√
C∗LK1‖h̃‖)C

1
4
n

= O(C
1
4
n ),

indicating a convergence order is at least one fourth.

The estimates from theorem 2.2 can be bootstrapped to obtain the following
result.

Theorem 2.3. With the same notations and assumptions as in theorem 2.2

|mn − m̃| = o(C
1
2
n ), (2.7)

and if h̃ is in the range of A∗m̃, then

‖hmn,Cn − h̃‖ = o(C
1
4
n ), (2.8)

and
|mn − m̃| = o(C

5
8
n ). (2.9)
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Remark: Further sharper estimates can be investigated if we assume more
regularity on h̃. For example, a reasonable assumption would be to take h̃ is in the
range of A∗m̃Am̃A

∗
m̃. Alternatively, another reasonable assumption on h̃ is to set it

equal to a finite linear combination of a few of the first eigenvectors of A∗m̃Am̃.

Proof. To prove estimate (2.7) we first rearrange the terms in inequality (1.13) in
such away to obtain∫

V

|Amnhmn,Cn − ũ|2 ≤ Cn(

∫
R

|∇h̃|2 −
∫
R

|∇hmn,Cn|2). (2.10)

But theorem 1.2 asserts that hmn,Cn converges to h̃ in H1
0 (R), so the right hand side

of (2.10) is o(Cn) so in light of (2.4), estimate (2.7) is proved. Next, assuming that
h̃ is in the range of A∗m̃, there is a v in L2(V ) such that h̃ = A∗m̃v, so as

|〈hmn,Cn − h̃, h̃〉| ≤ |〈Am̃hmn,Cn − Amnhmn,Cn ,v〉|+ |〈Amnhmn,Cn − ũ,v〉|,

and given that from (2.7),

‖Am̃ − Amn‖ = O(|mn − m̃|) = o(C
1
2
n ),

and (2.10) shows that ‖Amnhmn,Cn − ũ‖ = o(C
1
2
n ), we infer that |〈hmn,Cn − h̃, h̃〉| is

of order o(C
1
2
n ). As explained in the proof of proposition 2.1, as ‖hmn,Cn‖ ≤ ‖h̃‖,

‖hmn,Cn − h̃‖ ≤
√

2〈h̃− hmn,Cn , h̃〉,

and thus (2.8) is proved. Finally, to show (2.9), combining (2.8) and (2.10) we find
that

‖Amnhmn,Cn − ũ‖ = o(C
5
8
n ),

so by (2.4), (2.9) is proved.
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Chapter 3

Conclusion

In this thesis, we studied a regularization error functional that can be used to solve
a nonlinear inverse problem for half space elasticity minus a fault, that has to be
determined from boundary measurements. We have proved that we can estimate
the convergence order of the minimizer of our regularized error functional as the
regularization parameter tends to zero. Unlike in classical Tikhonov regularization
we also had to contend with a nonlinear parameter which models the geometry of
the fault, and we also found an estimate of the convergence order of that parameter
as the regularization constant tends to zero.
In future work, it would be interesting to see if the estimate of the order of conver-
gence can be further improved if more regularity is assumed on the data. However,
more importantly, our priority should be to derive the convergence order for the
fully discrete numerical method related to the error functional. Such a study was
undertaken in previous work [7] but stability results were unknown at the time of
the writing of that paper, so only convergence of the numerical method could be
proved, without order estimates.
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Chapter 4

Appendix: basic functional
analysis and Tikhonov
regularization

In the proof of theorem 1.2, we refer to the following theorem:

Theorem 4.1. Let X and Y be two Hilbert spaces. Let A : X → Y be an injective
linear operator, then A∗(Y ) is dense in X.

In order to prove this theorem, we need to review some results in functional
analysis.

Lemma 4.1. Let V be a subset of a Hilbert space X, then the orthogonal space of
V is closed.

Proof. Let y be in V ⊥, then there exists a sequence yn in V ⊥ such that yn converges
to y. Choose an arbitrary x in V , since the inner product function is continuous,
we have

〈y, x〉 = 〈 lim
n→∞

yn, x〉 = lim
n→∞
〈yn, x〉 = 0.

This shows that y is in V ⊥, so V ⊥ is closed.

Lemma 4.2. If A and B are two subsets of Hilbert space X such that A ⊂ B, then
B⊥ ⊂ A⊥.

Proof. Let x be in B⊥, then for any y in B we have 〈x, y〉 = 0. But since A ⊂ B,
then for a any z in A, we also have 〈x, z〉 = 0. Thus x is in A⊥, which implies
B⊥ ⊂ A⊥.

Lemma 4.3. V ⊥ = (V )⊥.

Proof. First, since V ⊂ V , then (V )⊥ ⊂ V ⊥. Conversely, let x be in V ⊥, and y
be in V , by continuity of inner product, we have 〈x, y〉 = 0. So x is in (V )⊥, thus
V ⊥ ⊂ (V )⊥. Therefore we have V ⊥ = (V )⊥.
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We now define orthogonal projections.

Definition 4.1. The linear operator P from X to X is an orthogonal projection if
P = P 2 and P = P ∗.

Remark: By definition, P = P ∗ is equivalent to the statement: for any x, y in
X, 〈Px, y〉 = 〈x, Py〉.

Proposition 4.1. Let P be an orthogonal projection from X to X, then for any x
and y in X, we have the following:

(i)〈Px, (I − P )y〉 = 0,

(ii)‖Px+ (I − P )y‖2 = ‖Px‖2 + ‖(I − P )y‖2,

(iii)Im(P ) = N(I − P ),

(iv)I − P is also an orthogonal projection,

(v)‖P‖ is equal to 1 or 0.

Proof. (i) By definition, P = P 2, P = P ∗, thus

〈Px, (I − P )y〉 = 〈x, P ∗(I − P )y〉 = 〈x, P (I − P )y〉 = 〈x, Py − Py〉 = 0.

(ii) is clear by (i). To prove (iii), first fix an arbitrary y in Im(P ), then there exists
x in X, such that y = Px. Thus

(I − P )y = (I − P )Px = (P − P 2)x = 0.

So Im(P ) ⊂ N(I −P ). On the other hand, fix an arbitrary x in N(I −P ), we have

(I − P )x = x− Px = 0.

So x = Px, thus x ∈ Im(P ), thereforeN(I−P ) ⊂ Im(P ), hence Im(P ) = N(I−P ).

To prove (iv), notice that

(I − P )2 = I2 − 2P + P 2 = I − P,

(I − P )∗ = I∗ − P ∗ = I − P.

By definition, I − P is also an orthogonal projection.

Finally, let x be in X, from (ii) we observe that

‖Px‖2 + ‖(I − P )x‖2 = ‖Px+ (I − P )x‖2 = ‖x‖2.
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Thus ‖Px‖ ≤ ‖x‖, which implies

‖P‖ ≤ 1.

Now, assume that P 6= 0, Then there exists y in X, such that Py 6= 0, thus if we
set z = Py, we have Pz = P 2y = Py = z, so we have ‖P‖ ≥ 1, hence we conclude
that ‖P‖ = 1. Otherwise, P = 0, ‖P‖ = 0.

We now introduce what is arguably the most important theorem about Hilbert
spaces, namely the orthogonal projection on closed subspaces theorem.

Theorem 4.2. (Projection Theorem) Let X be a Hilbert space and V be a closed
subspace of X. Then the space X can be decomposed to the direct sum

X = V ⊕ V ⊥,

meanning that any element x ∈ X can be written as,

x = y + z, y ∈ V and z ∈ V ⊥.

This decomposition is unique. The mapping PV : X → X, such that PV x = y is
the orthogonal projection from X to V and the mapping I − PV is the orthogonal
projection from X to V ⊥.

Note that PV ⊥ = I − PV since I − PV is the orthogonal projection from X to
V ⊥. For more a detailed proof of this fundamental theorem, see Yosida’s textbook
[10], chapter III, section 1.

Lemma 4.4. If V is a subspace of X, then (V ⊥)⊥ = V .

Proof. We first want to show that V ⊂ (V ⊥)⊥. Let x be arbitrary in V , then for any
y in V ⊥, 〈x, y〉 = 0, so x ∈ (V ⊥)⊥, thus V ⊂ (V ⊥)⊥. By lemma 4.1, (V ⊥)⊥ is closed,
so V ⊂ (V ⊥)⊥. There remains to prove that (V ⊥)⊥ ⊂ V . Choose x in (V ⊥)⊥, by

projection theorem 4.2, there exits y in V and z in V
⊥

, such that x = y + z. By

lemma 4.3, V
⊥

= V ⊥, so z ∈ V ⊥, hence

0 = 〈x, z〉 = 〈y + z, z〉 = 〈y, z〉+ 〈z, z〉 = 〈z, z〉.

So we have z = 0. Thus, for any x in (V ⊥)⊥, there exists y in V such that x = y,
which implies that (V ⊥)⊥ ⊂ V .

Corollary. If V is a closed subspace, then(V ⊥)⊥ = V .

Lemma 4.5. Let V be a subspace of a Hilbert space X, then V is dense in X if and
only if V ⊥ = {0}.
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Proof. First we assume that V is dense in X. Let x be in V ⊥, then there exists a
sequence xn in V , such that xn converges to x, and 〈xn, x〉=0 for all n. Using the
fact that the function of inner product is continuous, we have

〈x, x〉 = 〈 lim
n→∞

xn, x〉 = lim
n→∞
〈xn, x〉 = 0.

Therefore x will be identically zero, which implies V ⊥ = {0}.

Conversely, suppose V ⊥ = {0}, then (V ⊥)⊥ = X. But by lemma 4.4, (V ⊥)⊥ = V ,
so V = X, therefore V is dense in X.

We now give the proof of theorem 4.1.

Proof. Let x be in the orthogonal space of A∗(Y ), then for any y in Y , we have
〈x,A∗y〉 = 0, so 〈Ax, y〉 = 0. Set y = Ax, we have 〈Ax,Ax〉 = 0, which implies
Ax = 0. So x ∈ N(A). But A is injective, so N(A) = {0}. Hence (A∗(Y ))⊥ = {0}.
By lemma 4.5 we show that A∗(Y ) is dense in X.

We also use some important results about compact operators in the proof of
theorem 1.2, we give more details here.

Theorem 4.3. Let X and Y be two normed spaces and T : X → Y be a compact
linear operator. Assume that xn is a sequence in X, converges weakly to some x in
X, then Txn converges strongly to Tx in Y .

Proof. See Friedman’s book [2], chapter 5, section 1 (page 186).

Theorem 4.4. Let X and Y be two normed spaces, and Tn : X → Y be a sequence
of bounded linear operator, converging to a compact operator T in operator norm.
Let xn be bounded sequence in X converging to x in X weakly, then Tnxn converges
to Tx strongly in Y .

Proof. Notice that

‖Tnxn − Tx‖ ≤ ‖Tnxn − Txn‖+ ‖Txn − Tx‖
≤ ‖Tn − T‖‖xn‖+ ‖Txn − Tx‖.

The first term converges to zero because xn is bounded and Tn converges to T in
operator norm. For the second term, as T is compact, we apply theorem 4.3 to show
the convergence. Therefore, Txn converges to Tx strongly in Y .

We now turn to Tikhonov regularization. Although this regularization process is
well known in linear algebra, thanks to functional analysis techniques, this process
can also apply to Hilbert spaces. Here, we follow the approach advocated in [3],
chapter 16.
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Definition 4.2. Let X and Y be two norm spaces, and let A mapping X to Y be
an injective bounded linear operator. Let C > 0, then a family of bounded linear
operators RC mapping X to Y is called a regularization scheme for the operator A,
if

lim
C→0

RCAg = g, g ∈ X.

The parameter C is called the regularization parameter.

In our problem, we use Tikhonov regularization to approximate our solution.
We provide more details of this process here.

Theorem 4.5. Let A : X → Y be a bounded linear operator and let C > 0. Then
for each u in Y there exists a unique gC in X such that

‖AgC − u‖2 + C‖gC‖2 = inf
g∈X
{‖Ag − u‖2 + C‖g‖2}.

The minimizer gC is given by the unique solution of the following equation:

CgC + A∗AgC = A∗u.

Proof. Here is a proof from [3]. We first show that why the solution gC is unique.
Consider the operator TC := CI + A∗A, since

C‖g‖2 ≤ C‖g‖2 + ‖Ag‖2 = 〈TCg, g〉,

then TC is strictly coercive, so by Lax-Milgram’s Theorem (this theorem is stated
and proved for example in [3] chapter 13), the solution exists and is unique. Now
we will show that gC is exactly the minimizer. In fact, for any g in X, it is true
that:

‖Ag − u‖2 + C‖g‖2 = ‖AgC − u‖2 + C‖gC‖2

+ 〈g − gC , CgC + A∗(AgC − u)〉
+ ‖A(g − gC)‖2 + C‖g − gC‖2.

If gC satisfies the previous equation, then the equation above will be minimized.

We now state a lemma, which will be used to prove

RC := (CI + AA∗)−1A∗

is a regularization scheme.

Lemma 4.6. Let X be a Banach space, and L(X) be the space of linear operator
from X to X. The space

V = {S ∈ L(X) : S is invertible with bounded inverse}
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is open in L(X). The mapping
T → T−1

is continuous.

Proof. Fix S in V , we will prove that any linear operator T in L(X) satisfying

‖S − T‖ < 1

2‖S−1‖
(4.1)

is also in V , so V is open in L(X).

First, we observe that

‖I − S−1T‖ = ‖S−1(S − T )‖ ≤ ‖S−1‖‖S − T‖ < 1

2
.

So the series
∞∑
n=0

(I − S−1T )n (4.2)

is convergent. Set A = I − S−1T , we notice that

(I − A)
∞∑
n=0

An =
∞∑
n=0

An −
∞∑
n=1

An = I.

Similarly,
∞∑
n=0

An(I − A) = I.

So I − A = S−1T is invertible, T−1S is given by (4.2), and in particular T is
invertible. From (4.2) we infer that,

‖T−1S‖ ≤ 1

1− ‖I − S−1T‖
< 2.

From here we have

‖T−1‖ = ‖T−1SS−1‖ ≤ ‖T−1S‖‖S−1‖ ≤ 2‖S−1‖.

Therefore, T−1 is bounded, So V is open.

Now we observe that

‖S−1 − T−1‖ ≤ ‖S−1‖‖T − S‖‖T−1‖ ≤ 2‖S−1‖2‖S − T‖,

for all S in V and all T satisfying (4.1) and we conclude that the mapping T → T−1
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is continuous.

Theorem 4.6. Let A : X → Y be an injective bounded linear operator. Then

RC := (CI + AA∗)−1A∗

describes a regularization scheme with

||RC || ≤
||A||
C

.

Proof. This is proved by [3], chapter 16, section 2.
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