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Introduction

Background

It has been observed, that when an earthquake strikes a large city, the seismic activity is
altered by the collective response of the buildings of the city. This phenomenon is called the
“city-effect”, and in our dissertation we study this problem. The evaluation of seismic risk in
urban environments is crucial because of high population densities as well as the factories and
offices situated in those areas whose contribution to our economy is vital. Studying the city-
effect problem may help safety agencies and policy makers in the future assess seismic risk
specific to urban areas and it may lead to setting new guidelines for local building codes.
The traditional approach to evaluating seismic risk in urban areas is to consider seismic
waves in the underground as the only cause for motion at the top. Accordingly, in earlier
studies, seismic wave propagation was evaluated in a separate step and then impacts on man
made structures above ground were calculated. However, observational evidence has since
then demonstrated that structures built on the earth surface may in turn impact seismic
waves, see [4, 19, 11]. The 1985 Michoacan earthquake in Mexico City led Wirgin and Bard
[31] to hypothesize that city buildings may collectively affect the ground motion during an
earthquake. That idea was supported by several other technical and computational studies,
see [2, 6, 7]. The starting point of this thesis is a paper on the city-effect problem by Ghergu
and Ionescu, [15], with a stronger theoretical and mathematical flavor. Ghergu and Ionescu
proposed a model derived from the equations of physics and a solution algorithm relying on
solid mathematics. Our contribution is to extend their work and to provide a mathematical
analysis for proving the existence of preferred frequencies coupling vibrations of buildings to
underground seismic waves.

Ghergu and Ionescu were able to compute a city frequency constant, that is, given
the geometry and the specific physical constants of an idealized two dimensional city, they
computed a frequency that will lead to the resonance between vibrating buildings and under-
ground seismic waves. This is an impressive achievement, but that city frequency constant
was obtained by simply increasing the number of buildings at the expense of solving larger
and larger systems. Our idea is instead to use a periodic Green’s function and perform com-
putations on a single period. That allows for much faster computations, and in turn makes
it possible to consider more complex geometries within a single period.

This thesis includes theoretical considerations related to the city-effect problem. We
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solve a system of integral equations to determine the (anti-plane) vibrations of the ground,
so that potential theory, partial differential equations and integral equations are important
underlying mathematical objects that we will have to manipulate throughout this thesis.
We investigated regularity results for double-layer potentials, given in appendix. Although
related results are certainly considered to be standard, we have not found in the literature
the precise regularity result that we are interested in. Later in this thesis we provide a rather
in depth and proof based account of different formulations for the periodic Green’s function
that we need. Although the actual formulas that we use have been known for some time,
see [23], we prove that they are indeed fundamental solutions to the Helmholtz operator and
we analyze their convergence rate. Finally we devote the last chapter of this thesis to the
mathematical proof of existence of preferred frequencies coupling vibrations of buildings to
underground seismic waves.

Thesis outline

The first chapter of the thesis is an introduction to the city-effect model developed by
Ghergu and Ionescu. They pertain to the case of a city with a finite number of equally spaced
and identical buildings located along a straight line. We describe the physical statement
and corresponding mathematical problem, which leads to the two-dimensional Helmholtz
equation.

Chapter II is dedicated to periodic Green’s function for the Helmholtz operator. We
examine three ways of defining these Green’s functions. The first way uses infinite sums of
Bessel functions. This formulation is straightforward but suffers from a very slow convergence
rate. The second way is done in a spectral form which appears as a series which converges
very fast at points (x0, y0, x, y) where |x − x0| is large enough. We provide a complete
argument proving that this second form is indeed a fundamental solution to the Helmholtz
equation. The third way relies on the so called Ewald method. We show that this method
converges remarkably fast and independently of |x − x0|. Eventually we will use either the
second or the third form depending on |x− x0|.

In the second part of chapter II, we proceed to work on numerical solutions to interior
Neumann problems for Helmholtz equations whose solutions in closed form are known. Our
goal is two fold. First, we want to gain a solid grasp of weakly singular boundary integral
equations since they will be essential in our city-effect computations. Second, this is an
excellent opportunity to use periodic Green’s functions in our codes and verify how accurately
we can solve integral equations with those special Green’s functions.

The third chapter of this thesis is entirely devoted to numerical computations for the city-
effect problem. We begin by reproducing the computational method introduced by Ghergu
and Ionescu in [15]. Ghergu and Ionescu realized that the search for coupling frequencies
in that case can be greatly accelerated by finding the eigenvalues of a relevant symmetric
matrix T . As the number of buildings in a city grows large their study seemed to indicate
that the smallest eigenvalue of that matrix converges to some limit value. In our approach,
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cities are directly modeled to be periodic, so the search for coupling frequencies is performed
on a single cell and thus our search is even less computationally intensive. We are able to
recover the same value as in the large number of buildings case. As we explored different
values of relative spacing between buildings, a more complex picture arose. It turned out
that if buildings are closer together it is the largest eigenvalue of T which is convergent to
the periodic case.

In the second part of chapter III we investigate the case of buildings of different ge-
ometries, which are no longer required to be equally spaced. In that case the matrix T is
no helpful anymore and the solution method proposed by Ghergu and Ionescu in [15] is no
longer applicable. A free space calculation is particularly burdensome in that case and may
quickly become intractable. Clearly, our periodic formulation statement becomes especially
helpful in that case. We simply impose a pattern of buildings of different sizes on each cell
and assume that this pattern is repeated on each period.

The last chapter of this thesis pertains to the theoretical proof that preferred, that is,
coupling frequencies for the city-effect problem do exist. The proof is done in the simpler case
of a single building. We do not believe that this simplifying assumption is too restrictive, it is
rather done as a matter of simplifying notations and statements. This existence result ensues
from asymptotics at high and low frequencies and continuity in the frequency variable. These
asymptotics are proved using variational formulations and boundary Dirichlet to Neumann
operators which involve rather delicate manipulations of series of Hankel functions.

The first part of the appendices is about Cα regularity results for single and double layer
potentials. These kinds of results are certainly standard, however, we have not found in the
literature the exact case that we wanted to cover: Cα regularity all the way to the boundary
for a double-layer potential defined on the C2 boundary of a bounded domain in R2 (most
texts focus exclusively on the three dimensional case, or are merely on Cα continuity on the
boundary, or on the case where that boundary is only approached in a normal direction).
In the end we provide our Matlab code for the cases of a city with non-identical buildings,
both free-space and periodic, and Maple code for calculation of the particular limits we use
during the periodic model derivation.
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Chapter 1

City-Effect Seismic Problem

1.1 Introduction

Seismic vibrations of the earth may impact structures built on its surface, and throughout
history people have experienced how destructive earthquakes can be. This phenomenon is
called “soil-structure interaction”. The fact that structures, in their turn, can cause or alter
earth vibration is subtle and much less noticeable, and only recently has evidence been found
to support this. Several cases are stated in [2].

In 1970 vibrations of the Millikan library on the Caltech campus caused by roof actuators
were registered by seismographs located a few kilometers away (actually, there were several
testings, the last one in 2002, see [4]). Several times a shock wave from a space shuttle which
was entering the atmosphere was recorded by different seismic networks near Edwards Air
Force Base (Columbia, 1989; Atlantis, 1991; Discovery, 1991; see [19]). In particular, a shock
wave from the shuttle Columbia hit high buildings in Los Angeles and induced seismic waves
which were recorded by stations in Pasadena, CA (the distance is about 15 kilometers).
During the terrorist attacks against the Twin Towers of the World Trade Center in New
York in 2001 the impact was felt several tens of kilometers away. This phenomenon is called
structure-soil interaction. All these events were possible because the natural frequencies of
the structures happened to be very close to the frequencies of the soil layers in these areas.

A more complicated phenomenon occurred in Sweden, when the audience of a rock con-
cert at the Ullevi stadium in Gothenburg started to jump in accord with the beat. Resulting
waves transmitted to the soil, were trapped in it, and propagated back as the surface waves.
These waves in turn, resonating with the crowd jumping, made the stadium shake (see [11]).

The most significant observation was made during destructive Michoacan earthquake in
Mexico city in 1985 (see, for example, [17]). The classical computational methods failed to
explain all the features of the seismic records. This case led Wirgin and Bard in [31] to
suggest that “the ground motion is significantly contaminated in the immediate vicinity of a
building”, because Mexico City is a densely urbanized area. Bard et al. showed experimen-
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tally in [2] that “the idea itself is not stupid, [...] the buildings do talk to each other through
the ground.” This is called “city-effect”.

One of the crucial common factors for all these observations was that the frequency of
the structures coincided with the frequency of the soil layers. Our main objective in this
thesis will be studying city frequencies.

The following section is a summary of [15]. It describes a model for the city-effect
problem and a solution algorithm introduced by Ghergu and Ionescu (2009). This model
deals with cities of finite size with identical evenly spaced buildings. Here we will briefly
discuss the statement of the physical problem and the associated spectral problem. The
mathematical method of its solution will be presented in Chapter III.
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1.2 Cities with a finite number of equal-sized, uni-

formly spaced, buildings

Fig. 1.1: Geometrical model of a city.

1.2.1 Physical model

We consider soil as an elastic half-space Ω×R, where Ω = R× (0,∞). A city, consisting
of N buildings of width 2lb and height h each, and the distance between two consecutive
buildings is space. The rigid foundations of the buildings are located along the x-axis and
denoted as Γj = [aj, bj]× 0 in Ω. Now, let us denote

� Γ =
⋃N
j=1 Γj, the set of foundations;

� Γfree = R× 0\Γ, the stress free soil boundary;

� ~w =
(
0, 0, w(t, x, y)

)
, the displacement field; anti-plane shearing is assumed in this

model.

Other physical parameters of the buildings and soil are:

� ρ, ρb - soil and building mass densities;

� S, Sb - soil and building shear rigidities;

� β =
√
S/ρ, βb =

√
Sb/ρb - soil and building shear velocities;

� uj(t) - the displacement of the rigid building foundation Γj;
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� vj(t) - the displacement of the top of the jth building;

� m1, m0 - the masses of the top and of the foundation correspondingly;

� Rj(w) - the soil force acting on the foundation Γj.

Fig. 1.2: The displacements of the city buildings.

Using fundamental laws of solid physics, we obtain the following equations:

ρẅ(t) = S∆w(t) in Ω× R, (1.1)

w(t, x, 0) = uj(t) ∀(x, 0) ∈ Γj,
∂w

∂y
(t, x, 0) = 0 ∀(x, 0) ∈ Γfree, (1.2)

m1v̈j(t) = −k(vj(t)− uj(t)), (1.3)

Rj(w) =

∫
Γj

S
∂w

∂y
(s, 0)ds, (1.4)

m0üj(t) =

∫
Γj

S
∂w

∂y
(t, s, 0)ds+ k(vj(t)− uj(t)). (1.5)

Here (1.1) is the wave equation for the displacement; (1.2) shows that the displacement is
constant for each rigid foundation and the space between the buildings is stress free; (1.3)
and (1.5) are the second Newton law for the buildings’ tops and foundations.
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1.2.2 The associated spectral problem

We are interested in time harmonic solution for the system (1.1)-(1.5):

w(t, x, y) = Φ(x, y)e−iµt. (1.6)

Here Φ : Ω → R represents the soil displacement; µ2 > 0 is the related frequency. Let us
denote α, η ∈ RN as the displacements of the foundations and the tops of the buildings
correspondingly. After performing the necessary differentiation in (1.1)-(1.5), we obtain the
corresponding eigenvalue problem:

−S∆Φ = ρµ2Φ in Ω, (1.7)

k(η − α) = µ2m1η, R(Φ)− k(η − α) = µ2m0α, (1.8)

Φ = αj on Γj,
∂Φ

∂y
= 0 on Γfree. (1.9)

The last step is the non-dimensionalization of the problem above. We introduce a charac-
teristic length l. The non-dimensional spatial coordinates and non-dimensional frequency
are:

x
′
=
x

l
, y

′
=
y

l
, ξ = µ

l

β
, (1.10)

Notice, that we will omit primes and write x and y in future, but these are the non-
dimensional coordinates. Sets Ω, Γ, Γfree change accordingly, but we will keep the nota-
tion. The non-dimensional city parameters are:

γb =
m1

m0

, fb =
lb
h
, cb =

lb
l
, r =

ρb
ρ
, b =

βb
β
. (1.11)

We set up

p(ξ2) = c2
bξ

2 − b2f 2
b , q(ξ2) =

2rc2
bξ

2

fb

(
c2
bξ

2 − γb + 1

γb
p(ξ2)

)
; (1.12)

we can calculate α, η as

αj = Φ(x, 0) for (x,0) ∈ Γj, ηj = −b
2f 2
b αj

p(ξ2)
.

Finally, we are getting the following non-linear eigenvalue problem:

∆Φ + ξ2Φ = 0 in Ω, (1.13)

∂Φ

∂y
= 0 on Γfree, (1.14)

q(ξ2)Φ(x, 0) = p(ξ2)

∫
Γj

∂Φ

∂y
(s, 0)ds for (x, 0) ∈ Γj, 1 ≤ j ≤ N. (1.15)

Our main objective is to find values of the non-dimensionalized frequency ξ for which
system (1.13)-(1.15) will be solvable. In Chapter III we will describe the mathematical
solution of this problem and its numerical implemetation, both given by Ghergu and Ionescu.
Then we will modify the model to extend it to a wider variety of city types and to improve
the speed and the accuracy of the numerical algorithm.
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Chapter 2

Helmholtz Equation in 2-D. Periodic
Green’s Function

In this chapter we develop numerical tools to work with the city-effect problem. For its
solution we need to calculate a periodic Green’s function for a range of arguments. The fun-
damental solution of the Helmholtz equation in periodic domains is a well-known function,
we present it in Section 2.1. However, its standard form is hardly applicable numerically,
because of its extremely slow rate of convergence. We will study two other representations
of the periodic Green’s function in Sections 2.2 and 2.3, and will work with them later in
Chapter III. Additionally, we will calculate its gradient in Section 2.4. It is not required for
the present city-effect model, but it is an interesting problem by itself, and we believe it will
be useful for future work on the subject. In the final section of this chapter, an example will
be solved to check the accuracy of our derivations and numerics.

2.1 Fundamental solution of the Helmholtz equation

The“city-effect” phenomenon involves a scattering of seismic waves in a viscoelastic
medium. The Helmholtz equation represents the time-independent form of a corresponding
partial differential equation. In this section we will assume that we have an unbounded
region in 2-D. Let us assume ζ = (x, y), ζ0 = (x0, y0) ∈ R2; we will define r = |ζ − ζ0| =∣∣(x, y)− (x0, y0)

∣∣. The Green’s function will satisfy

(∆ + κ2)Gsp(ζ, ζ0) = 0, ζ 6= ζ0, (2.1)

Gsp(ζ, ζ0) ≈ 1

2π
ln r−1, as r → 0. (2.2)

Since we are interested in outgoing waves, function G should also subject to a Sommerfeld
radiation condition. In 2-D it takes the form

∂Gsp

∂r
− iκGsp = o(r−1/2), as r →∞. (2.3)
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In the case when there is no periodicity, which we call the “free-space” case, the fundamental
solution is (A.17), as is mentioned in Section A.3. However, the scatterers in our problem
are the buildings of a city. Eventually we want to assume that there exists some periodic
pattern, which means periodicity in one variable for the Green’s function. We notice that
in this case condition (2.3) is not valid. Let us suppose that the periodicity is in the second
coordinate, and the period is d, such that

G
(
x, y, x0, y0

)
= G

(
x, y + nd, x0, y0 +md

)
for n, m ∈ Z. Then, informally

G(ζ, ζ0) =
i

4

∞∑
m=−∞

H
(1)
0 (κrm), (2.4)

where
rm =

∣∣(x, y)− (x0, y0 +md)
∣∣ =

√
(x− x0)2 + (y − y0 −md)2, m ∈ Z, (2.5)

solves
(∆ + κ2)G(ζ, ζ0) = 0, ζ 6= ζ0. (2.6)

This is the standard form, but it is not suitable for use computationally, because (2.4)

converges very slowly (like
∞∑

m=−∞

m−1/2eimθ). For example, if the infinite series (2.4) is

approximated by a sum with index from −104 to 104, we will not obtain even a second
decimal digit precision. We will consider two other representations below, and they will be
used in our numerical simulations.
Remark 2.1. The representations we use here are taken from [23]. The formulas in that
paper depend on parameter β which characterizes the incident wave. In our work β = 0, that
is why all the formulas appear without a eimβd factor.

2.2 Spectral form of the periodic Green’s function

In this section we will introduce another form of the periodic Green’s function. In the
literature it is often referred to as the spectral representation, see [23]. Here we will show that
it is, indeed, a fundamental solution of the Helmholtz equation in periodic two-dimensional
domains.

For simplicity we first assume d = 1. Set

γm =

{√
4π2m2 − κ2, if 4π2m2 − κ2 > 0

−i
√
κ2 − 4π2m2, otherwise

(2.7)
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Here we assume that κ is such that for every integer m, γm is non zero. The case where γm
may be zero is beyond the scope of this thesis. Set

G1(x, y, x0, y0) =
∞∑

m=−∞

1

2γm
e−γm|x−x0|e2iπm(y−y0), (2.8)

Proposition 2.2. The series in (2.8) converges absolutely for all x 6= x0. G1 is locally
Lebesgue integrable. More precisely, G1 satisfies the estimate

|G1(x, y, x0, y0)| ≤ C − 1

2π
ln (1− e−2π|x−x0|), (2.9)

where the constant C depends only on the wave number κ.

Proof:
Set M =

[ κ
2π

]
+ 1, where [t] is the integer part of t ∈ R. Note that γm is real if |m| ≥ M ,

and imaginary otherwise; m −M < m − κ

2π
; also, if |m| ≥ M , then κ < 2π|m|, so that

0 < 2π|m| − κ <
√

4π2|m|2 − κ2.∣∣G1(x, y, x0, y0)
∣∣ ≤ ∞∑

m=−∞

∣∣∣∣ 1

2γm
e−γm|x−x0|e2iπm(y−y0)

∣∣∣∣ =
∞∑

m=−∞

1

2|γm|
∣∣e−γm|x−x0|∣∣ =

∑
|m|<M

1

2
√
κ2 − 4π2m2

+
∑
|m|≥M

e−
√

4π2m2−κ2|x−x0|

2
√

4π2m2 − κ2
≤

C +
∑
m≥M

e−(2πm−κ)|x−x0|

2πm− κ
<

C +
e−(2πM−κ)|x−x0|

2πM − κ
+

∑
m≥M+1

e−2π(m−M)|x−x0|

2π(m−M)
≤

C +
∑
m≥1

e−2πm|x−x0|

2πm
= C − 1

2π
ln
(
1− e−2π|x−x0|

)
Here we used the Taylor series of the logarithmic function. Notice, that C depends on M
only, which, in its turn, depends only on κ. Estimate (2.9) clearly implies that G1 is locally
integrable. �
Remark 2.3. It can be shown that (2.8) is conditionally convergent when x = x0 and y 6= y0.
In our work, however, we will use a different Green’s function representation in this case.

Proposition 2.4. Let function G1(x, y, x0, y0) be defined as in (2.8). Then it is a funda-
mental solution of the Helmholtz equation, that is,∫ 1

0

∫ ∞
−∞

G1(x, y, x0, y0)(∆ + κ2)ϕ(x, y)dxdy = ϕ(x0, y0), (2.10)

where ϕ(x, y) is a test function with compact support in (−∞,∞)× (0, 1).
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Proof:
Let

g(m)(x, y, x0, y0) =
1

2γm
e−γm|x−x0|e2iπm(y−y0), (2.11)

so that G1(x, y, x0, y0) =
∞∑

m=−∞

g(m)(x, y, x0, y0). We will omit (x, y, x0, y0) for simplicity.

Each function g(m) is in C∞
(
(−∞, x0) ∪ (x0,∞)

)
with respect to the variable x, and in

C∞(R) with respect to variable the y (though here we are interested in just two continuous

derivatives for each variable). We will denote g
(m)+
x , g

(m)+
xx , g

(m)−
x , g

(m)−
xx right and left

derivatives at x = x0 respectively. We need to calculate the first derivatives:

g(m)+
x = −1

2
e−γm(x−x0)e2iπm(y−y0), g(m)−

x =
1

2
eγm(x−x0)e2iπm(y−y0)

One more fact we will use is that ϕ has a compact support, from which we deduce lim
x→±∞

ϕ =

lim
x→±∞

ϕx = 0. Keeping all the above in mind, we proceed to integrate by parts:∫ ∞
−∞

gmϕxxdx =

∫ x0

−∞
g(m)ϕxxdx +

∫ ∞
x0

g(m)ϕxxdx = g(m)ϕx
∣∣x0
−∞ −

∫ x0

−∞
g(m)−
x ϕxdx +

g(m)ϕx
∣∣∞
x0
−
∫ ∞
x0

g(m)+
x ϕxdx = − g(m)−

x ϕ
∣∣x0
−∞ +

∫ x0

−∞
g(m)−
xx ϕdx− g(m)+

x ϕ
∣∣∞
x0

+

∫ ∞
x0

g(m)+
xx ϕdx =

−1

2
eγm(x−x0)e2iπm(y−y0)ϕ

∣∣∣∣x0
−∞
− 1

2
e−γm(x−x0)e2iπm(y−y0)ϕ

∣∣∣∣∞
x0

+

∫ x0

−∞
g(m)−
xx ϕdx+

∫ ∞
x0

g(m)+
xx ϕdx =

e2iπm(y−y0)ϕ(x0, y) +

∫ x0

−∞
g(m)−
xx ϕdx+

∫ ∞
x0

g(m)+
xx ϕdx.

Analogously,

∫ 1

0

g(m)ϕyydy =

∫ 1

0

g(m)
yy ϕdy.

Now, since (∆ + κ2)g(m) = 0:∫ 1

0

∫ ∞
−∞

g(m)(∆ + κ2)ϕdxdy =

∫ 1

0

∫ ∞
−∞

g(m)(ϕxx + ϕyy)dxdy +

∫ 1

0

∫ ∞
−∞

κ2g(m)ϕdxdy =

∫ 1

0

e2iπm(y−y0)ϕ(x0, y)dy +

∫ 1

0

(∫ x0

−∞
(∆ + κ2)g(m)ϕdx+

∫ ∞
x0

(∆ + κ2)g(m)ϕdx

)
dy =

∫ 1

0

e2iπm(y−y0)ϕ(x0, y)dy.

Using Fourier series representation, ϕ(x, y) =
∞∑

n=−∞

an(x)e−2iπny, where this sum is con-

vergent in L2
(
y ∈ (0, 1)

)
for a fixed x ∈ R. Thus,
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∫ 1

0

e2iπm(y−y0)

(
∞∑

n=−∞

an(x0)e−2iπny

)
dy =

∞∑
n=−∞

an(x0)

∫ 1

0

e−2iπmy0e2iπy(m−n)dy =

am(x0)e−2iπmy0 +
∞∑

n=−∞,n6=m

an(x0)

∫ 1

0

e2iπy(m−n)dy = am(x0)e−2iπmy0 .

We have thus proved that

∞∑
m=−∞

∫ 1

0

∫ ∞
−∞

g(m)(∆ + κ2)ϕdxdy = ϕ(x0, y0),

and there only remains to argue that the infinite sum and the double integral in the left hand
side of that identity can be interchanged. According to Fubini’s theorem this is possible if∫ 1

0

∫ ∞
−∞

∞∑
m=−∞

|g(m)||(∆ + κ2)ϕ|dxdy <∞ (2.12)

Looking back into the proof of Proposition 2.2 we see that

∞∑
m=−∞

|g(m)| ≤ C − 1

2π
ln
(
1− e−2π|x−x0|

)
Since ϕ is smooth and has compact support, estimate (2.12) is now clear. �

Remark 2.5. Both propositions 2.2 and 2.4 are valid for any positive period d:

G(x, y, x0, y0) =
1

2d

∞∑
m=−∞

1

2γm
e−γm|x−x0|e2iπm(y−y0)/d, (2.13)

where

γm =

{√
4π2m2/d2 − κ2, if 4π2m2/d2 − κ2 ≥ 0

−i
√
κ2 − 4π2m2/d2, otherwise.

(2.14)

For our numerical application we want to reduce the number of input parameters as
much as we can. Keeping remark 2.5 in mind, in the programming code we will use period
d = 1 only. The following lemma justifies our choice.

Lemma 2.6. Let function G(x, y, x0, y0) be a solution of (2.6) in a periodic domain with
period d; let x̃ = x/d, ỹ = y/d, x̃0 = x0/d, ỹ0 = y0/d, and G̃(x̃0, ỹ0) = G(x0, y0). Then
∆x̃0,ỹ0G̃+ (κd)2G = 0, if (x̃0, ỹ0) 6= (x̃, ỹ), in a periodic domain with period 1.

Proof:
We notice that function G̃ is periodic with period 1; for m ∈ Z

G̃(x̃, ỹ, x̃0, ỹ0 +m) = G
(
dx̃, dỹ, dx̃0, d(ỹ0 +m)

)
= G(dx̃, dỹ, dx̃0, dỹ0) = G̃(x̃, ỹ, x̃0, ỹ0).

13



Then

∆x̃0,ỹ0G̃ =
1

d2
∆x0,y0G̃,

and it is obvious that G̃ solves the Helmholtz equation with wave number κd in terms of
new variables. �

For example, if we want to calculate periodic Green’s function green(M,d, kappa, x, y, ksi, eta)
(here M is the number of grid points, d is the period, kappa is the wavenumber, and
x, y, ksi, eta are the points) using our code, then

green(M,d, kappa, x, y, ksi, eta) = green(M, 1, kappa ∗ d, x/d, y/d, ksi/d, eta/d).

For numerical purposes (2.13) is much better than (2.4), and it gives a very rapid convergence

rate when |x − x0| >> 0, like the series C
∞∑

m=−∞

e−Km. But it is still slow for very small

|x − x0| and is not applicable at all when x = x0. We will need one more representation
which will be discussed in the next section.

2.3 Ewald’s method

The following form of the periodic Green’s function was originally devised by Ewald in
[12]. We will use the formulation given by Linton in [23], with the only difference that we
take it with the minus sign to be consistent throughout the thesis. Its derivation can be
found in [23, 29, 8], and here we introduce the result only. Let X = x − x0, Y = y − y0,
p = 2π/d, γm defined as in (2.14), and rm as in (2.5).

G(X, Y ) =
1

4d

∞∑
m=−∞

eipmY

γm

[
eγmXerfc

(
γmd

2a
+
aX

d

)
+ e−γmXerfc

(
γmd

2a
− aX

d

)]
+

1

4π

∞∑
m=−∞

∞∑
n=0

1

n!

(
κd

2a

)2n

En+1

(
a2r2

m

d2

)
,

(2.15)
where a is called “splitting parameter”,

erfc(z) =
2√
π

∫ ∞
z

e−t
2

dt (2.16)

is the complementary error function, and

En(z) =

∫ ∞
1

t−ne−ztdt (2.17)

is the exponential integral.
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Remark 2.7. Computation of the complementary error function deserves a special mention.
Currently, Matlab does not have a built-in function for z ∈ C. We could have used Maple
for the matter, but for the sake of uniformity we decided to code it in Matlab. For algorithm
details we refer to [25].

We would like to discuss briefly the rate of convergence of series (2.15). We notice that
when m is large, γm tends to p|m|. If we assume that z > 1 is purely real, then for the
complementary error function we have

erfc(z) ≤
∫ ∞
z

te−t
2

dt =
1

2
e−z

2

.

For the exponential integral, using formula 5.1.19 from [1], it follows

En(z) ≤ e−z

z + n− 1
.

Using these bounds and keeping only the dominant factors, we conclude that when all the
indices go to infinity, series (2.15) behaves as

C1

∞∑
m=−∞

e−C2m2

+ C3

∞∑
m=−∞

∞∑
n=0

1

n · n!

(κd
2a

)2n
e−C4m2

.

This is a significant improvement compared to C
∞∑

m=−∞

e−Km rate of convergence for (2.13)

(C and K are positive constants). Most importantly, if x 6= x0 are in (0, d), positive constants
C1, C2, C3, C4 are independent of |x− x0|.

The splitting parameter a is of a particular importance. Large values of a favor the
convergence of the second series of (2.15), while making the first one slowly convergent, and
visa versa. Discussion about the optimum splitting parameter can be found in [8].

Later we will consider the Neumann problem for the Helmholtz equation in a periodic
domain, and use periodic Green’s function to solve it. We will work on this sample problem
to check the accuracy of the numerical implementation of the introduced representations.
This will require some additional calculations.

As will be shown later in details, Nyström’s method uses limiting values of particular
parts of the Green’s function and its gradient as r0 → 0. That is why (2.4) minus the zeroth
term will be of interest in the periodic case. When r0 → 0, |x − x0| → 0 too, and this is

the time when we choose Ewald form. Our goal now is to rewrite
∑
m6=0

i

4
H

(1)
0 (κrm) in a form

similar to (2.15).

First, we notice that all the terms of (2.4), but zeroth, are nonsingular as r0 → 0. If
we subtract (A.17) from (2.15), the result will be nonsingular too. Let’s extract the only
singular part from (2.15). It is contained in the second series when m = n = 0; we use
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formula 5.1.11 from [1] to get

E1

(
a2r2

0

d2

)
= −

{
C + ln

a2r2
0

d2
+
∞∑
k=1

(−1)k

k · k!

(
a2r2

0

d2

)k}
. (2.18)

Formula 8.444 from [16] gives us the series representation for
i

4
H

(1)
0 (κr0):

i

4
H

(1)
0 (κr0) =

i

4

(
J0(κr0) + iY (κr0)

)
=
i

4
J0(κr0)− 1

4

{
2

π
(ln

κr0

2
+ C)J0(κr0)− 2

π

∞∑
m=1

am
(−1)m

(m!)2

(κr0

2

)2m
}
,

(2.19)

where am =
m∑
j=1

1

j
.

Finally, we substitute E1 in (2.15) by (2.18), and subtract (2.19). Logarithmic singularities
both in (2.18) and (2.19) will cancel each other, as expected:

∑
m 6=0

i

4
H

(1)
0 (κrm) =

1

4d

∞∑
m=−∞

eipmY

γm

[
eγmXerfc

(
γmd

2a
+
aX

d

)
+ e−γmXerfc

(
γmd

2a
− aX

d

)]
+

1

4π

∑
m6=0

∞∑
n=0

1

n!

(
κd

2a

)2n

En+1

(
a2r2

m

d2

)
+

1

4π

∞∑
n=1

1

n!

(
κd

2a

)2n

En+1

(
a2r2

0

d2

)
−

1

2π

{
(ln

κ

2
+ C)J0(κr0)−

∞∑
m=1

am
(−1)m

(m!)2

(κr0

2

)2m
}

+

1

4π

{
C + ln

a2

d2
+
∞∑
m=1

(−1)m

m ·m!

(
a2r2

0

d2

)m}
− i

4
J0(κr0)− 1

2π
ln r0 (1− J0(κr0)) .

(2.20)

We notice that lim
r0→0

rm = |m|d and conclude:

∑
m6=0

H
(1)
0 (κd|m|) =

2

id

∞∑
m=−∞

erfcγmd
2a

γm
+

1

iπ

∑
m6=0

∞∑
n=0

1

n!

(
κd

2a

)2n

En+1(a2m2)+

1

iπ

∞∑
n=1

1

n · n!

(
κd

2a

)2n

+
2

iπ
ln
κd

2a
− 1 +

C

iπ

(2.21)
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2.4 Gradient of the periodic Green’s function

We need a rapidly convergent summation formula for the gradient of the periodic Green’s
function too. We have to calculate partial derivatives of the Green’s function, and some cor-
responding limits as r0 goes to zero.
To begin with, let us think of spectral form 2.13. Proposition 2.2 allows us termwise differ-
entiation of this series. By direct calculations, we get

∂G

∂x0

(X, Y ) =
1

2d

X

|X|

∞∑
m=−∞

e−γm|X|e2iπmY/d

∂G

∂y0

(X, Y ) =
1

2di

∞∑
m=−∞

2iπm

γmd
e−γm|X|e2iπmY/d

(2.22)

One more time we notice that we can not use this form when x = x0, because the series is
not differentiable with respect to x variable.
Ewald’s formula is more involved. First, we notice that the derivatives of the complimentary
error function 2.16 and the exponential integral 2.17 are, correspondingly,

∂

∂z
(erfc(z)) = − 2√

π
e−z

2

,

∂

∂z
(En(z)) =

∫ ∞
1

t−ne−zt(−t)dt = −
∫ ∞

1

t−(n−1)e−ztdt = −En−1(z).

Now, if we denote

λ+ =
γmd

2a
+
aX

d

λ− =
γmd

2a
− aX

d

17



the formula for the gradient of the Ewald’s form is calculated as follows:

∂G

∂x0

(X, Y ) =

1

4d

∞∑
m=−∞

eimpY

γm

[
− γmeγmXerfc(λ+) +

2a

d
√
π
eγmX−λ

2
+ + γme

−γmXerfc(λ−)−

2a

d
√
π
e−γmX−λ

2
−

]
+

1

4π

∞∑
m=−∞

∞∑
n=0

1

n!

(
κd

2a

)2n

En

(a2r2
m

d2

)2a2X

d2
=

1

4d

∞∑
m=−∞

eimpY
(
e−γmXerfc(λ−)− eγmXerfc(λ+)

)
+

a2X

2πd2

∞∑
m=−∞

∞∑
n=0

1

n!

(
κd

2a

)2n

En

(
a2r2

m

d2

)
∂G

∂y0

(X, Y ) =

1

4d

∞∑
m=−∞

(−imp)e
impY

γm

[
eγmXerfc(λ+) + e−γmXerfc(λ−)

]
+

a2

2πd2

∞∑
m=−∞

∞∑
n=0

1

n!

(
κd

2a

)2n

En

(
a2r2

m

d2

)
(Y −md)

(2.23)

Now we will have to calculate lim
r0→0
∇x0y0G(X, Y ).

Lemma 2.8. lim
r0→0
∇x0y0(G−Gsp) = 0.

Proof:
The lemma becomes obvious if we use form (2.4). By direct calculation, we get:

∂(G−Gsp)

∂x0

=
iκ

4

∑
m 6=0

H
(1)
1 (κrm)

x− x0

rm

∂(G−Gsp)

∂y0

=
iκ

4

∑
m 6=0

H
(1)
1 (κrm)

y − y0 −md
rm

.

Statement for ∂x0 follows from the fact that lim
r0→0

x− x0

rm
= 0 if m 6= 0. For the derivative

with respect to y0 variable we notice

lim
r0→0

y − y0 −md
rm

=
−md
|md|

=

{
−1, if m > 0

1, if m < 0.
(2.24)

�
Below we will apply all of our calculated results.
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2.5 Application to integral equations

In this section we will solve the Neumann problem for the Helmholtz equation in di-
mension 2 using Nyström’s method. We want to do this here mainly to check the efficiency
of our numerical methods for the different forms of periodic Green’s function, but we also
believe that this problem can be applied for future work on the city-effect model.

We start by briefly introducing Nyström’s method. We apply it to computing the nu-
merical solution of an interior Neumann problem for the Helmholtz equation, which is a
standard technique. Then, we solve the same problem, using the periodic Green’s function.
We do this to verify that we possess an efficient computation method and that we will be
able to rely on it when later in this thesis when we tackle computations pertaining to the
city-effect problem.

2.5.1 Nyström’s method

Nyström’s method is used for finding approximate solutions to integral equations. The
idea is to substitute an integral operator by quadrature rules, and then solve the resulting
linear system of equations. In our work, we apply it for an integral equation of the second
kind with singular kernels of the form(

Aϕ
)
(x) =

∫
∂D

ω
(
|x− y|

)
K(x,y)ϕ(y)dy, x ∈ ∂D ⊂ R2. (2.25)

Here ∂D is of class C2. The weight function ω : (0,∞) → R is assumed to be weakly
singular, i.e., it is continuous and satisfies |ω(t)| ≤Mtα−1, where t is the arclength, for some
positive constant M and α > 0. The remaining kernel K is continuous.
A sequence of quadrature rules(

Qng
)
(x) =

n∑
j=1

α
(n)
j (x)g(x

(n)
j ), x ∈ ∂D

is chosen to approximate the weighted integral(
Qg
)
(x) =

∫
∂D

ω
(
|x− y|

)
g(y)dy, x ∈ ∂D.

Then the operator from (2.25) is approximated by a sequence of numerical integral operators

(
Anϕ

)
(x) =

n∑
k=1

α
(n)
k (x)K(x,x

(n)
k )ϕ(x

(n)
k ), x ∈ ∂D.

As was pointed out in the previous section, we will have to deal with logarithmic singularities.
This is a well-known case. Let us consider an operator(

Anϕ
)
(x) =

1

2π

∫ 2π

0

ln
(
4 sin2(

t− τ
2

)
)
K(t, τ)ϕ(τ)dτ, 0 ≤ t ≤ 2π (2.26)
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The kernel K is assumed to be continuous and 2π-periodic with respect to both variables.
To approximate this operator, Kress constructed the following numerical quadratures in [21]:

(
Qng

)
(t) =

2n−1∑
j=0

R
(n)
j g(tj) (2.27)

with the quadrature points tj = jπ/n and the quadrature weights

R
(n)
j (t) = − 1

n

{
n−1∑
m=1

1

m
cosm(t− tj) +

1

2n
cosn(t− tj)

}
, 0 ≤ j ≤ 2n− 1. (2.28)

From Theorem 11.7 from [21] it follows that these quadratures give exponential rate of
convergence, if the boundary ∂D is real analytic.

2.5.2 The free-space case

The interior Neumann problem for the Helmholtz equation is stated as follows:∆u+ κ2u = 0 in D,
∂u

∂ν
= g on ∂D,

(2.29)

where D ⊂ R2 is simply connected, bounded domain, and ν is an outward normal to the
boundary ∂D.
In Chapter 12 of [21], Kress illustrates Nyström’s method by solving (2.29) in the open unit
disk. We will elaborate this example and enlarge the set of possible domain geometries. Then
we will compare the numerical results for different domains and different wave numbers. We
will apply Nyström method, as Kress did.
It can be shown (for details we refer to [9]) that the unknown boundary values ϕ = u on ∂D
of the solution of the interior Neumann BVP satisfies the integral equation

ϕ(x) + 2

∫
∂D

ϕ(y)
∂Φ(x,y)

∂ν(y)
ds(y) = 2

∫
∂D

g(y)Φ(x,y)ds(y), for x ∈ ∂D, (2.30)

where Φ(x,y) is a fundamental solution of the Helmholtz equation (since we do not specify
if it is free-space or periodic yet, we denote it Φ).
We introduce the boundary parameterization s(·) =

(
s1(·), s2(·)

)
, such that for x,y ∈ ∂D

x(t) = s(t) =
(
s1(t), s2(t)

)
, t ∈ [0, 2π)

y(τ) = s(τ) =
(
s1(τ), s2(τ)

)
, τ ∈ [0, 2π).

We assume that for this parameterization the outward normal to the boundary at the point
y is given by

ν(τ) =
(
− ṡ2(τ), ṡ1(τ)

)
.
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Using this parameterization, (2.30) is transformed into

ϕ̃(t)− 1

2π

∫ 2π

0

K(t, τ)ϕ̃(τ)dτ =
1

2π

∫ 2π

0

L(t, τ)g̃(τ)dτ (2.31)

in order to match the form of (2.26) (we omit tildes in future).
The kernels in the last integral equation are singular for t = τ , and this is where Nyström’s
method comes into play. To apply it we want split the integral kernels K(t, τ) and L(t, τ)
into

K(t, τ) = K1(t, τ) ln
(
4 sin2 t− τ

2

)
+K2(t, τ),

K(t, τ) = L1(t, τ) ln
(
4 sin2 t− τ

2

)
+ L2(t, τ),

where K1, K2, L1, L2 are all real analytic functions if ∂D is such that s1 and s2 are real
analytic. Then the parts K2 and L2 are handled by regular mid-point rule, while K1 and L1

are treated with the help of quadratures (2.27). This is exactly how we get the linear system

ϕj −
2n−1∑
k=0

{
R

(n)
|j−k|K1(tj, tk) +

1

2n
K2(tj, tk)

}
ϕk

=
2n−1∑
k=0

{
R

(n)
|j−k|L1(tj, tk) +

1

2n
L2(tj, tk)

}
g(tk),

(2.32)

where the grid points tj = jπ/n, 0 ≤ j ≤ 2n−1, and quadraters R
(n)
|j−k| are defined at (2.27).

Its solution {ϕj} will be an approximate solution of (2.31) on the boundary ∂D. We expect
exponential rate of convergence with respect to number of grid points 2n, as long as x and
y are real analytic, see [21]. This will be illustrated later by our numerical results.

Going back to our particular problem (2.31), we calculate kernels K and L. Notice, that

ν(τ) =
(
− ṡ2(τ), ṡ1(τ)

)
is the normal (not unit!) directed into the exterior of D, such that

∂Φ(x(t),y(τ))

∂ν
= ∇yΦ(x(t),y(τ)) ·

(
− ṡ2(τ), ṡ1(τ)

)√(
ṡ1(τ)

)2
+
(
ṡ2(τ)

)2
.

When we introduce the parameterization and go from (2.30) to (2.31),

ds
(
y(τ)

)
=

√(
ṡ1(τ)

)2
+
(
ṡ2(τ)

)2
dτ.

Now, it is obvious that
K(t, τ) = −4π∇yΦ(x(t),y(τ)) · ν(τ) (2.33)
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We will reserve
√(

ṡ1(τ)
)2

+
(
ṡ2(τ)

)2
on the right side for the boundary condition g, and set

L(t, τ) = 4πΦ(x(t),y(τ)). (2.34)

Finally, in the free-space case fundamental solution Φ is defined by (A.17). We set up K1

and L1, and calculate K, K2, L, L2 as follows:

K
(
x,y

)
=

iπκ∣∣x− y
∣∣H(1)

1 (κ|x− y|)
(
y− x

)
· ν(τ),

L
(
x,y

)
= iπH

(1)
0 (κ|x− y|) ,

K1

(
x,y

)
= κ|x− y| · J1(κ|x− y|) · (x− y) · ν(τ)

|x− y|2
,

L1

(
x,y

)
= −J0(κ|x− y|),

K2

(
x,y

)
= K

(
x,y

)
−K1

(
x,y

)
· ln(4 sin2 t− τ

2
),

L2

(
x,y

)
= L

(
x,y

)
− L1

(
x,y

)
· ln(4 sin2 t− τ

2
).

(2.35)

As we said, kernels K1, K2, L1, L2 are real analytic if boundary ∂D is real analytic. But
we can not use these formulas when t = τ , that is why we have to calculate the limit values.
Since J0(0) = 1, J1(0) = 0, we get

lim
t→τ

K1(t, τ) = 0,

lim
t→τ

L1(t, τ) = −1.

Using the fact that

lim
z→0

(
H

(1)
0 (z)− 2i

π
ln zJ0(z)

)
=

2i

π

(
C − ln 2

)
+ 1, (2.36)

where C is the Euler’s constant, we deduce

lim
τ→t

L2(t, τ) = lim
τ→t

(
iπH

(1)
0 (κ|x− y|) + J0(κ|x− y|) ln

(
4 sin2 t− τ

2

))
= lim

τ→t
iπ

(
H

(1)
0 (κ|x− y|)− 2i

π
ln
(
κ|x− y|

)
J0

(
κ|x− y|

))
+ lim

τ→t
ln

2
∣∣ sin t−τ

2

∣∣
κ|x− y|

= −2 ln
κ

2
− 2C + iπ + ln lim

τ→t

4 sin2 t−τ
2

|x− y|2
(2.37)

From

lim
z→0

zH
(1)
1 (z) =

2

iπ
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we calculate

lim
τ→t

K(t, τ) = lim
τ→t

iπκ|x− y|H(1)
1

(
κ|x− y|

)(y− x) · ν(τ)

|x− y|2
= 2 lim

τ→t

(y− x) · ν(τ)

|x− y|2
(2.38)

At this point we notice that limits lim
t→τ

(y− x) · ν(τ)

|x− y|2
and lim

t→τ

4 sin2 t−τ
2

|x− y|2
exist for the smooth

boundary ∂D, and depend on D only. They can be computed by hand for any particular
parameterization, but since we tried many different domains, to save time we wrote a short
code which calculates them in Maple.

The last limit we have to find is of K2. Again, for a smooth boundary lim
τ→t

|x− y|
|t− τ |

<∞, and

lim
τ→t

{
|x− y| · ln

∣∣ sin t− τ
2

∣∣} = lim
τ→t

{
|x− y|
|t− τ |

· |t− τ |∣∣ sin t−τ
2

∣∣ · ln ∣∣ sin t− τ2

∣∣ · ∣∣ sin t− τ
2

∣∣} = 0.

This shows that

lim
τ→t

K2(t, τ) = lim
τ→t

K(t, τ) = 2 lim
τ→t

(y− x) · ν(τ)

|x− y|2
. (2.39)

There is a connection between the latter limit and the boundary’s curvature, and we will
show it now. In terms of our parameterization, the curvature is defined (see [3]) as

Curv(τ) =
‖ṡ(τ)× s̈(τ)‖
‖ṡ(τ)‖3 =

| − s̈1(τ)ṡ2(τ) + ṡ1(τ)s̈2(τ)|
|ṡ(τ)|3

(2.40)

Using Taylor series, for the numerator of (2.39) we obtain

(y− x) · ν(τ) =

(
ṡ(τ)(t− τ) +

1

2
s̈(τ)(t− τ)2 +

(
O1((t− τ)3), O2((t− τ)3)

))
·
(
− ṡ2(τ), ṡ1(τ)

)
=

1

2

(
− s̈1(τ)ṡ2(τ) + ṡ1(τ)s̈2(τ)

)
(t− τ)2 +O(τ)

(
(t− τ)3

)
.

From the mean-value theorem, the denominator∣∣(s)(t)− (s)(τ)
∣∣2 =

∣∣(ṡ1(η1), ṡ2(η2))
∣∣2 · |t− τ |2.

where η1, η2 are between t and τ . As t → τ , both η1, η2 → τ ,
∣∣(ṡ1(η1), ṡ2(η2))

∣∣ → |ṡ(τ)|,
and we can rewrite (2.39) as

lim
t→τ

K2(t, τ) =
−s̈1(τ)ṡ2(τ) + ṡ1(τ)s̈2(τ)

|ṡ(τ)|2
+D,

where D is a constant which depends on τ . It is easy to see that

Curv(τ) =

∣∣ lim
t→τ

K2(t, τ)−D
∣∣

|ṡ(τ)|
.
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Now we get back to our problem to set up boundary conditions, and this finishes our
analytical preparations. For a numerical example, we will consider a case with a known exact
solution on the boundary. We compute its normal derivative on the boundary to complete
the Neumann problem statement. This way we can evaluate the accuracy of our approximate
solution when we find it. Let

u(x) = Y0

(
κ|x− x0|

)
, x ∈ ∂D, (2.41)

where Y0 is the Neumann function of order zero, and x0 = (q, 0) with q > 1, such that

g(y)ds(y) =
κY1

(
κ|y− x0|

)
|y− x0|

(x0 − y) · ν(τ)dτ. (2.42)

Here the part we reserved earlier canceled out with |ν|.
We solve the system (2.32) to find the approximate solution ϕj at the grid points.

Then we can calculate the exact solution uj at the same points, and find the relative error
‖uj − ϕj‖
‖uj‖

, where we mean ‖·‖L∞ .

The results of our numerical simulations are presented in Tables 2.1 and 2.2. We vary the
wavelength κ to illustrate the computational problem of large and very small frequencies. In
each case we observe the expected exponential rate of convergence (see [21]) for the relative
error as a function of the number of grid points. And of course, domain geometry also
influences the accuracy of our method. The presence of the limits (2.37) and (2.39) implies
that the boundary’s curvature matters. It can be seen that the lasso-shaped geometry is
harder to handle which is likely due to higher values for the curvature. Figure 2.3 graphs the
curvatures of our two boundaries for t ∈ [0; 2π]. Here we used formula (2.40). The maximum
for the kite-shaped domain is only 50, while in case of the lasso-shaped domain the curvature
attains 700 at its peak.

Remark 2.9. When we know the solution u on the boundary ∂D, we can apply Green’s
formula, or the Helmholtz representation, to find u in D

u(x) =

∫
∂D

{
∂u

∂ν
(y)Φ(x,y)− u(y)

∂Φ(x,y)

∂ν(y)

}
ds(y), x ∈ D. (2.43)

2.5.3 The periodic case

We can now proceed to the periodic domain case, which is, of course, more involved.
At this point we have everything ready, and the only things we have to do is to change the
domain of (2.29) and calculate new kernels. The domain D is defined as follows:

D =
∞⋃

n=−∞

Dn, ∂Dn =
{(
s1(t), s2(t) + n

)
, t ∈ [0, 2π)

}
, n ∈ Z, (2.44)
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Fig. 2.1: Kite-shaped:
(
s1(t), s2(t)

)
=
(
0.3 cos t+ 0.2 cos(2t), 0.4 sin t+ 0.5

)
2n error 2n error
8 0.03143304 8 4.50012988

κ = 1 16 0.01900763 κ = 20 16 1.77371600
q = 2 32 0.00011168 q = 2 32 0.36939184

64 0.00000000 64 0.00004393
8 0.26655901 8 1.06178163

κ = 0.1 16 1.74291470 κ = 10−3 16 0.98121367
q = 2 32 0.00411267 q = 2 32 0.93568783

64 0.00000016 64 0.00080421

Tab. 2.1: Numerical results for a kite-shaped domain (free-space case).

Fig. 2.2: Lasso-shaped:
(
s1(t), s2(t)

)
=
(
0.4 cos t− 0.16 sin t− 0.2 sin(2t), 0.4 cos t+0.2 sin t+0.5

)
where each Dn is compact, ∂Dn is of class C2. We point out that this domain is periodic
with respect to second variable, and its period is d = 1.

The difference in the kernels is caused by the periodic Green’s function (2.4), which is
the fundamental solution in this case. Kernels K and L are defined by (2.33) and (2.34)
correspondingly, where Φ = G is the periodic Green’s function. We will not provide the
exact formulas here, because we will use its different forms. As we noted before, the only
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2n error 2n error
16 7.53711645 32 2.02101627

κ = 1 32 1.04811013 κ = 20 64 0.04786721
q = 2 64 0.01733972 q = 2 128 0.00028352

128 0.00009830 256 0.00000001
16 0.90874789 32 0.97348623

κ = 0.1 32 0.82196203 κ = 10−3 64 0.97196461
q = 2 64 0.13985500 q = 2 128 0.79337920

128 0.00084181 256 0.00015702

Tab. 2.2: Numerical results for a lasso-shaped domain (free-space case).

Fig. 2.3: Graphs of the curvatures for kite-shaped (left) and lasso-shaped (right) domains;
t ∈ [0; 2π].
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singularities are contained in H
(1)
0 and H

(1)
1 for L and K correspondingly, while the rest of

the series (2.4) and its gradient are real analytic. That is why we define K1, L1, K, and L
exactly in the same way we did for a free-space case at (2.35).

Now, that we know all the kernels, the last preparation step is to find the limits as τ → t.
By definition, limits for K1 and L1 are 0 and −1 correspondingly. Due to Lemma 2.8, limit
for K2 is the same as in free-space case too. The only difference we have for L2:

lim
t→τ

L2(t, τ) = iπ − 2C − 2 ln
κ

2
+ ln lim

t→τ

4 sin2 t−τ
2

|x− y|2
+ iπ

∑
m 6=0

H
(1)
0 (κd|m|).

The rest is the same as for the free-space case. We define the exact solution on the
boundary as in (2.41), solve the problem and compare it with the approximate numerical
solution. Tables 2.3 and 2.4 show the numerical results for kite- and lasso-shaped domains.
We notice that periodic case is more susceptible to the high-frequency problem than free-
space case.

2n error 2n error
8 0.03861128 8 1.47799492

κ = 1 16 0.01293977 κ = 4 16 0.06532509
q = 2 32 0.00008567 q = 2 32 0.00055507

64 0.00000000 64 0.00000054
8 0.19783325 8 2.49406221

κ = 0.1 16 0.08372353 κ = 10−3 16 0.97529350
q = 2 32 0.00050190 q = 2 32 0.05299212

64 0.00000002 64 0.00000222

Tab. 2.3: Numerical results for a kite-shaped domain (periodic case).

2n error 2n error
16 2.37524649 32 0.31698280

κ = 1 32 1.31084706 κ = 7 64 0.00945118
q = 2 64 0.01798966 q = 2 128 0.00206184

128 0.00010120 256 0.00021316
32 0.92469278 32 0.97353357

κ = 0.1 64 0.03219351 κ = 10−3 64 0.92871590
q = 2 128 0.00016927 q = 2 128 0.01595815

256 0.00000001 256 0.00000058

Tab. 2.4: Numerical results for a lasso-shaped domain (periodic case).
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Chapter 3

Solution of the City-Effect Problem

In this chapter we continue discussion of the city-effect problem. In Chapter I we de-
scribed the model which was introduced by Ghergu and Ionescu in [15]. It deals with cities of
finite size with equal evenly spaced buildings. Ghergu and Ionescu also developed a solution
algorithm, which opens our Chapter III. In Section 3.1 we solve this problem numerically
and collect data for frequencies of cities with different parameters. Using our numerical
implementation, we check that the model by Ghergu and Ionescu agrees with the real cases
in Subsection 3.1.3.

After this, we proceed with our contribution to the city-effect problem. In Section 3.2 we
assume that our city is infinite, and apply periodic Green’s function to solve the associated
problem. Our goal is to compare frequencies of both periodic and corresponding finite cities.
Next, in Section 3.3 we modify algorithm to solve for cities with non-homogeneous layout.
It is assumed that a city consists of periodic clusters of buildings. Again we consider finite
and infinite cities, and compare the results.

3.1 Mathematical solution

The system (1.13)-(1.15) has infinitely many solutions, but not all of them satisfy the
physical problem of structure-soil-structure interaction. To find the solutions related to the
presence of the buildings Ghergu and Ionescu introduced the following algorithm in [15].
Recalling the boundary conditions on the building foundations and outgoing Sommerfeld
radiation condition, we are interested in the solution of the Helmholtz equation with the
mixed boundary conditions:

∆Ψ + ξ2Ψ = 0 in Ω, (3.1)

Ψ = αj on Γj,
∂Ψ

∂y
= 0 on Γfree, (3.2)

∂Ψ

∂r
− iξΨ = o(r−1/2) as r = |x| → +∞. (3.3)
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We will denote solution of this system as Ψξ,α.
Remark 3.1. If function Ψ satisfies equations (3.1) and (3.3), then the following asymptotics
is valid:

Ψ = O(r−1/2), r → +∞. (3.4)

Now we introduce the operator T (ξ2) : RN → RN :

(
T (ξ2)α

)
j

= Re

∫
Γj

∂Ψξ,α

∂y
(s, 0)ds, 1 ≤ j ≤ N, α ∈ RN . (3.5)

We will be interested in its matrix in the natural basis of RN , whose entries will be defined
by

T (ξ2)kl = Re

∫
Γk

∂Ψξ,el

∂y
(s, 0)ds, (3.6)

where el is the lth basis vector in RN . The following fact was mentioned in [15] without
proof, which we introduce below.

Lemma 3.2. ∫
Γi

∂Ψj

∂y
ds =

∫
Γj

∂Ψi

∂y
ds,

where Ψi = Ψξ,ei and Ψj = Ψξ,ej are the system (3.1)-(3.3) solutions corresponding ith and
jth basis vectors in RN for a given ξ. By taking the real parts, it follows that matrix (3.6) is
symmetric.

Proof:
We notice that

Ψk(s, 0) =

{
1, if s ∈ Γk,

0, if s ∈ Γl, l 6= k.

Then it is enough to show that∫
Γi

Ψi
∂Ψj

∂y
ds =

∫
Γj

Ψj
∂Ψi

∂y
ds.

We consider the half-circle D = {(x, y) : x2 + y2 ≤ r2, y ≥ 0}. Due to Green’s theorem,∫
D

(Ψi∆Ψj −Ψj∆Ψi) dV =

∫
∂D

(
Ψi
∂Ψj

∂ν
−Ψj

∂Ψi

∂ν

)
ds.

Since both functions satisfy (3.1), the integral on the left side is zero. Let us denote ∂Dc
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half-circumference part of the boundary ∂D and I the line segment (x, 0) : |x| ≤ r. Then∫
Γi

Ψi
∂Ψj

∂y
ds−

∫
Γj

Ψj
∂Ψi

∂y
ds =

∫
I

(
Ψi
∂Ψj

∂ν
−Ψj

∂Ψi

∂ν

)
ds =

∫
∂Dc

(
Ψj
∂Ψi

∂ν
−Ψi

∂Ψj

∂ν

)
ds

=

∫
∂Dc

(
Ψj(iξΨi + o(r−1/2))−Ψi(iξΨj + o(r−1/2))

)
ds

=

∫
∂Dc

{
Ψjo(r

−1/2)−Ψio(r
−1/2)

}
ds = r ·O(r−1/2) · o(r−1/2),

if we assume r →∞. Taking the real parts, we see that
(
T (ξ)ei

)
j

=
(
T (ξ)ej

)
i
. �

Now we continue with explanation how we use this matrix. Since it is symmetric, it can
be diagonalized, and all its eigenvalues are real. For every ξ2 > 0 we can find the eigenvalues
of T (ξ2) defined in (3.6)

τ1(ξ2) ≤ τ2(ξ2) ≤ . . . ≤ τN(ξ2), (3.7)

and corresponding normalized eigenvectors θ1(ξ2), . . . , θN(ξ2).
Assume that for some i

p(ξ2)τi(ξ
2) = q(ξ2), (3.8)

where p and q are defined in (1.12). Since all the non-dimensional parameters (1.11) are the
same for all the buildings, then p(ξ2) and q(ξ2) do not depend on i. We find solution Ψξ,θi(ξ2)

of (3.1)-(3.3). Now, if we take Φ = ReΨξ,θi(ξ2), it will satisfy (1.15), and solve the system
(1.13)-(1.15).

To be more precise, we pick i and solve nonlinear equation (3.8) for the unknown ξ using
Matlab solver. We find Ψξ,θi(ξ2) which satisfies the system (3.1)-(3.3). Then Φ = ReΨξ,θi(ξ2)

will solve the non-linear eigenvalue problem (1.13)-(1.15).

The crucial step in this method is to solve the Helmholtz problem (3.1)-(3.3).

3.1.1 Solution of the Helmholtz equation

We will fix ξ2 > 0 and α ∈ RN , and look for a solution to (3.1) as a single-layer potential

Ψ(x, y) =

∫
Γ

G
(
ξ
√

(x− s)2 + y2
)
ψ(s)ds, (3.9)

where G is the fundamental solution of the Helmholtz equation in the half-plane

G(z) =
i

4
H

(1)
0 (z). (3.10)

As in [22], we assume that

ψ(s) =
ϕ(s)√

(s− aj)(bj − s)
, where s ∈ (aj, bj), 1 ≤ j ≤ N, (3.11)
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and ϕ is a continuous function. Our solution will look like

Ψ(x, y) =
i

4

N∑
j=1

∫ bj

aj

H
(1)
0 (ξ

√
(x− s)2 + y2)ψ(s)ds, (3.12)

Using proposition A.8, we have(
∂Ψ

∂y

)+

(s, 0) = −1

2
ψ(s) = −1

2

ϕ(s)√
(bj − s)(s− aj)

, for all aj < s < bj,

where we mean the right-hand derivative(
∂Ψ

∂y

)+

(s, 0) = lim
t→0+

∂Ψ

∂y
(s, t).

To employ the same numerical mesh for each building foundation Γj, we introduce a new
variable −1 ≤ t ≤ 1, and for every [aj, bj] we define a transformation such that:

s = gj(t) =
bj − aj

2
t+

bj + aj
2

, s ∈ [aj, bj]. (3.13)

In terms of ϕ and t we rewrite operator T :

(
T (ξ2)α

)
j

=
1

2

∫ 1

−1

ϕ
(
gj(t)

)
√

1− t2
dt. (3.14)

Using the first part of boundary conditions (3.2), we get N equations

i

4

N∑
j=1

∫ 1

−1

H
(1)
0 (ξ|x− gj(t)|)

ϕ
(
gj(t)

)
√

1− t2
dt = αk, 1 ≤ k ≤ N, x ∈ Γk. (3.15)

For a numerical solution we discretize each of N intervals [−1; 1] with grid points

x̄p = −1 +
2p− 1

2M
, 1 ≤ p ≤ 2M. (3.16)

Then, we get 2MN equations

i

4

N∑
j=1

∫ 1

−1

H
(1)
0

(
ξgkj(x̄p, t)

)ϕ(gj(t))√
1− t2

dt = αk, (3.17)

where 1 ≤ k ≤ N, 1 ≤ p ≤ 2M , and gkj(x, t) = |gk(x)− gj(t)|.
Function H

(1)
0 (z) is singular for z = 0; to deal with these singularities, we decompose it as

follows:
i

4
H

(1)
0 (z) = A0(z) ln

(z
2

)
+B0(z), (3.18)
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A0(z) = − 1

2π
J0(z)), where J0(z) is the Bessel function of the first kind and order zero, and

B0(z) =


i

4
H

(1)
0 (z) +

1

2π
J0(z) ln

(z
2

)
, if z 6= 0,

iπ − 2C

4π
, if z = 0.

(3.19)

C ≈ 0.5772156649015328 is the Euler constant. In order to approximate the integrals we
introduce the division points

t̄q = −1 +
q

M
, 1 ≤ q ≤ 2M. (3.20)

To find the approximation for the unknown function ϕ we propose to solve the system of
linear equations:

αk =
N∑
j=1

M∑
q=1

A0

(
ξgkj(x̄p, x̄q)

)√
1− x̄q

ϕ
(
gj(x̄q)

) ∫ t̄q

t̄q−1

ln
(
gkj(x̄p, t)

)
√

1 + t
dt

+
N∑
j=1

M∑
q=1

(
A0

(
ξgkj(x̄p, x̄q)

)
ln
ξ

2
+B0

(
ξgkj(x̄p, x̄q)

))∫ t̄q

t̄q−1

ϕ
(
gj(x̄q)

)
√

1− t2
dt

+
N∑
j=1

2M∑
q=M+1

A0

(
ξgkj(x̄p, x̄q)

)√
1 + x̄q

ϕ
(
gj(x̄q)

) ∫ t̄q

t̄q−1

ln
(
gkj(x̄p, t)

)
√

1− t
dt

+
N∑
j=1

2M∑
q=M+1

(
A0

(
ξgkj(x̄p, x̄q)

)
ln
ξ

2
+B0

(
ξgkj(x̄p, x̄q)

))∫ t̄q

t̄q−1

ϕ
(
gj(x̄q)

)
√

1− t2
dt.

(3.21)

For every 1 ≤ j, k ≤ N, 1 ≤ p ≤ 2M matrix of the system (3.21) is given by

Mp+2M(k−1),q+2M(j−1) =



A0

(
ξgkj(x̄p, x̄q)

)√
1− x̄q

∫ t̄q

t̄q−1

ln
(
gkj(x̄p, t)

)
√

1 + t
dt

+

(
A0

(
ξgkj(x̄p, x̄q)

)
ln
ξ

2
+B0

(
ξgkj(x̄p, x̄q)

))
×(arcsin t̄q−1 − arcsin t̄q), for 1 ≤ q ≤M

A0

(
ξgkj(x̄p, x̄q)

)√
1 + x̄q

∫ t̄q

t̄q−1

ln
(
gkj(x̄p, t)

)
√

1− t
dt

+

(
A0

(
ξgkj(x̄p, x̄q)

)
ln
ξ

2
+B0

(
ξgkj(x̄p, x̄q)

))
×(arcsin t̄q−1 − arcsin t̄q), for M + 1 ≤ q ≤ 2M.

(3.22)

The integrals in (3.22) are computed using the formula∫
ln |at− b|√

1− t
dt = 4

√
1− t− 2I, (3.23)
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where

I =


√

1− t ln |at− b|+ 2

√
b− a
a

arctan

√
a− at
b− a

, if b > a
√

1− t ln |at− a|, if b = a(√
1− t−

√
a− b
a

)
ln |at− b|+ 2

√
a− b
a

ln |
√
a− at+

√
a− b|, if b < a.

3.1.2 Results

We open this section by validating our numerical code. In order to do this, we repeat
some of the calculations from [15]. Using the same city/soil parameters lb = 1, space = 0.4,
lchar = lb, γb = 1.5, fb = 0.5, cb = 1, r = 0.1, b = 1.5, M = 5, we observed the same
asymptotic convergence of the smallest eigenvalue ξ1 to 0.7792 as number of buildings N
grows, just the same as on Fig. 5 of [15]. For one-building system, the computed eigenvalue
τ(ξ2) of (3.6) exhibits convergent behavior identical to Fig. 10 from [15] as number of
gridpoints 2M increases.

Fig. 3.1: One-building city: lb = 1, space = 0.4, lchar = lb, γb = 1.5, fb = 0.5, cb = 1,
r = 0.1, b = 1.5. Convergence of the eigenvalue τ(ξ2) of (3.6) for ξ = 1.3 as
number of gridpoints increases.

Now we aim to perform further analysis of the model. For this, we will consider several
geometries and present some of their eigenvectors along with corresponding eigenvalues.
Each city consists of the same number of 51 buildings, has the same building halfwidth
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lb = 1, and we have denoted by space the distance between consecutive buildings, which is
different for each city; M = 5, where 2M is the number of grid points. If it is not stated
otherwise, characteristic length l = lb, and for our numerics we use the following values for
the non-dimensional parameters (1.11):

γb = 1.5, fb = 0.5, cb = 1, r = 0.1, b = 1.5. (3.24)

It was conjectured in [15] that the smallest eigenvalue ξ of the spectral problem (1.13)-(1.15)
converges as the number of buildings N increases, and this limit was expected to coincide
with the first (smallest) frequency of a periodic city. In [5] for a similar problem it was shown
that the corresponding eigenvector keeps a constant sign. That is why we want to look at
the asymptotic behavior of different eigenvalues, and at the shapes of eigenvectors, and in
particular, we want to examine whether some of them remain of constant sign.
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Tab. 3.1: Different solutions (ξj, θj) for the free-space problem (1.13)-(1.15). The
foundation displacements α = θj are shown on graphs, the corresponding
frequency ξj is stated above each picture; building halfwidth lb = 1; the distance
between consecutive buildings space = 3. The number of buildings N = 51;
M = 5.
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Tab. 3.2: Different solutions (ξj, θj) for the free-space problem (1.13)-(1.15). The
foundation displacements α = θj are shown on graphs, the corresponding
frequency ξj is stated above each picture; building halfwidth lb = 1; the distance
between consecutive buildings space = 0.5. The number of buildings N = 51;
M = 5.
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Tab. 3.3: Different solutions (ξj, θj) for the free-space problem (1.13)-(1.15). The
foundation displacements α = θj are shown on graphs, the corresponding
frequency ξj is stated above each picture; building halfwidth lb = 1; the distance
between consecutive buildings space = 1.4. The number of buildings N = 51;
M = 5.
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3.1.3 Calculation of a natural city frequency range for the real
data

In this section we want to use our numerical code to estimate the range of the natural city
frequencies µ which satisfy the time harmonic solution (1.6). We do it in order to determine
which types of seismic waves will favor the city-effect. Notice, that a natural city frequency
before the non-dimensionalization is

µ = ξ
β

l
,

where β is the soil shear velocity, l is the characteristic length, and ξ is a non-dimensional
frequency. The first value can be measured for a given region, the second is set by us, and
the last one is found using our numerical methods. Note, that ξ depends on l.

We will fix the number of buildings N = 21, and calculate the minimum and the max-
imum frequencies ξ. Then the natural city frequencies µ will vary between ξminβ/l and
ξmaxβ/l. The solutions ξ depend on the city characteristics, that is, the parameters (1.11),
the building halfwidth lb, and the distance between two adjacent buildings which is denoted
by space. As before, we will consider l = lb, which makes cb = 1. Therefore, in order to
calculate the desired range, we need to know the soil shear velocity β, the building shear
velocity βb, and their ratio b = βb/β; the ratio between building top and foundation masses
γb = m1/m0; building halfwidth lb, its height h, and their ratio fb = lb/h; and finally, the
ratio between building and soil mass densities r = ρb/ρ. We will start with the real values
corresponding to the case of Michoacan earthquake, which can be found, for instance, in [2]:

βb = 120 m/s; β = 80 m/s; r = 0.15; γb = 1.5.

We will vary all of the ratios to determine which are dominant, and which are negligible;
among others, the parameters of the cities Grenoble and Nice (found in [2]) will be tested.
For all the simulations let us assume lb = 5m, space = 3m.

� h (m) fb β (m/s) βb (m/s) b γb r [ξmin, ξmax] [µmin, µmax](Hz)
1 10 0.5 80 120 1.5 1.5 0.15 [0.81; 1.05] [13.0; 16.8]
2 10 0.5 80 120 1.5 3 0.15 [0.82; 1.15] [13.1; 18.4]
3 10 0.5 80 120 1.5 1.5 0.2 [0.83; 1.07] [13.3; 17.1]
4 10 0.5 700 400 4/7 1.5 0.15 [0.29; 0.31] [40.6; 43.4]
5 10 0.5 700 120 6/35 1.5 0.15 [0.09; 0.09] [12.6; 12.6]
6 10 0.5 250 400 8/5 1.5 0.15 [0.87; 1.12] [43.5; 56.0]
7 10 0.5 200 400 2 1.5 0.15 [1.30; 1.38] [52.0; 55.2]
8 25 0.2 80 120 1.5 1.5 0.15 [0.32; 0.34] [5.1; 5.4]
9 50 0.1 80 120 1.5 1.5 0.15 [0.15; 0.18] [2.4; 2.9]
10 5 1 250 400 8/5 1.5 0.15 [2.42; 3.11] [121.0; 155.5]

Tab. 3.4: The range of the natural city frequencies for the real data; number of buildings
N = 21, M = 10. In cases 8 and 9 the natural city frequency range overlaps
with the range of the seismic waves, which makes the city-effect pronounced.
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As was mentioned earlier, the cases when structures caused or altered the seismic activity
near them exhibit the same soil and structure frequencies. Therefore, for the city-effect to
be pronounced, we need the city and the soil frequencies to coincide and be within the range
of the seismic waves.

Natural frequency of a soil layer depends on its thickness and shear velocity, and ranges
approximately from 0.1 Hz to 35 Hz (see, for example, [28]). There are two types of seismic
activity which displays the same frequencies: seismic primary waves (P-waves), from 0.1Hz
to 5Hz, and microearthquakes, from 2Hz to 50Hz (see [18]). Microearthquakes are very low
intensity earthquakes of magnitude less then 2.0 on the Richter scale, and rarely felt more
than 8 kilometers from the epicenter. That is why we will neglect them. It leaves us with
P-waves, and, therefore, the natural city frequencies range should intertwine with (0.1; 5)Hz.

We stress that Table 3.4 provides the results for natural city frequencies; we can draw
several conclusions:

� a change in the ratio r between the soil and the building mass densities or in the ratio
γm between the building top and foundation masses does not result in a noticeable
difference in the natural frequency range: simulations 1, 2, and 3 give almost the same
results;

� buildings with low shear velocities favor the onset of the city-effect: compare simula-
tions 4 and 5;

� the ratio b between the soil and buildings shear velocities does not influence the fre-
quency range by itself, for any particular case we have to look at each shear velocity
separately: see simulations 4, 5, and 6.

� another crucial factor is the ratio fb between the building halfwidth and its height, and
higher buildings will facilitate the onset of the city-effect: compare simulations 1, 8,
and 9.

From Table 3.4 we may conclude that the soil shear velocity is not important (compare
simulations 1 and 5, 4 and 6). But for the city-effect to be pronounced, natural soil fre-
quencies should also fall in the interval (0.1; 5)Hz, and that is why low soil shear velocities
facilitate the phenomenon.

Overall, our calculations alone with the previous results in literature confirm the common
sense assumption that both soil and buildings characteristics are important in the city-effect
phenomenon: a soil with low shear velocity and buildings high enough are needed for this
effect to be noticeable. This is the case of the Michoacan earthquake, where buildings are
high, and both shear velocities are low. Simulations 8 and 9 in Table 3.4 represent this case.
Simulations 7 and 10 correspond to Nice and Grenoble, where buildings are low, and the
building shear velocities are large. There the city-effect is not likely to occur. We conclude,
that the model by Ghergu and Ionescu provides solutions which agree with the frequencies
expected in reality.
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3.1.4 Conclusions

We looked at several cities with different ratios between the width of a building and the
distance between two adjacent buildings. Results are presented in Tables 3.1, 3.2, 3.3, and
3.6. As in [15], we see that the smallest eigenvalue is convergent as the number of buildings
N grows bigger; but the biggest eigenvalue looks to have a limit too. We notice that for
some cases there exists an eigenvector which keeps the sign, and for some cases - does not.
Later, when we investigate the case of a periodic city, we will get back to this observation.
We will also address the issue of convergence, as the number of buildings N grows, of the
smallest eigenvalue to a periodic city frequency.

The method described above gives fast and precise results for a city with a finite number
of equal-sized evenly-spaced buildings. To obtain less then 1% error we need to use at least
M = 10, that is, 20 grid points. For a large number of buildings (more than 20, for example)
the calculations become very time-consuming.

What happens when we have a really big city with a thousand equal-sized evenly-spaced
buildings? In the next section we will apply periodic Green’s function to study a city with
infinitely many buildings. We will find its frequency and compare it to the eigenvalues of
(3.14).
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3.2 Periodic city

3.2.1 Modified algorithm

Let us assume that we have a city with infinitely many buildings. Assume that all the
buildings are of equal size that they are evenly spaced; the conditions on their foundations
are the same. We can assume αj = 1 for all j and consider only one building of width 2lb
located at [−lb, lb] with the distance between two adjacent buildings space. Let

Γper = [−lb, lb]× {0},

Γfreeper = {[−lb −
1

2
space,−lb] ∪ [lb, lb +

1

2
space]} × {0},

Ωper = [−lb −
1

2
space, lb +

1

2
space]× (0,+∞).

Instead of (3.1)-(3.3) we will have to solve Helmholtz equation in a periodic domain. For a
single period it is formulated as follows:

∆Ψ + ξ2Ψ = 0 in Ωper, (3.25)

Ψ = 1 on Γper,
∂Ψ

∂y
= 0 on Γfreeper . (3.26)

The equation (1.15) will simplify to

q(ξ2) = p(ξ2)

∫
Γper

∂Φ

∂y
(s, 0)ds, (3.27)

and the matrix (3.6) reduces to a scalar. In this case we do not have several eigenvalues and
do not have to calculate an N ×N matrix. We still have a nonlinear equation (3.27) for the
unknown ξ which we can solve using Newton’s method. On each iteration we still will have
to solve a linear system of equations corresponding to condition Ψ = 1, but only 2M × 2M
size.
The solution to (3.25)-(3.26) is given by the single-layer potential (3.9), except that the
integration kernel will be different. The fundamental solution in this case is given by the
periodic Green’s function (2.4) with period d = 2lb+space, though we will have to use Ewald
representation (2.15) for the numerical calculations. The analog of (3.18) is

i

4

∞∑
n=−∞

H
(1)
0 (ξrn) = A0(r0) ln

ξr0

2
+B0(z1, z2), (3.28)

where z1 = y, z2 = x− s, rn =
√
y2 + (x− s− nd)2, A0(r0) = − 1

2π
J0(ξr0), and

B0(z1, z2) =



i

4

∞∑
n=−∞

H
(1)
0 (ξrn) +

1

2π
J0(ξr0) ln

ξr0

2
, if r0 6= 0,

iπ − 2C

4π
+
i

4

∑
n6=0

H
(1)
0 (ξ|n|d), if r0 = 0,

(3.29)
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where C is the Euler constant. B0(0, 0) is calculated using formula (2.21).

3.2.2 Numerical results. Comparison with the finite case

Below we provide the table comparing solutions of periodic problem with maximum and
minimum eigenvalues of the corresponding free-space case. For all the city patterns lb = 1,
space is different. Free-space case: N = 51, M = 5; periodic case: M = 10. We highlight
the values if they look to coincide.

space 0.5 1 1.3 1.4 1.5 2 3
ξper 1.0864 0.9420 0.8873 0.8737 0.8619 0.8225 0.7934
ξmin 0.7821 0.7990 0.8156 0.8264 0.8418 0.8222 0.7933
ξmax 1.0844 0.9408 1.0391 1.0514 1.0602 1.0635 0.9772

Tab. 3.5: Comparison of the free-space and periodic frequencies ξper vs ξmin, ξmax;
building halfwidth lb = 1; the number of buildings N = 51, M = 5 for the
free-space case, M = 10 for the periodic case.

It can be seen that when space is small enough, ξper coincides with ξmax, and when it is big
enough - with ξmin. Tables 3.1 and 3.2 show that the corresponding eigenvectors keep the
sign. Then, for some range of space ξmin < ξper < ξmax. It was noticed before that for such
cities no eigenvector keeps the sign.

We would like to look deeper into this matter. Is there any connection between ξper and
eigenvalues for such cities? First, let us consider the city where lb = 1, space = 1.7 and find
all of its eigenvalues. We will do it for different number of buildings N = 11; 31; 51. Again,
for every simulation M = 5. It appears that ξper ≈ ξ3. Also, we show all the eigenvalues for
space = 0.5, space = 3. All the results are presented in Table 3.6.
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space = 1.7

space = 0.5

space = 3

Tab. 3.6: Ordered eigenvalues (frequencies) for the free-space problem (1.13)-(1.15)
compared to the frequency of the periodic problem (3.25)-(3.27). Cities have
building halfwidth lb = 1; the distance between consecutive buildings “space” is a
specific for every city constant. The number of buildings N is 11, 31, and 51;
M = 5. The pictures on the right are blow ups of the pictures on the left.
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3.3 Cities with different buildings

3.3.1 Small size city

The previous results were obtained under stringent assumptions. It is more realistic to
allow buildings to be of different size and rigidity. We now allow buildings to have differ-
ent heights, foundation areas, distances between each other, and to be built from various
materials. In terms of our physical model, it means that not only displacements, but all
the other parameters defined in section 1.2.1 depend now on the building number j. The
same is true for non-dimensional parameters (1.11), and the polynomials p and q defined by
(1.12). It is reasonable to conjecture that eigenvalues and eigenvectors of (3.5) do not solve
problem (3.1) - (3.3). We will illustrate this for a 2-building city with building left endpoints
a = [−2.5; 1.5], building right endpoints b = [−1.5; 3], and distance between the buildings
space = 3.

Fig. 3.2: A 2-building city: a = [−2.5; 1.5], b = [−1.5; 3]; qj(ξ
2) and pj(ξ

2)τi(ξ
2) intersect

at different points.
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In terms of 2-building city, if we want one of the eigenvalues τ1, τ2 of the matrix (3.6) to
satisfy (1.15), then one of the systems ought to hold:{

q1(ξ2) = p1(ξ2)τ1(ξ2)

q2(ξ2) = p2(ξ2)τ1(ξ2)

{
q1(ξ2) = p1(ξ2)τ2(ξ2)

q2(ξ2) = p2(ξ2)τ2(ξ2)

Figure 3.2 illustrates that neither system has a solution. Pictures on the right correspond
to the equations of the left system, and pictures on the right correspond to the right system.
It is clear that the points of intersection are different for each pair of graphs.

It follows that we can not use pairs of eigenvalues and eigenvectors to solve our problem,
and we have to modify the solution algorithm from section 3.1. In case of different buildings
(1.15) takes form

qj(ξ
2)Φ(x, 0) = pj(ξ

2)

∫
Γj

∂Φ

∂y
(s, 0)ds for (x, 0) ∈ Γj, 1 ≤ j ≤ N, (3.30)

and it defines system of N nonlinear equations with N + 1 unknowns {α, ξ}. The number of
variables was reduced. We notice that if [Ψ, ξ, α] solves (3.1) - (3.3), then [CΨ, ξ, Cα] solves
it too. It means that without loss of generality we can assume αj = 1 for some fixed j. This
leaves us with N unknowns and the system (3.30) can be solved using one of the iterative
methods. In the case of a finite city function Φ is found using the free-space Green’s function
(A.17).

We will vary building halfwidths lbj and distances between the buildings spacej. This will
lead us to different pj(ξ

2) and qj(ξ
2). We recall that for the homogeneous case characteristic

length l was set up equal to lb, such that cb = 1 (see (3.24)). We can not proceed in the
same manner, because lbj are different, and l should be unique for our problem. That is
why we choose to assign l = 1, and it follows that cbj = lbj. All the other parameters (3.24)
will be unchanged and equal for all the buildings, but we notice that altering them will not
change anything in our methods and reasoning. We observe distinctive solutions when we
prescribe αj = 1 for different j. Table 3.7 presents the solutions (ξ, α) for a 6-building city
sketched on figure 3.3, where a = [0; 1.3; 3; 4; 5.4; 6.8], b = [1; 2.6; 3.5; 5; 6.2; 7.4] for M = 10
(2M is the number of grid points in our numerical calculations). Conditions on the building
foundations α are shown as bar graphs, and coupled wavenumbers ξ are stated below each
graph.
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Fig. 3.3: A sketch illustrating the relative size of the foundations and the spacing between
the buildings for the 6-building city defined by a = [0; 1.3; 3; 4; 5.4; 6.8],
b = [1; 2.6; 3.5; 5; 6.2; 7.4].

Remark 3.3. We use Matlab to solve the nonlinear systems of equations. The termination
conditions are set up in such a way that the final answer accuracy is 10−6. We notice that
this is not the accuracy of our method.

α1 = 1, ξ = 1.7301 α2 = 1, ξ = 1.3660 α3 = 1, ξ = 1.3660

α4 = 1, ξ = 1.7784 α5 = 1, ξ = 1.7301 α6 = 1, ξ = 1.3660

Tab. 3.7: Solutions for the 6-building city: a = [0; 1.3; 3; 4; 5.4; 6.8],
b = [1; 2.6; 3.5; 5; 6.2; 7.4], M = 10.

We notice that the solution for each case αj = 1 may not be unique. The results in
Table 3.7 are achieved for an initial guess for the wavenumber ξ0 = 1. If we take ξ0 = 2.5,
we obtain the following:
if we impose α1 = 1, or α2 = 1, or α3 = 1, then our computation results in ξ = 1.7301;
if we impose α4 = 1, or α5 = 1, then our computation results in ξ = 2.1861;
if we impose α6 = 1, then our computation results in ξ = 2.8057.
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We also notice that the initial guess for α does not influence the resulting solution, it may
only accelerate or slow down its retrieving.

Ultimately we want to assume that some building cluster is repeated periodically in a
city, and apply periodic Green’s function to find city frequencies. That is why in the free-
space case we will consider cities with several equal clusters of a few buildings. Then number
of buildings in the city N equals NbNc, where Nb is the number of buildings in one cluster,
and Nc is the number of clusters. Below we present the results for three different geometries.
First, it will be the 2-building city that we have already mentioned. Then we consider two
3-building cities. We will refer to them as city7.5, city7 and city6.5, because their lengths of
the periodic clusters are 7.5, 7 and 6.5.

1. City7.5: a = [−2.5; 1.5], b = [−1.5; 3], space = [3; 2].

Fig. 3.4: A sketch illustrating the relative size of the foundations and the spacing between
the buildings for the city7.5 defined by a = [−2.5; 1.5], b = [−1.5; 3], space = [3; 2]

.

2. City7: a = [0; 2; 5], b = [1.2; 3; 6.7], space = [0.8; 2; 0.3].

Fig. 3.5: A sketch illustrating the relative size of the foundations and the spacing between
the buildings for the city7 defined by a = [0; 2; 5], b = [1.2; 3; 6.7],
space = [0.8; 2; 0.3]

.

3. City6.5: a = [0; 2.2; 4.7]; b = [1.8; 4.2; 6.2], space = [0.4; 0.5; 0.3].
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Fig. 3.6: A sketch illustrating the relative size of the foundations and the spacing between
the buildings for the city6.5 defined by a = [0; 2.2; 4.7], b = [1.8; 4.2; 6.2],
space = [0.4; 0.5; 0.3]

.

Tables 3.8 and 3.9 simply show the solutions we obtain. In the next subsection we will
present the data that demonstrates that they converge as the number of clusters increases
(see Tables 3.16 and 3.17). Also, at this point we would like to emphasize ξ = 1.1584 for
city7.5 and ξ = 1.0349 for city7. We will meet these again when we solve the periodic
problem.

Tables 3.10, 3.11, and 3.12 illustrate the convergence of the wavenumbers ξ and the
foundation displacements α as the number of grid points 2M grows. Tables 3.13 and 3.14
give a more visual demonstration of this fact. Also, Table 3.14 seems to suggest that we are
able to capture the first two decimal digits for the value of ξ for M = 10.

The last thing we would like to notice about the free-space case is that when the number
of buildings increases, we obtain more solutions. This is similar to the case of equal buildings.
For example, if we take the number of clusters Ncl = 5 and M = 5 for city6.5, we will find
the following solutions for the wavenumber: 0.9801; 0.9865; 0.9906; 1.1427; 1.1986; 1.2302.
Recall that we had just four solutions for Ncl = 3 (if M = 10 or M = 20). Table 3.15 provides
the corresponding α, and we see that even though first three solutions for the frequency ξ
appear to be very close to each other, these are indeed distinct solutions.

48



α1 = 1, ξ = 1.0778 α2 = 1, ξ = 1.1212 α3 = 1, ξ = 1.1212

α4 = 1, ξ = 1.1489 α5 = 1, ξ = 1.0778 α6 = 1, ξ = 1.1584

α7 = 1, ξ = 1.0778 α8 = 1, ξ = 1.1212 α9 = 1, ξ = 1.0778

α10 = 1, ξ = 1.1584 α11 = 1, ξ = 1.1489 α12 = 1, ξ = 1.1584

Tab. 3.8: Two-building city7.5; number of clusters is 6, M = 5. The foundation
displacements α are depicted as bar graphs, ξ are the wavenumbers.
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α1 = 1, ξ = 1.4119 α2 = 1, ξ = 1.0349 α3 = 1, ξ = 1.0043

α4 = 1, ξ = 1.0043 α5 = 1, ξ = 1.0048 α6 = 1, ξ = 1.0043

α7 = 1, ξ = 1.0043 α8 = 1, ξ = 1.0349 α9 = 1, ξ = 1.0043

α10 = 1, ξ = 0.9837 α11 = 1, ξ = 1.0349 α12 = 1, ξ = 1.0043

α13 = 1, ξ = 0.9837 α14 = 1, ξ = 0.9837 α15 = 1, ξ = 0.9837

Tab. 3.9: Three-building city7; number of clusters is 5, M = 5. The foundation
displacements α are depicted as bar graphs, ξ are the wavenumbers.
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α1 = 1, ξ = 0.9801 α2 = 1, ξ = 0.9801 α3 = 1, ξ = 1.1428

α4 = 1, ξ = 1.2728 α5 = 1, ξ = 1.1428 α6 = 1, ξ = 1.1428

α7 = 1, ξ = 1.2728 α8 = 1, ξ = 1.1428 α9 = 1, ξ = 1.1428

Tab. 3.10: Three-building city6.5; number of clusters is 3, M = 5. The foundation
displacements α are depicted as bar graphs, ξ are the wavenumbers.

α1 = 1, ξ = 0.9782 α2 = 1, ξ = 0.9782 α3 = 1, ξ = 1.2691

α4 = 1, ξ = 1.2691 α5 = 1, ξ = 0.9782 α6 = 1, ξ = 1.1407

α7 = 1, ξ = 1.2159 α8 = 1, ξ = 1.1407 α9 = 1, ξ = 1.1407

Tab. 3.11: Three-building city6.5; number of clusters is 3, M = 10. The foundation
displacements α are depicted as bar graphs, ξ are the wavenumbers.
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α1 = 1, ξ = 0.9776 α2 = 1, ξ = 0.9776 α3 = 1, ξ = 1.2682

α4 = 1, ξ = 1.2682 α5 = 1, ξ = 0.9776 α6 = 1, ξ = 1.1400

α7 = 1, ξ = 1.2146 α8 = 1, ξ = 1.1400 α9 = 1, ξ = 1.1400

Tab. 3.12: Three-building city6.5; number of clusters is 3, M = 20. The foundation
displacements α are depicted as bar graphs, ξ are the wavenumbers.

M α1 α2 α3 α4 α5 α6 α7 α8 α9

5 1 0.7559 0.1143 0.8400 0.7516 0.0860 0.5357 0.5703 0.0310
10 1 0.7554 0.1304 0.8795 0.7775 0.1010 0.5771 0.5988 0.0362
20 1 0.7552 0.1362 0.8970 0.7897 0.1068 0.5956 0.6125 0.0382

Tab. 3.13: Convergence of the foundation displacements α as the number of grid points
2M increases; three-building city6.5, ξ = 0.9776, number of clusters Ncl = 3.

M 5 10 20
ξ1 0.9801 0.9782 0.9776
ξ2 1.1428 1.1407 1.1400
ξ3 1.2159 1.2146
ξ4 1.2728 1.2690 1.2682

Tab. 3.14: Convergence of the wavenumbers ξ as the number of grid point 2M increases;
three-building city6.5, number of clusters Ncl = 3
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α1 = 1, ξ = 0.9865 α2 = 1, ξ = 0.9906 α3 = 1, ξ = 1.2302

α4 = 1, ξ = 1.2302 α5 = 1, ξ = 1.1427 α6 = 1, ξ = 1.1986

α7 = 1, ξ = 0.9801 α8 = 1, ξ = 0.9801 α9 = 1, ξ = 1.1427

α10 = 1, ξ = 0.9801 α11 = 1, ξ = 0.9906 α12 = 1, ξ = 1.2302

α13 = 1, ξ = 1.2302 α14 = 1, ξ = 1.1427 α15 = 1, ξ = 1.1427

Tab. 3.15: Three-building city6.5; number of clusters is 5, M = 5. The foundation
displacements α are depicted as bar graphs, ξ are the wavenumbers.
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3.3.2 Periodic case

Just as for the problem with identical buildings, we will now assume that the city is
infinite, and a cluster of a few different buildings is repeated throughout the city. The
periodic Green’s function will be used to find Φ in (3.30). Its period is the length of a
single cluster. We assume that αj = 1 for some j, the other displacements of the buildings
foundations are unknown, and we will have to solve the system of nonlinear equations (3.30).
But, if in the free-space case we had NbNc equations, here we solve just for one cluster, which
reduces it to only Nb equations. We recall that Nb is the number of buildings in a cluster,
and Nc is the number of clusters in the finite case. Below we present the results for the cities
we have discussed earlier. As we have already mentioned, their periods are 7.5, 7, and 6.5.
In the periodic case it does not matter which foundation displacement is 1, the solution is
the same for any j. But it is not unique, and for different initial guesses ξ0 there possibly
can appear distinct solutions.

1. City7.5: a = [−2.5; 1.5], b = [−1.5; 3], period = 7.5.
ξ0 = 1, M = 5 : ξ = 1.1594, α = [1;−2.1171];
ξ0 = 1, M = 10 : ξ = 1.1583, α = [1;−2.1222];
ξ0 = 1, M = 20 : ξ = 1.1580, α = [1;−2.1241].

2. City7: a = [0; 2; 5], b = [1.2; 3; 6.7], period = 7.
ξ0 = 1, M = 5 : ξ = 1.0420, α = [1;−1.5703; 3.5458];
ξ0 = 1, M = 10 : ξ = 1.0382, α = [1;−1.5103; 3.4610];
ξ0 = 1, M = 20 : ξ = 1.0368, α = [1;−1.4874; 3.4288].

3. City6.5: a = [0; 2.2; 4.7]; b = [1.8; 4.2; 6.2], period = 6.5.
ξ0 = 1, M = 5 : ξ = 0.9850, α = [1; 0.8109; 0.0919];
ξ0 = 1, M = 10 : ξ = 0.9822, α = [1; 0.8186; 0.1113];
ξ0 = 1, M = 20 : ξ = 0.9812, α = [1; 0.8221; 0.1181];
ξ0 = 1.5, M = 5 : ξ = 1.2977, α = [1; 0.7555; 1.2419];
ξ0 = 1.5, M = 10 : ξ = 1.2918, α = [1; 0.7682; 1.2392].

From this data we see that the wavenumbers ξ and the foundation displacements α
converge as the number of grid points 2M increases. We notice that some of the free-space
solutions go to the periodic solutions as the number of buildings grows, just as in the case
of a homogeneous city, wavenumbers ξ almost coincide. Tables 3.16 and 3.17 illustrate
wavenumber convergence, showing one of the free-space solutions for different number of
clusters in the city7.5 and city7.

N=8 N=10 N=12 Periodic
ξ 1.1572 1.1579 1.1584 1.1583

Tab. 3.16: Convergence of the free-space solution to the periodic solution for city7.5;
M = 5 for free-space case, M = 10 for periodic case.
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N=6 N=9 N=12 N=15 Periodic
ξ 1.0116 1.02160 1.0299 1.0349 1.0382

Tab. 3.17: Convergence of the free-space solution to the periodic solution for city7; M = 5
for free-space case, M = 10 for periodic case.

3.3.3 Conclusions

In this section we extended the algorithm introduced in [15] to the case of cities with
distinct buildings. The eigenvalue approach is not applicable here, and we have to solve
a system of nonlinear equations. Its solution gives us the foundation displacement α and
the wavenumber ξ. Our numerical computations support the intuitive idea that both are
convergent with respect to the number of grid points 2M . When we assumed that a city
consists of several equal clusters of a few buildings, we observed that ξ is also convergent
with respect to the number of such clusters. Also, we noticed that similarly to the free-space
case, increase in the number of buildings leads to new solutions. That means the the densely
built areas have more frequencies that may cause a resonance.

Even a small number of clusters makes the calculations more difficult and time-consuming
compared to the problem for the city with equal buildings. To address this issue, we assume
that the city consists of a periodically repeated cluster of buildings. The application of the
periodic Green’s function becomes even more valuable. We showed that pair α, ξ converges
with respect to the number of grid points 2M . We studied different solutions for both
finite and infinite cases, and showed that some wavenumbers of the free-space case go to the
corresponding periodic wavenumbers as the number of clusters increases.
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Chapter 4

Existence of preferred wavenumbers
for the city problem

In this chapter we provide a rigorous mathematical proof for the existence of preferred
wavenumbers that effectively couple the vibrations of the underground to the vibrations of
the buildings standing on top. This proof is only valid for the antiplane model. Furthemore
we only present a proof valid in the free space case in the presence of only one building.
More precisely, we prove existence for the solution to problem (1.13)-(1.15) in the case
where N = 1, and for Φ being the real part of the function Ψ defined by (3.1)-(3.3).
Many of the preliminary results discussed and proved in this chapter have well known analogs
in three dimensional space. Those analogs have actually been studied in details by many
authors, for instance see [10, 24]. However the results regarding two dimensional spaces
are often merely mentioned, and it is hard to find detailed proofs in the literature. This is
the reason why in this chapter we chose to study in details exterior Dirichlet to Neumann
operators for the Helmholtz equation. Detailed statements and results turn out to be essential
tools for proving the existence of a solution to problem (1.13)-(1.15).

4.1 Useful results on Hankel functions

For n ∈ N and z in C we denote by Jn the Bessel function

Jn(z) = (
1

2
z)n

∞∑
k=0

(−1

4
)k

z2k

k!(n+ k)!

For n ∈ N and z in C \ R−∗ we denote by Yn the Bessel function

− 1

π
(
1

2
z)−n

n−1∑
k=0

(n− k − 1)!

k!
(
1

4
z2)k +

2

π
ln(

1

2
z)Jn(z)

− 1

π
(
1

2
z)n

∞∑
k=0

(ψ(k + 1) + ψ(n+ k + 1))(−1

4
)k

z2k

k!(n+ k)!
,
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where the first sum is void if n = 0 and the function ψ is defined by

ψ(1) = −γ, ψ(n) = −γ +
n−1∑
k=1

1

k
,

and γ is the Euler constant. The Hankel function of the first kind of order n, that is, Jn+iYn,
will be denoted Hn.
Lemma 4.1. The following equivalence as n → ∞ is uniform for all z in a compact set of
(0,∞)

Hn(z) ∼ − i
π

(
1

2
z)−n(n− 1)! (4.1)

Proof: Since for any positive z

|Jn(z)n!(
1

2
z)−n − 1| = 1

n+ 1
|
∞∑
k=1

(−1

4
)k
z2k(n+ 1)!

k!(n+ k)!
|

≤ 1

n+ 1

∞∑
k=1

(
1

4
)k
z2k

k!

it is clear that Jn(z) ∼ (
1

2
z)n

1

n!
uniformly for all z in a compact set of (0,∞).

We can show similarily that Yn(z) ∼ − 1

π
(
1

2
z)−n(n− 1)! uniformly for all z in a compact set

of (0,∞). We conclude that (4.1) must hold. �
Lemma 4.2. For z > 0, the following limit as z → 0 is uniform for all integers n different
from 0

lim
z→0+

− z

|n|
H ′n(z)

Hn(z)
= 1 (4.2)

For the special case n = 0 we have,

lim
z→0+

zH ′0(z)

H0(z)
= 0

Proof: We observe that for n ≥ 2(
Hn(z)(− i

π
(
1

2
z)−n(n− 1)!)−1 − 1

)
(n− 1)

can be bounded by a function in z which is continuous on [0,∞), therefore

Hn(z) ∼ − i
π

(
1

2
z)−n(n− 1)! (4.3)
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as z → 0+, uniformly on [0, b] for a fixed b > 0. Using the formula

H ′n(z) = −Hn+1(z) +
n

z
Hn(z) (4.4)

we obtain

− z
n

H ′n(z)

Hn(z)
∼ 1

as z → 0+, uniformly on [0, b] for a fixed b > 0.
For n ≤ −2, we can now apply the formula H−n(z) = (−1)nHn(z). The remaining three
cases can be treated in a straightforward fashion. �
Lemma 4.3. For any n in N, |Hn(z)| is a decreasing function of z on (0,+∞).

Proof: This is due to the formula derived by Nicholson, see[30],

J2
n(z) + Y 2

n (z) =
8

π2

∫ ∞
0

K0(2z sinh t) cosh 2ntdt

where K0(s) =

∫ ∞
0

e−s cosh tdt. �

Lemma 4.4. Let a and b be two real numbers such that 0 < a < b. The following equivalence
as n → ∞ is uniform for all complex numbers z in the closed disk of the complex plane
centered at b and of radius a

Hn(z) ∼ − i
π

(
1

2
z)−n(n− 1)! (4.5)

Proof: The proof is nearly identical to that of lemma 4.1. �
Lemma 4.5. Denote by Stn the Struve function of order n as defined in [1]. The following
formula holds for any t > 0∫ t

0

H0(z)dz = tH0(t) +
π

2
t(St0H1(t)− St1H0(t)) (4.6)

It follows that the semi convergent integral

∫ ∞
0

H0(z)dz is exactly equal to 1.

Proof: Integral formula (4.6) is given in [1]. The value of
∫∞

0
H0(z)dz results from that

formula combined to known asymptotics at infinity of Bessel and of Struve functions. One
should consult [1] for formulas on Bessel functions, and [30] for their derivation. �

4.2 The boundary Dirichlet to Neumann operator. Con-

tinuity with regard to the wavenumber

In this chapter we denote by D the open unit disk of R2 centered at the origin.
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Lemma 4.6. Let κ > 0 be a wave number and f be a function in the Sobolev space H
1
2 (∂D).

The problem

(∆ + κ2)u = 0 in R2 \D (4.7)

u = f on ∂D (4.8)

∂u

∂r
− iκu = o(r−1), uniformly as r →∞ (4.9)

has a unique solution. Writing f =
∞∑

n=−∞

ane
inθ, we have

u =
∞∑

n=−∞

ane
inθHn(κr)

Hn(κ)
, (4.10)

This series and all its derivatives are uniformly convergent on any subset of R2 in the form
r ≥ A where A > 1.

Proof: Existence and uniqueness for equation (4.7-4.9) are well known, we are chiefly
interested here in the convergence properties of the series (4.10). We first note that H−n(z) =
(−1)nHn(z), so we will establish convergence properties as n → ∞ and the case n → −∞
will then follow easily. From (4.1) we can claim that

Hn(κr)

Hn(κ)
∼ 1

rn
,

uniformly in r as long as r remains in a compact set of (0,∞). Fix two real numbers A,B
such that 1 < A < B. Denote M = sup |an|. It follows that

|aneinθ
Hn(κr)

Hn(κ)
| ≤ 2

M

An

for all n large enough, uniformly for all r in [A,B], so the series (4.10) is uniformly convergent
on any compact subset of R2 \D.
Next we use the recurrence formula (4.4) to write

κ
H ′n(κr)

Hn(κ)
= −κHn+1(κr)

Hn(κ)
+
n

r

Hn(κr)

Hn(κ)

The term
n

r

Hn(κr)

Hn(κ)
can be estimated as previously. For κ

Hn+1(κr)

Hn(κ)
use and (4.1) one more

time to find
Hn+1(κr)

Hn(κ)
∼ 2n+ 2

rn+2

uniformly for all r in [A,B]. At this stage we can conclude that the r derivative of the series
(4.10) is uniformly convergent on any compact subset of R2 \D.
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A θ derivative of the series (4.10) corresponds to a multiplication by in so the uniform
convergence property holds for that derivative too. Second derivatives can be treated in a
similar way to find that the function defined by the series (4.10) is in C2(R2 \D).
If r ≥ 2, we combine lemma 4.3 and (4.1) to write

|Hn(κr)

Hn(κ)
| ≤ |Hn(2κ)

Hn(κ)
| ≤ 2−n+1,

for all n greater than some N , for all r ≥ 2. Similarly

|κH
′
n(κr)

Hn(κ)
| ≤ |κHn+1(2κ)

Hn(κ)
|+ |n

r

Hn(2κ)

Hn(κ)
| ≤ n2−n+1,

for all n greater than some N , for all r ≥ 2. Given that an is bounded, it follows that
the series (4.10) and its r derivative are uniformly convergent for all r in [2,∞). A similar
argument can be carried out for the θ derivative, and all second derivatives.
Next we recall that Hn satisfies the Bessel differential equation

y′′(r) +
1

r
y′(r) + (1− n

r2
)y(r) = 0

to argue that each function einθHn(κr) satisfies Helmholtz equation due to the form of the

Laplacian in polar coordinates, namely ∂2
r +

1

r
∂r +

1

r2
∂2
θ . All together this shows that the

series the function defined by the series (4.10) satisfies (4.7).
To prove (4.9) we first note that each function einθHn(κr) satisfies that estimate due to the
well known asymptotic behavior of Hankel’s functions Hn, see [1]. From there (4.9) can be
derived using that the series (4.10) and its r derivative are uniformly convergent for all r in
[2,∞).
Finally it is worth mentioning that for any fixed r ≥ 1 the series in (4.10) is in the Sobolev

space H
1
2 (∂D) for all r ≥ 1 and that further applications of lemma 4.3 will show that this

series converges strongly to f in H
1
2 (∂D) as r → 1+. �

We now define the linear operator Tκ which maps H
1
2 (∂D) into H−

1
2 (∂D) by the formula

Tκ(f) =
∞∑

n=−∞

ane
inθκ

H ′n(κ)

Hn(κ)
, (4.11)

where f =
∞∑

n=−∞

ane
inθ. Tκ is continuous since fomula (4.4) combined to (4.1) implies that

κ
H ′n(κ)

Hn(κ)
∼ −n, n→∞

An equivalent way of defining Tκ is to say that it maps f to
∂u

∂r
|r=1, where u is the solution

to (4.7 - 4.9). We denote by <,> the duality bracket between H
1
2 (∂D) and H−

1
2 (∂D) which

extends the dot product < f, g >=
∫
∂D
fg.
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Lemma 4.7. Let f be in H
1
2 (∂D). Then Re < Tκ(f), f >≤ 0.

Proof:

Set f =
∞∑

n=−∞

ane
inθ. By definition of Tκ

Re < Tκ(f), f >= 2π
∞∑

n=−∞

|an|2κRe(
H ′n(κ)

Hn(κ)
) = 2π

∞∑
n=−∞

|an|2κ
Re(H ′n(κ)Hn(κ))

|Hn(κ)|2

The result then follows from lemma 4.3. �
Lemma 4.8. Tκ is real analytic in κ for κ in (0,∞).

Proof: Let k0 and b be two real numbers such that 0 < b < k0. Define Db(k0) the closed
disk in the complex plane centered at k0 and with radius b. According to [20], chapter 7, to
show that Tκ is real analytic in κ for κ in (0,∞) in operator norm, it suffices to fix f and

g in H
1
2 (∂D) and to show that < Tκ(f), g > is an analytic function of κ in Db(k0). Writing

f =
∞∑

n=−∞

ane
inθ, g =

∞∑
n=−∞

bne
inθ, we have

< Tκ(f), g >= 2π
∞∑

n=−∞

anbnκ
H ′n(κ)

Hn(κ)
(4.12)

Given that
∞∑

n=−∞

n|anbn| <∞ and κ
H ′n(κ)

Hn(κ)
∼ −|n|, |n| → ∞, uniformly for all κ in Db(k0),

the series in (4.12) is a uniformly convergent sum of analytic functions, thus < Tκ(f), g > is
analytic in Db(k0). �

4.2.1 The limit of the boundary operator Tκ as κ approaches zero

Lemma 4.9. The operator Tκ converges strongly to the operator T0 which maps H
1
2 (∂D)

into H−
1
2 (∂D) and is defined by the formula

T0(f) =
∞∑

n=−∞

−|n|aneinθ, (4.13)

where f =
∞∑

n=−∞

ane
inθ.

Proof: Let f =
∞∑

n=−∞

ane
inθ be in H

1
2 (∂D) . We can write

‖Tκ(f)− T0(f)‖
H−

1
2 (∂D)

=
∞∑

n=−∞

|an|2√
n2 + 1

|κH
′
n(κ)

Hn(κ)
− |n||2

and then apply lemma 4.2. �
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Lemma 4.10. Let f be a function in the Sobolev space H
1
2 (∂D). The problem

∆u = 0 in R2 \D (4.14)

u = f on ∂D (4.15)

u = O(1), uniformly as r →∞ (4.16)

has a unique solution. Writing f =
∞∑

n=−∞

ane
inθ, we have

u =
∞∑

n=−∞

ane
inθr−|n|, (4.17)

This series and all its derivatives are uniformly convergent on any subset of R2 in the form
r ≥ u where u > 1.

Proof: Existence and uniqueness for equation (4.14-4.16) are well known, see [13]. Prov-
ing the uniform convergence properties is trivial given how simple the radial terms are. �

We note that an equivalent way of defining T0 is to say that it maps f to
∂u

∂r
|r=1 where

u is the solution to (4.14 - 4.16).

4.2.2 Problems in the plane R2 minus a line segment

We use the following notation in this section: Γ is the line segment [−1

2
,
1

2
]× {0}, Ω is

the open set {x : |x| < 1} \Γ. ∂D will denote the same boundary as in the previous section.
On Γ an upper and a lower trace for all functions in H1(Ω) can be defined: even though Γ
is an interior boundary of Ω, since Γ is C1, an adequate version of the trace theorem on Γ
holds, see [27].
We denote H1

0,Γ(Ω) the closed subspace of H1(Ω) consisting of functions whose upper and
lower trace on Γ are zero.
Lemma 4.11. Let F be a continuous linear functional on H1

0,Γ(Ω). The following variational
problem has a unique solution for any κ > 0:
find u in H1

0,Γ(Ω) such that∫
Ω

∇u · ∇v − κ2uv −
∫
∂D

(Tκu) v = F (v), (4.18)

for all v in H1
0,Γ(Ω).

Proof: We first prove uniqueness. Assume that u is in H1
0,Γ(Ω) and satisfies (4.18) with

F = 0. It is clear that u satisfies (∆ + κ2)u = 0 in Ω. Define

Ω+ = {(x1, x2) ∈ Ω : x2 > 0}
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and define Ω− likewise. By Green’s theorem we must have that

Im

∫
∂Ω+

u
∂u

∂n
= Im

∫
∂Ω−

u
∂u

∂n
= 0

Using the fact that the upper and lower traces of u on Γ are zero we infer that

Im

∫
∂D

u
∂u

∂n
= 0. (4.19)

Next we observe that the variational problem (4.18) implies

∂u

∂n
= Tκu (4.20)

on the boundary ∂D. Outside D we extend u by setting it equal to the solution of (4.7-

4.9) where f is the trace of u|Ω on ∂D. We can claim thanks to (4.20) that u and
∂u

∂n
are continuous across ∂D. By (4.19) u must be zero in R2 \ D due to Reillich’s lemma.

Consequently, u and
∂u

∂n
are zero on ∂D, and therefore u is also zero in Ω due to the Cauchy

Kowalewski theorem.
To show existence define the bilinear functional

aκ(u, v) =

∫
Ω

∇u · ∇v − κ2uv −
∫
∂D

(Tκu) v (4.21)

aκ is continuous on H1
0,Γ(Ω)×H1

0,Γ(Ω). Due to lemma 4.7 we can claim that

Re aκ(u, u) ≥ ‖∇u‖2
L2(Ω) − κ2‖u‖2

L2(Ω)

We note that thanks to a generalized version of Poincarré’s inequality

v → ‖∇v‖L2(Ω)

is a norm on H1
0,Γ(Ω) which is equivalent to the natural norm. Now since the injection

of H1
0,Γ(Ω) into L2(Ω) is compact we can claim that either the equation aκ(u, v) = F (v)

is uniquely solvable or the equation aκ(u, v) = 0 has non trivial solutions. Given that we
proved uniqueness, we conclude that aκ(u, v) = F (v) is uniquely solvable and that u depends
continuously on F . �
Lemma 4.12. Let F be a continuous linear functional on H1

0,Γ(Ω). The following variational
problem has a unique solution for any κ > 0:
find u in H1

0,Γ(Ω) such that∫
Ω

∇u · ∇v −
∫
∂D

(T0u) v = F (v), (4.22)

for all v in H1
0,Γ(Ω).
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Proof: Next we observe that due to the definition (4.13) of T0 < T0(f), f > is real for

all f in H
1
2 (∂D) and < T0(f), f >≤ 0. We conclude that problem (4.22) is uniquely solvable

and that the solution u depends continuously on F . �

Let ϕ be a smooth compactly supported function in D which is equal to 1 on Γ and such
that ϕ(x1,−x2) = ϕ(x1, x2). For all κ ≥ 0 we set ũκ in H1

0,Γ(Ω) to be the solution to∫
Ω

∇ũκ · ∇v − κ2ũκv −
∫
∂D

(Tκũκ) v =

∫
Ω

(∆ϕ+ κ2ϕ)v, ∀v ∈ H1
0,Γ(Ω) (4.23)

and we set uκ = ũκ + ϕ.
Lemma 4.13. For κ > 0, uκ satisfies the following properties:
(i). uκ is in H1(Ω).
(ii). The upper and lower trace on Γ of uκ are both equal to the constant 1.
(iii). uκ can be extended to a function in R2 \ Γ such that, if we still denote by uκ the
extension,

(∆ + κ2)uκ = 0 in R2 \ Γ,
∂uκ
∂r
− iκuκ = o(r−1), uniformly as r →∞

uκ(x1,−x2) = uκ(x1, x2) for all (x1, x2) in R2 \ Γ
∂uκ
∂x2

(x1, 0) = 0 if (0, x1) /∈ Γ.

(iv). Denoting
∂uκ
∂x−2

the lower trace of
∂uκ
∂x2

on Γ,

Im

∫
Γ

∂uκ
∂x−2

> 0 (4.24)

Proof: Properties (i) and (ii) are clear. The first two items of property (iii) hold simply

because we can write u|∂D =
∞∑

n=−∞

ane
inθ and then set u =

∞∑
n=−∞

ane
inθHn(κr)

Hn(κ)
in R2 \Ω. We

then use Lemma 4.6 in combination to the fact that variational problem (4.23) implies that

Tκuκ is the limit of
∂uκ
∂r

as r → 1−.

To show the third item in (iii) we set ̂̃uκ(x1, x2) = ũκ(x1,−x2) and for any arbitrary v in
H1

0,Γ(Ω), v̂(x1, x2) = v(x1,−x2). Next we observe that∫
Ω

∇̂̃uκ · ∇v − κ2̂̃uκv =

∫
Ω

∇ũκ · ∇v̂ − κ2ũκv̂

In polar coordinates we have the relations ̂̃uκ(r, θ) = ũκ(r,−θ) and v̂(r, θ) = v(r,−θ), so∫
∂D

(Tκ̂̃uκ) v =

∫
∂D

(Tκũκ) v̂

Finally, since ϕ is even in x2,∫
Ω

(∆ϕ+ κ2ϕ)v̂ =

∫
Ω

(∆ϕ+ κ2ϕ)v
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Since the solution to problem (4.23) is unique we must have ̂̃uκ = ũκ, proving the third item
in (iii).

Since uκ is even in x2, it follows that
∂uκ
∂x2

is zero on the line x2 = 0 minus the segment Γ,

proving the last item in (iii).
Since u = 1 on Γ,

Im

∫
Γ

∂uκ
∂x−2

= Im

∫
Γ

∂uκ
∂x−2

u = −Im

∫
∂D−

∂uκ
∂r

u

where ∂D− is the intersection of the circle ∂D and the lower half plane x2 < 0. We use
parity one more time to argue that that

Im

∫
∂D−

∂uκ
∂r

u =
1

2
Im

∫
∂D

∂uκ
∂r

u

Knowing that uκ is not zero everywhere and using Reillich’s lemma we can claim that

Im

∫
∂D

∂uκ
∂r

u < 0. �

Theorem 4.14. Let ũκ be the solution to (4.23) for all κ ≥ 0, and set uκ = ũκ + ϕ .
(i). uκ is analytic in κ for κ > 0.
(ii). uκ converges strongly to u0 in H1

0,Γ(Ω). More precisely there is a constant C such that

‖uκ − u0‖H1(Ω) ≤ C(κ2 + ‖Tκ − T0‖) (4.25)

Proof: To show (i) we define an operator Aκ from H1
0,Γ(Ω) to its dual defined by

< (Aκu), v >= aκ(u, v)

where aκ was defined in (4.21). Thanks to lemma 4.8 we can claim that Aκ is analytic in
κ for κ > 0. But we showed Aκ is invertible for κ > 0 and that its inverse is a continuous
linear functional. According to [20], chapter 7, A−1

κ is then also analytic in κ for κ > 0, and
so is A−1

κ F for any fixed F in the dual of H1
0,Γ(Ω). Note that we have obtained analicity of

uκ relative to the H1(Ω) norm.
To prove statement (ii) we first show that ‖ũκ‖H1(Ω) is uniformly bounded for all κ in [0, B]
where B is a positive constant. Set v = ũκ in (4.23) and use lemma 4.7 to obtain

‖∇ũκ‖2
L2(Ω) ≤ κ2‖ũκ‖2

L2(Ω)

+C2‖ϕ‖H2(Ω)‖uκ‖L2(Ω),

where C is a positive constant. From there Poincarré ’s inequality can show the uniform
boundedness of ‖ũκ‖H1(Ω) for all κ in [0, B], as long as B is small enough.
Next we note that uκ − u0 = ũκ − ũ0 and satisfies for all v in H1

0,Γ(Ω)∫
Ω

∇(uκ − u0) · ∇v −
∫

Ω

κ2ũκv −
∫
∂D

(Tκũκ − T0ũκ) v =

∫
Ω

κ2ϕv
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We re write
∫
∂D

(Tκũκ − T0ũκ) v as∫
∂D

(Tκ(ũκ − ũ0)) v −
∫
∂D

((T0 − Tκ)ũ0) v

we choose v = ũκ − ũ0 and we use that, due to lemma 4.7,

Re

∫
∂D

(Tκ(ũκ − ũ0)) v ≤ 0

to infer the inequality

‖∇(uκ − u0)‖2
L2(Ω) ≤ κ2‖ũκ‖L2(Ω)‖uκ − u0‖L2(Ω)

+‖Tκ − T0‖‖ũ0‖H 1
2 (∂D)

‖uκ − u0‖H 1
2 (∂D)

+ κ2‖ϕ‖L2(Ω)‖uκ − u0‖L2(Ω)

the result follows since we know that ‖ũκ‖L2(Ω) is bounded for κ in [0, 1] and by application
of the trace theorem and of Poincarré ’s inequality. �.

Lemma 4.15. Denote
∂uκ
∂x±2

the upper and lower traces of
∂uκ
∂x2

on Γ. Then

(i).

∂uκ
∂x+

2

= − ∂uκ
∂x−2

(4.26)

(ii). Denote Gκ(x, y) = i
4
H0(κ|x− y|). For all x in Ω

uκ(x) = 2

∫
Γ

Gκ(x, y)
∂uκ
∂x−2

(y)dy (4.27)

Proof: Denote Ω+ = {(x1, x2) ∈ Ω : x2 > 0} and Ω− = {(x1, x2) ∈ Ω : x2 < 0}. It is
well known from potential theory that if x is in Ω+

uκ(x) =

∫
∂Ω+

Gκ(x, y)
∂uκ
∂n

(y)− ∂Gκ(x, y)

∂n(y)
uκ(y)dy (4.28)

0 =

∫
∂Ω−

Gκ(x, y)
∂uκ
∂n

(y)− ∂Gκ(x, y)

∂n(y)
uκ(y)dy (4.29)

where n is the exterior normal vector in each case. If y is in ∂Ω+ and is such that y2 = 0 it

is clear that
∂Gκ(x, y)

∂n(y)
= 0. We also use that uκ is even in x2 so that

∂u

∂x2

(x) = 0 if x2 = 0

and x /∈ Γ. Combining (4.28) and (4.29) we find that for x in Ω+

uκ(x) =

∫
∂Ω

Gκ(x, y)
∂uκ
∂n

(y)− ∂Gκ(x, y)

∂n(y)
uκ(y)dy −

∫
Γ

Gκ(x, y)(
∂uκ
∂x+

2

− ∂uκ
∂x−2

)(y)dy

But due to point (iii) in lemma 4.13∫
∂Ω

Gκ(x, y)
∂uκ
∂n

(y)− ∂Gκ(x, y)

∂n(y)
uκ(y)dy = 0,
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for all x in Ω+, thus

uκ(x) = −
∫

Γ

Gκ(x, y)(
∂uκ
∂x+

2

− ∂uκ
∂x−2

)(y)dy, (4.30)

for all x in Ω+. The same formula can be derived for all x in Ω−. By continuity of uκ and
of single layer potentials the formula must also hold if x2 = 0. Next if x is a fixed point in
(−1

2
, 1

2
) × {0} taking a ∂2 deivative in (4.30) and approaching x2 from Ω− we obtain using

the jump formula for double layer potentials

∂uκ
∂x−2

(x) = −1

2
(
∂uκ
∂x+

2

− ∂uκ
∂x−2

)(x)−
∫

Γ

∂Gκ(x, y)

∂x2

(
∂uκ
∂x+

2

− ∂uκ
∂x−2

)(y)dy

We observe that for x and y on Γ,
∂Gκ(x, y)

∂x2

= 0. It follows that
∂uκ
∂x−2

(x) = − ∂uκ
∂x+

2

(x) for x

on Γ. �
Lemma 4.16. u0 is equal to the constant function 1.

Proof: It can be shown, as in the case where κ > 0, that u0 is in H1(Ω), the upper and
lower trace on Γ of u0 are both equal to the constant 1, and u0 can be extended to a function
in R2 \ Γ such that, if we still denote by u0 the extension, ∆u0 = 0 in R2 \ Γ. The condition
at infinity for u0 is different. From (4.17) we infer that u0 = a0 +O(r−1) and ∂ru0 = O(r−2).
We also note that (4.17) implies that ∫

∂D

∂ru0 = 0 (4.31)

Since ∆u0 = 0 in Ω, u = 1 on Γ, and (4.31) holds, we have∫
Γ

∂u0

∂x+
2

− ∂u0

∂x−2
= 0 (4.32)

but the latter is also equal to ∫
Γ

(
∂u0

∂x+
2

− ∂u0

∂x−2
)u0 = 0 (4.33)

so applying Green’s formula in combination to the estimates u0 = a0 + O(r−1) and ∂ru0 =

O(r−2) we find that

∫
R2

|∇u0|2 = 0. We infer u0 is a constant in R2. That constant can only

be 1.�

Lemma 4.17. The integral Re

∫
Γ

∂uκ
∂x−2

is strictly positive for all κ > 0 small enough. More

precisely we have the estimate as κ approaches 0+∫
Γ

∂uκ
∂x−2

∼ πκ
H1(κ)

H0(κ)
(4.34)

Consequently, Re

∫
Γ

∂uκ
∂x−2

must be strictly positive for small values of κ > 0.
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Proof: Set v = 1− ϕ in variational problem (4.23) (note that the trace of v is zero on
Γ, as required in the space H1

0,Γ(Ω)), to obtain

−
∫

Ω

∇ũκ · ∇ϕ−
∫

Ω

κ2ũκ(1− ϕ)−
∫
∂D

(Tκũκ) (1− ϕ) =

∫
Ω

(∆ϕ+ κ2ϕ)(1− ϕ), (4.35)

We first observe that

∫
Ω

κ2ϕ(1−ϕ) = O(κ2) and due to theorem 4.14,

∫
Ω

κ2ũκ(1−ϕ) = O(κ2).

As ϕ is zero on ∂D, we have found that

−
∫

Ω

∇ũκ · ∇ϕ+

∫
Ω

∆ϕϕ =

∫
∂D

Tκũκ +O(κ2) (4.36)

Next, using Green’s theorem,

2

∫
Γ

∂ũκ
∂x−2

= 2

∫
Γ

∂uκ
∂x−2

ϕ =

∫
Ω

∇ũκ · ∇ϕ+

∫
Ω

∆ũκ ϕ (4.37)

Since in Ω, ∆ũκ = −∆ϕ− κ2ũκ − κ2ϕ combining (4.36) and (4.37) yields

2

∫
Γ

∂ũκ
∂x−2

= −
∫
∂D

Tκũκ +O(κ2) (4.38)

But

∫
∂D

Tκũκ = −κH1(κ)

H0(κ)
2πa0(κ) where a0(κ) =

1

2π

∫
∂D

ũκ, so using again that ũκ is

strongly convergent to 1− ϕ in H1(Ω), we claim that∫
∂D

Tκũκ ∼ −2πκ
H1(κ)

H0(κ)
(4.39)

as κ → 0. Going back to the definition of Bessel functions it easy to see that κ
H1(κ)

H0(κ)
∼

−(lnκ)−1 we conclude that

∫
Γ

∂ũκ
∂x−2

∼ −π(lnκ)−1, so Re

∫
Γ

∂uκ
∂x−2

must be strictly positive

for all κ > 0 small enough. �

For illustration, in figure 4.1 we have plotted graphs of log10

∫
Γ

∂uκ
∂x−2

and log10

(
πκ
H1(κ)

H0(κ)

)
against the decimal log10 κ, the imaginary part is on the left, and the real part is on the
right.
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Fig. 4.1: log10

∫
Γ

∂uκ
∂x−2

(blue) vs log10

(
πκ
H1(κ)

H0(κ)

)
(red). Left - the imaginary part, right -

the real part.

4.3 Informal derivation of certain asymptotics for high

wavenumbers

We provide in this section an informal derivation of an equivalent for

∫
Γ

∂uκ
∂x−2

as κ→∞,

where uκ = ũκ + ϕ and ũκ solves variational problem (4.23). Denote by fκ(y1) the value of
∂uκ
∂x−2

((y1, 0)) for y1 in [−1
2
, 1

2
]. According to (4.27), fκ satisfies the integral equation

∫ 1
2

− 1
2

i

4
H0(κ|x1 − y1|)fκ(y1)dy1 =

1

2
, x1 ∈ [−1

2
,
1

2
] (4.40)

Note that as a byproduct of the previous section we know that this integral equation is
uniquely solvable as long as the solution is sought in an adequate space. We now integrate
equation (4.40) and rescale it to obtain∫ 1

2

− 1
2

(∫ 1
2

− 1
2

κ

2
H0(κ|x1 − y1|)dx1

)
fκ(y1)dy1 = −iκ

Setting v = κ(x1 − y1) we obtain∫ 1
2

− 1
2

κ

2
H0(κ|x1 − y1|)dx1 =

1

2

∫ κ( 1
2

+y1)

κ(− 1
2
−y1)

H0(|v|)dv
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For any y1 in (−1
2
, 1

2
) this integral tends to

1

2

∫ ∞
−∞

H0(|v|)dv as κ→∞. According to lemma

4.5,
1

2

∫ ∞
−∞

H0(|v|)dv = 1. Define

gκ(y1) =
1

2

∫ κ( 1
2

+y1)

κ(− 1
2
−y1)

H0(|v|)dv

We have lim
κ→∞

(gκ(y1)− 1) = 0, for any y1 in (−1
2
, 1

2
). In some future work we will show that

lim
κ→∞

∫ 1
2

− 1
2

(gκ(y1)− 1)
fκ
κ

(y1)dy1 = 0 (4.41)

Note that we will only need to show that
fκ
κ

remains bounded by a fixed function L1([−1
2
, 1

2
])

as κ → ∞. Admitting that (4.41) is true and recalling that

∫ 1
2

− 1
2

gκ(y1)
fκ
κ

(y1)dy1 = −i, we

conclude that ∫ 1
2

− 1
2

fκ(y1)dy1 ∼ −iκ, (4.42)

and in particular

Re

∫ 1
2

− 1
2

fκ(y1)dy1 = o(κ), (4.43)

as κ tends to infinity.

For illustration, figure 4.2 shows two graphs of
1

κ

∫ 1
2

− 1
2

fκ(y1)dy1 against the wavenumber κ,

the imaginary part is on the left, and the real part is on the right.
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Fig. 4.2: Left:
1

κ
Im

∫ 1
2

− 1
2

fκ(y1)dy1 → −1 as κ→∞. Right:
1

κ
Re

∫ 1
2

− 1
2

fκ(y1)dy1 → 0 as

κ→∞.

4.4 Application to the non linear equation (1.15)

We can express the two functions p and q which were defined in (1.12) as

p(t) = C1t− C2

q(t) = C3t(−C4t+ C5)

where all the constants C1, ..., C5 are strictly positive. In terms of parameters (1.11),

C1 =
2rc2

b

fb
, C2 =

c2
b

γb
, C3 = (1 +

1

γb
)b2f 2

b , C4 = c2
b , C5 = b2f 2

b .

Our problem consists of solving the equation F (κ) = 0 for κ > 0 where

F (κ) = q(κ2)− p(κ2)Re

∫
Γ

∂uκ
∂x−2

(4.44)

and uκ is defined by uκ = ũκ +ϕ where ũκ solves (4.23). We know from the previous section
that F is analytic in (0,∞). According to the real part of the estimate (4.34) we have that

F (κ) ∼ −C2π(lnκ)−1, κ→ 0+ (4.45)

Recalling estimate (4.43) we claim that

F (κ) ∼ −C3C4κ
4, κ→∞ (4.46)

It follows from estimate (4.45) that there is a positive α such that F (κ) > 0 if κ is in (0, α),
and from estimate (4.46) we infer that limκ→∞ F (κ) = −∞. Since F is continuous in (0,∞),
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we conclude that F must achieve the value zero on that interval. We can also claim that the
zeros of F are isolated since F is an analytic function. Due to (4.46) these zeros occur only
in some interval [A,B] where A and B are two positive constants. In particular the equation
F (κ) = 0 has at most a finite number of solutions.
For illustration, figure 4.3 shows log10 F (κ) and log10(−C2π(lnκ)−1) against log10 κ on the
left, and log10

∣∣F (κ)
∣∣ and log10(C3C4κ

4) against κ on the right. These graphs were produced
using the specific values (3.24), and constants are calculated as C1 = 0.4, C2 = 2/3, C3 =
5/12, C4 = 1, C5 = 0.25.

Fig. 4.3: Left: log10 F (κ) (blue) vs log10(−C2π(lnκ)−1) (red). Right: log10

∣∣F (κ)
∣∣ (blue) vs

log10(C3C4κ
4) (red).
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Appendix A

On the Cα regularity of double-layer
potentials

A.1 Introduction

In this chapter we first study Cα regularity for double layer potentials defined on bound-
aries of domains of class C2 in R2. Similar regularity results appear in a plethora of texts
on potential theory. Folland’s textbook [13] covers the case of continuity only. Many text-
books cover exclusively the case of continuity on the boundary only, or as one approaches
the boundary in a normal direction. The closest approach to our work is that found in [9]
where the three dimensional analog to our regularity result is proved. We think that our
proof has several advantages. In our approach we first focus on the fundamental solution for
the Laplace equation and then we extend our results to the Helmholtz equation. The advan-
tage of that approach is that the fundamental solution for the Laplace equation has a very
simple expression, and then extending results to the Helmholtz case is rather straightfor-
ward. We clearly separate the two well known cases where points are on the boundary only,
or the boundary is approached exclusively in a normal direction, so the reader acquainted
with those two cases may focus on the remaining cases.
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A.2 Double layer potentials for the Laplace operator

Throughout this chapter, let us assume that D ⊂ R2 is a bounded domain, ∂D is of class
C2. We will denote ν the exterior normal vector to ∂D throughout this thesis.
We start by defining the function

GLap(x, y) =
1

2π
ln

1

|x− y|
, (A.1)

where x, y ∈ R2, which is a fundamental solution of Laplace’s equation in two dimensions.
If y is in ∂D we denote by

K(x, y) =
∂GLap

∂ν(y)
(x, y) =

1

2π

(x− y) · ν(y)

|x− y|2
(A.2)

the integration kernel for the double layer potential associated to GLap.

We will be using the following Lemma 6.15 from [21], and here we state it without proof.

Lemma A.1. Let ∂D be of class C2. Then there exists a positive constant L such that∣∣(x− y) · ν(y)
∣∣ ≤ L|x− y|2 (A.3)

and
|ν(x)− ν(y)| ≤ L|x− y|2 (A.4)

where x, y ∈ ∂D.

Lemma A.2. K(x, y) is bounded for x and y on ∂D. Moreover, if x, y and z are on ∂D

|K(x, y)−K(z, y)| ≤ C |x− z|max
{

1

|x− y|
,

1

|z − y|
,

}
(A.5)

where the positive constant C depends only on ∂D.

Proof:
The boundedness of the function K follows straight from (A.3):

|K(x, y)| =
∣∣∣∣ 1

2π

(x− y) · ν(y)

|x− y|2

∣∣∣∣ =
1

2π

1

|x− y|2
|(x− y) · ν(y)| ≤ L |x− y|2

2π |x− y|2
= C.

To prove the second part of the statement, we introduce a function

f(v) =
(v − y) · ν(y)

|v − y|
, v ∈ R2\{y}.

Its gradient equals to

∇f(v) =
|v − y|2ν(y)− {(v − y) · ν(y)} (v − y)

|v − y|3
.
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In terms of f we write∣∣K(x, y)−K(z, y)
∣∣ =

∣∣∣∣(x− y) · ν(y)

2π|x− y|2
− (z − y) · ν(y)

2π|z − y|2

∣∣∣∣ ≤ 1

2π |x− y|
|f(x)− f(z)|

+
1

2π |z − y|
|f(x)− f(z)|+ 1

2π

∣∣∣∣ (z − y) · ν(y)

|x− y| · |z − y|
− (x− y) · ν(y)

|x− y| · |z − y|

∣∣∣∣
≤ C |f(x)− f(z)| ·max

{
1

|x− y|
,

1

|z − y|

}
Notice that we have not yet used the fact that all the points lie on a smooth boundary.

Since ∂D is of C2, we can introduce an arclength parameterization
(
s1(·), s2(·)

)
, such that

functions s1 and s2 are continuously differentiable, and

ξ(t) =
(
s1(t), s2(t)

)
,

y(τ) =
(
s1(τ), s2(τ)

)
,

where 0 ≤ t, τ ≤ A for some constant A, t 6= τ , and the unit normal vector to the boundary
∂D is

ν(y) = ν(τ) =
(
− s′2(τ), s

′

1(τ)
)

(A.6)

We compute

d

dt
f
(
ξ(t)

)
=
∂f

∂ξ1

· s′1 +
∂f

∂ξ2

· s′2

=
∇ξ(t) · ν(τ)

∣∣ξ(t)− y(τ)
∣∣2 − [(ξ(t)− y(τ)

)
· ν(τ)

] [
(ξ(t)− y(τ)

)
· ∇ξ(t)

]∣∣ξ(t)− y(τ)
∣∣3 .

Notice that ∇ξ(t) · ν(τ) = s
′

1(t)s
′

2(τ) − s′2(t)s
′

1(τ), and using Taylor’s expansion, it can be
shown that ∣∣∇ξ(t) · ν(τ)

∣∣ = O
(
|t− τ |

)
.

Since ∂D is C2, then ∣∣(ξ(t)− y(τ)
)
· ∇ξ(t)

∣∣ ≤ ∣∣ξ(t)− y(τ)
∣∣ · sup |∇ξ| ,

and
|ξ(t)− y(τ)| = O

(
|t− τ |

)
.

Keeping in mind (A.3), we summarize all of these to show

∣∣ d
dt
f
(
ξ(t)

)∣∣ ≤ ∣∣∣∣∣∇ξ(t) · ν(τ)∣∣ξ(t)− y(τ)
∣∣
∣∣∣∣∣+

∣∣∣∣∣
[(
ξ(t)− y(τ)

)
· ν(τ)

] [(
ξ(t)− y(τ)

)
· ∇ξ(t)

]∣∣ξ(t)− y(τ)
∣∣3

∣∣∣∣∣
≤ |O(1)|+

∣∣∣∣∣L
∣∣ξ(t)− y(τ)

∣∣2 sup
∣∣∇ξ∣∣∣∣ξ(t)− y(τ)

∣∣∣∣ξ(t)− y(τ)
∣∣3

∣∣∣∣∣ = C.

We conclude
∣∣ d
dt
f
(
ξ(t)

)∣∣ ≤ C, which completes the proof. �

79



Remark A.3. The choice of an orientation for ∂D does not matter in the previous lemma,
but further in this thesis we will choose the vector normal to ∂D to point outward. It is crucial
in our numerical examples, and depending on the geometry, we choose between (−s′2, s

′
1) and

(s
′
2,−s

′
1).

Lemma A.4. Let ϕ ∈ L∞(∂D), K(x, y) and ∂D satisfy the assumptions of Lemma A.2.
We define double-layer potential with density ϕ

ψ(x) =

∫
∂D

K(x, y)ϕ(y)ds(y).

Fix α in (0, 1). Then there is a constant C such that for any x, z ∈ ∂D∣∣ψ(x)− ψ(z)
∣∣ ≤ C

∣∣x− z∣∣α,
that is, ψ is of C0,α(∂D).

Proof:

We denote ∂D(z; r) = ∂D ∩ B [z; r], where the radius r is sufficiently small and will be
specified later.

∣∣ψ(x)− ψ(z)
∣∣ =

∣∣∣∣∫
∂D

K(x, y)ϕ(y)ds(y)−
∫
∂D

K(z, y)ϕ(y)ds(y)

∣∣∣∣
≤
∫
∂D(z;r)

∣∣K(x, y)−K(z, y)
∣∣ · ∣∣ϕ(y)

∣∣ds(y)

+

∫
∂D/∂D(z;r)

∣∣K(x, y)−K(z, y)
∣∣ · ∣∣ϕ(y)

∣∣ds(y).

Let r = 2 |x− z|. Then for the first integral we will use the boundedness of K and ϕ:

I1 :=

∫
∂D(z;r)

|K(x, y)−K(z, y)|·|ϕ(y)| ds(y) ≤ C

∫
∂D(z;r)

ds(y) ≤ Cr = C |x− z| ≤ C |x− z|α

where 0 < α ≤ 1. Now, according to lemma A.2,

I2 :=

∫
∂D/∂D(z;r)

|K(x, y)−K(z, y)|·|ϕ(y)| ds(y) ≤ C |x− z|
∫
∂D/∂D(z;r)

max

{
1

|x− y|
,

1

|z − y|

}
ds(y)

but on ∂D/∂D(z; r),

max

{
1

|x− y|
,

1

|z − y|

}
≤ C

s− r
2

,

where s is the arclength. So

I2 ≤ |x− z|
∫ C1

r

C

s− r
2

≤ C |x− z|
∫ C1

r

dρ

ρ
=≤ C |x− z| (lnC1 − ln r) ≤ C |x− z|α ,

if r = 2 |x− z|. �
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Lemma A.5. Assume z and y are on ∂D and z 6= y; let x = z − hν(z), where h > 0 and
ν(z) is the outward unit normal. Then, provided that h is sufficiently small,

|x− y|2 ≥ 1

2

{
|y − z|2 + |x− z|2

}
. (A.7)

Proof:
Keeping in mind that |x− z|2 = h2, we deduce

|x− y|2 =
∣∣(x− z)− (y − z)

∣∣2 =
∣∣− hν(z)− (y − z)

∣∣2
= h2 + 2h(y − z) · ν(z) + |y − z|2

≥ h2 − 2h |(z − y) · ν(z)|+ |y − z|2

Again we use (A.3) to get

|x− y|2 ≥ h2 + (1− 2hL)|y − z|2.

Now for a fixed constant L we can choose h sufficiently small, so that
(1

2
− 2hL

)
≥ 0,

and in this case

0 ≤ 1

2
h2 +

(1

2
− 2hL

)
|y − z|2 ⇔

⇔ 1

2

(
|y − z|2 + h2

)
≤ (1− 2hL)|y − z|2 + h2 ≤ |x− y|2.

�
Proposition A.6. Let K be given by (A.2). We define the double-layer potential

v(x) =

∫
∂D

K(x, y)ϕ(y)ds(y), (A.8)

for x ∈ D, and extend it as

v(z) =

∫
∂D

K(z, y)ϕ(y)ds(y)− 1

2
ϕ(z) (A.9)

for z ∈ ∂D. If ϕ ∈ C0,α(∂D), then v ∈ C0,α(D̄).

Proof:
Proving this proposition will involve separating several cases depending on the position of
two points x and z in D. We first recall that there is a positive constant A such that the
exterior normal ν to ∂D can be extended as a C1 vector field in the compact set

E := {x ∈ D : dist(x, ∂D) ≤ A}

. We may choose A small enough such that for each x in E the projection x∂D of x on ∂D
is well defined. In other words for x in E, |x− y| achieves a unique minimum for y on ∂D,
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Case 1: dist(x, ∂D) ≥ A, |x− z| ≤ A
2
. Case 2: x, z ∈ ∂D.

Case 3: z ∈ ∂D, x = z − hν(z). Case 4: z ∈ ∂D, x→ z.

Case 5: 0 < |z − z∂D| ≤ |x− x∂D| < A, Case 6: 0 < |z − z∂D| ≤ |x− x∂D| < A,
|x− z| > 1

2
|z − z∂D|. |x− z| ≤ 1

2
|z − z∂D|

Tab. A.1: Different cases of Proposition A.6.
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and x∂D on ∂D is such that |x− x∂D| ≤ |x− y| for all y on ∂D.

1. Assume that x is in D and satisfies dist(x, ∂D) ≥ A. Let z be in D such that
|x − z| ≤ A

2
. Clearly, we must have that dist(z, ∂D) ≥ A

2
. We then use the fact K(x, y) is

Lipschitz continuous for (x, y) in

{x ∈ D : dist(x, ∂D) ≥ A

2
} × ∂D

to settle this first case.

2. Assume now that both x and z are on ∂D. The result in this case is a direct
consequence of Lemma A.4.

3. Let us now assume that x and z are in E and such that z is on ∂D and x = z−hν(z)
for h in (0, A).
We note that this case is actually well documented in the literature on potential theory. We
only cover it here for the sake of completion. We will use the following two formulas∫

∂D

K(z, y)ds(y) = −1

2
,

∫
∂D

K(x, y)ds(y) = −1. (A.10)

which are derived by many authors and can be found for example in [21]. According to
(A.10)

1

2
ϕ(z) = −1

2
ϕ(z) + ϕ(z) =

∫
∂D

ϕ(z)K(z, y)ds(y)−
∫
∂D

ϕ(z)K(x, y)ds(y), (A.11)

and using this we deduce:

|v(x)− v(z)| =
∣∣∣∣∫
∂D

ϕ(y)K(x, y)ds(y)−
∫
∂D

ϕ(y)K(z, y)ds(y) +
1

2
ϕ(z)

∣∣∣∣
=
∣∣∣ ∫

∂D

ϕ(y)K(x, y)ds(y)−
∫
∂D

ϕ(y)K(z, y)ds(y)

+

∫
∂D

ϕ(z)K(z, y)ds(y)−
∫
∂D

ϕ(z)K(x, y)ds(y)
∣∣∣

=
∣∣∣ ∫

∂D

{ϕ(y)− ϕ(z)} (K(x, y)−K(z, y)) ds(y)
∣∣∣

≤
∫
∂D(z,r)

∣∣ϕ(y)− ϕ(z)
∣∣ · ∣∣K(x, y)−K(z, y)

∣∣ds(y)

+

∫
∂D/∂D(z,r)

∣∣ϕ(y)− ϕ(z)
∣∣ · ∣∣K(x, y)−K(z, y)

∣∣ds(y) = I1 + I2

(A.12)

where ∂D(z; r) = ∂D ∩B [z; r], as in Lemma A.4.

Now we recall Lemma A.5 to claim that |x − y|2 ≥ 1

2

{
|z − y|2 + |x− z|2

}
for y ∈ ∂D and
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h sufficiently small. Using this inequality, we get the bound for the kernel K:

|K(x, y)| =
∣∣∣∣ν(y) · (z − y)

2π|x− y|2
+
ν(y) · (x− z)

2π|x− y|2

∣∣∣∣ ≤ C

2π
+

L|x− z|
2π|x− y|2

≤ C1

(
1 +

|x− z|
|z − y|2 + |x− z|2

)
.

The first integral in (A.12) can be bounded as follows:

I1 ≤ C

{∫
∂D(z,r)

|y − z|α ·
∣∣K(x, y)

∣∣ds(y) +

∫
∂D(z,r)

|y − z|α ·
∣∣K(z, y)

∣∣ds(y)

}
≤ C

{∫ r

0

ραdρ+

∫ r

0

ρα|x− z|
ρ2 + |x− z|2

dρ+

∫ r

0

ραdρ

}
= C

{
1

α + 1
ρα+1

∣∣r
0

+ |x− z|α
∫ r
|x−z|

0

ρ̄α

ρ̄2 + 1
dλ

}
≤ C (rα + |x− z|α) ≤ C|x− z|α

(A.13)

if r = O
(
|x− z|

)
.

To treat the second integral of (A.12), we introduce function g(x) =
(x− y) · ν(y)

|x− y|2
. Using

the mean-value theorem,

|K(x, y)−K(z, y)| =
∣∣g(x)− g(z)

∣∣ ≤ ∣∣∇g(ξ)
∣∣|x− z|,

for some ξ on the line segment between x and z.
By direct calculations,∣∣∣∣ ∂∂ξ1

(
g(ξ)

)∣∣∣∣ =

∣∣∣∣ν1(y)|ξ − y|2 − 2(ξ1 − y1)(ξ − y) · ν(y)

|ξ − y|4

∣∣∣∣ ≤ C
1

|ξ − y|2
.

Similarly,

∣∣∣∣ ∂g∂ξ2

∣∣∣∣ ≤ C
1

|ξ − y|2
, we have |∇g(x)| ≤ C

1

|ξ − y|2
, and deduce further that |K(x, y)−K(z, y)| ≤

C
|x− z|
|ξ − y|2

.

We apply lemma A.5 one more time, |ξ − y|2 ≥ 1

2

(
|z − y|2 + |z − ξ|2

)
≥ 1

2
|z − y|2, and

|K(x, y)−K(z, y)| ≤ C
|x− z|
|z − y|2

.

We are ready to estimate the second integral. Again, if r = O
(
|x− z|

)
:

I2 ≤ C

∫
∂D/∂D(z,r)

|y − z|α |x− z|
|y − z|2

ds(y)

≤ C|x− z|
∫ C1

r

ρα−2dρ ≤ C|x− z|ρα−1
∣∣r
∞

= C|x− z|rα−1 = C|x− z|α.

(A.14)
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Combining (A.13) and (A.14), we get |v(x)− v(z)| ≤ C |x− z|α.

4. Let us now assume that z ∈ ∂D and x ∈ E. As was pointed out earlier, there
exists a unique xD ∈ ∂D, such that x = x∂D − hν(x∂D), 0 < h < A. It is obvious that
|x− x∂D| ≤ |x− z|. We apply lemma A.1 to get

|x− z|2 = |x∂D − z|2 − 2hν(x∂D) · (x∂D − z) + h2 ≥ |x∂D − z|2 − 2hL |x∂D − z|2 ,

so that |x∂D − z| ≤ C|x− z| for h small enough. We use the cases 2 and 3 and arrive to:

|v(x)− v(z)| ≤
∣∣v(x)− v(x∂D)

∣∣+ ∣∣v(x∂D)− v(z)
∣∣ ≤ C|x−x∂D|α +C|x∂D− z|α ≤ 2C|x− z|α.

5. In this case we assume that x and z are in E. Without loss of generality, assume
dist(z, ∂D) ≤ dist(x, ∂D). Note that without loss of generality, we can also assume that
|x− z| is small enough so that |x∂D − z∂D| ≤ 2|x− z|. Now make the assumption specific to
this case that |x− z| > 1

2
|z − z∂D|.

Applying case 2. and case 3.∣∣v(x)− v(z)
∣∣ ≤ ∣∣v(x)− v(x∂D)

∣∣+
∣∣v(x∂D)− v(z∂D)

∣∣+
∣∣v(z)− v(z∂D)

∣∣
≤ C1|x− x∂D|α + C2|x∂D − z∂D|α + C1|z − z∂D|α ≤ C|x− z|α.

6. We now cover the remaining case where x and z are in E, without loss of generality
0 < dist(z, ∂D) ≤ dist(x, ∂D), but now |x− z| ≤ 1

2
|z − z∂D|.

We use one more time that∫
∂D

K(x∂D, y)ds(y) =

∫
∂D

K(z∂D, y)ds(y) = −1

2
,

to deduce the following:

v(z)− v(x) =
1

2
(ϕ(z∂D)− ϕ(x∂D))−

∫
∂D

(ϕ(y)− ϕ(x∂D))K(x, y)ds(y)

+

∫
∂D

(ϕ(y)− ϕ(z∂D))K(z, y)ds(y)

=
1

2
(ϕ(z∂D)− ϕ(x∂D))−

∫
∂D

(ϕ(z∂D)− ϕ(x∂D))K(x, y)ds(y)

+

∫
∂D

(ϕ(y)− ϕ(z∂D)) (K(z, y)−K(x, y)) ds(y).

(A.15)

Since ϕ ∈ Cα, K is bounded, and again, we can assume that |x− z| is small enough so that
|x∂D − z∂D| ≤ 2|x− z|, we have that∣∣∣∣12(ϕ(z∂D)− ϕ(x∂D))−

∫
∂D

(ϕ(z∂D)− ϕ(x∂D))K(x, y)ds(y)

∣∣∣∣ ≤ C|x∂D − z∂D|α = C|x− z|α.
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As was shown in case 3,

|K(z, y)−K(x, y)| ≤ C
|z − x|
|y − ξ|2

,

where ξ is on the line segment between x and z. Due to the positions of x and z relative to
∂D it is clear that in this case (A.16) implies that

|K(x, y)−K(z, y)| ≤ C
|x− z|
|y − z|2

By Lemma A.5, provided A is small enough, |z − y|2 ≥ 1

2

{
|z − z∂D|2 + |y − z∂D|2

}
, and we

have:∣∣∣ ∫
∂D

(
ϕ(y)− ϕ(z∂D)

)(
K(z, y)−K(x, y)

)
ds(y)

∣∣∣
≤ C

∫
∂D

|y − z∂D|α
|x− z|

|z − z∂D|2 + |y − z∂D|2
ds(y)

= C|x− z|
∫ C2

0

sα

s2 + |z − z∂D|2
ds = |x− z|

∫ C2
|z−z∂D |

0

s̄α|z − z∂D|α−1

s̄2 + 1
ds̄

≤ C
|x− z|

|z − z∂D|1−α

∫ ∞
0

s̄α

s̄2 + 1
ds̄ = C|x− z|α

(
|x− z|
|z − z∂D|

)1−α

≤ C|x− z|α,

where we made a substitution
s̄ =

s

|x− x∂D|
, (A.16)

and the last integral converges because 2−α > 1. Combining the results above, we conclude
that |v(x)− v(z)| ≤ C|x− z|α. �

A.3 Double layer potentials for the Helmholtz opera-

tor

We start by defining the function

Gsp(x, y) =
i

4
H0(k|x− y|), (A.17)

where k > 0 and H0 is the Hankel function of the first kind of order zero. H0 is a combination
of entire functions and logarithms, see [1]. More precisely, set

J0(z) =
∞∑
k=0

(−1

4
)k
z2k

(k!)2
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and

Y0(z) =
2

π
ln(

1

2
z)J0(z)− 2

π

∞∑
k=0

ψ(k + 1)(−1

4
)k
z2k

(k!)2
,

where the function ψ is defined by

ψ(1) = −γ, ψ(n) = −γ +
n−1∑
k=1

1

k
,

and γ is the Euler constant. It is well known that Gsp is a fundamental solution of the
Helmholtz equation in two dimensions. If y is in ∂D we denote by

Ksp(x, y) =
∂Gsp

∂ν(y)
(x, y)

the integration kernel for the double layer potential associated to Gsp. Set Kdiff = Ksp−K.
A simple calculation shows that

Kdiff (x, y) = ln |x− y|F1(x, y) + F2(x, y)

where F1 and F2 are two entire functions and F1(x, x) = 0 for all x in R2. It is then easy to
see that Kdiff is Lipschitz continuous on D ×D.

Proposition A.7. Define the double-layer potential

v(x) =

∫
∂D

Ksp(x, y)ϕ(y)ds(y), (A.18)

for x ∈ D, and extend it as

v(z) =

∫
∂D

Ksp(z, y)ϕ(y)ds(y)− 1

2
ϕ(z) (A.19)

for z ∈ ∂D. If ϕ ∈ C0,α(∂D), then v ∈ C0,α(D̄).

Proof:
Recalling Proposition A.6 and using that Ksp − K is Lipschitz continuous on D × D, this
claim is clear. �

The following proposition is the final goal of chapter I. We will use it later in chapter
III. The proof uses proposition A.7 and is similar to the proof of the theorem 6.18 from [21].
We omit it here.

Proposition A.8. For the single-layer potential u(x) =

∫
∂D

Gsp(x, y)ϕ(y)ds(y), x ∈ ∂D

with density ϕ ∈ C0,α(∂D) we have

∂u

∂ν
(z) =

∫
∂D

ϕ(y)
∂Gsp(z, y)

∂ν(z)
ds(y)− 1

2
ϕ(z), z ∈ ∂D, (A.20)
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where
∂u

∂ν
(z) = lim

h→+0
ν(z) · ∇u(z + hν(z)).

Such extended normal derivative
∂u

∂ν
is in C0,α(D).

88



Appendix B

Matlab code

B.1 Different building city - free-space case.

� Solving equation (1.15). Here theta in the code stands for α in the thesis, and θnumi is
assumed to be 1.

%%-------------------------------------------------------------

function [ksi, theta] = min_diff(Ni,numi,Mi)

% Ni - quantity of buildings; Mi - grid size

global N_cluster

global M_grid

global num

N_cluster = Ni;

M_grid = Mi;

num = numi;

[a,b,space,l_char] = Init_city;

N_build = N_cluster*length(a);

in_guess = ones(1,N_build);

in_guess(num) = 1;

options=optimset(’Display’,’iter’,’TolFun’,1e-6,’TolX’,1e-6);

[x, fval,exitflag] = fsolve(@Get,in_guess,options);

ksi = x(num);

theta=x; theta(num)=1;

function F = Get(x)
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global N_cluster

global M_grid

global num

theta = x;

theta(num) = 1;

[difference] = check(N_cluster,M_grid,x(num),theta);

F = difference;

%%-------------------------------------------------------------

� Subtracting right-hand side from left-hand side for a pair of the frequency ksi and the
foundations displacements theta in (1.15). Should be zero if solution is correct.

%%-------------------------------------------------------------

function [difference] = check(Ni,Mi,ksi,theta)

[a,b,space,l_char] = Init_city;

% City parameters

quant = length(a);

% Number of buildings in one cluster

freq = ksi;

% Frequency

N_cluster = Ni;

% Quantity of the clusters of the city

N_build = N_cluster*quant;

% Quantity of the buildings

M = Mi;

% Grid size

period = b(end)-a(1)+space(end);

% The length of a periodic city cluster

a_end = zeros(1,N_build); b_end = zeros(1,N_build);

for n=1:N_build

for j=1:quant

a_end(j+(n-1)*quant) = a(j)+(n-1)*period;

b_end(j+(n-1)*quant) = b(j)+(n-1)*period;

end;

end;

gamma_b = 1.5; f_b = 0.5; b = 1.5; r = 0.1;

c_b=0.5*(b_end-a_end)/l_char;

p_ksi = c_b.^2*freq^2 - (b*f_b)^2;

q_ksi = 2*r*c_b.^2*freq^2/f_b.*(c_b.^2*freq^2-(1+1/gamma_b)*p_ksi);

% City parameteres

p=1:2*M; x_bar = -1+(2*p-1)/(2*M); q=0:2*M; t_bar = -1+q/M;

90



Matr = zeros(2*M*N_build,2*M*N_build);

rhs = zeros(2*M*N_build,1);

for q=1:2*M

% asin(t_{q+1})-asin(t_{q}) need to be computed just once,

% and then can be used for each line of the matrix

darcsin(q) = asin(t_bar(q+1))-asin(t_bar(q));

end;

Matr = syst_matrix(N_cluster,M,ksi);

rhs = zeros(2*N_build*M,1);

for j=1:N_build

rhs((2*M*(j-1)+1):2*M*j) = theta(j);

end;

phi = Matr\rhs;

for j=1:N_build

sum = 0;

for q=1:2*M

sum = sum + darcsin(q)*phi(q + (j-1)*2*M);

end;

T(j) = real(0.5*sum);

difference(j) = q_ksi(j)*theta(j) - p_ksi(j)*T(j);

end;

%%-------------------------------------------------------------

� Assembling matrix (3.21) for system (3.22).

%%-------------------------------------------------------------

function Matr = syst_matrix(Ni,Mi,ksi)

global a_end

global b_end

global Euler

Euler = 0.5772156649015328;

[a,b,space,l_char] = Init_city;

quant = length(a);

freq = ksi;

N_build = quant*Ni;

% Quantity of the buildings

M = Mi;
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period = b(end)-a(1)+space(end);

% The length of a periodic city cluster

a_end = zeros(1,N_build); b_end = zeros(1,N_build);

for n=1:N_build

for j=1:quant

a_end(j+(n-1)*quant) = a(j)+(n-1)*period;

b_end(j+(n-1)*quant) = b(j)+(n-1)*period;

end;

end;

p=1:2*M; x_bar = -1+(2*p-1)/(2*M); q=0:2*M; t_bar = -1+q/M;

Matr = zeros(2*M*N_build,2*M*N_build);

rhs = zeros(2*M*N_build,1);

for q=1:2*M

% asin(t_{q+1})-asin(t_{q}) need to be computed just once,

% and then can be used for each line of the matrix

darcsin(q) = asin(t_bar(q+1))-asin(t_bar(q));

end;

Matr = zeros(2*M*N_build,2*M*N_build);

for k=1:N_build

for j=1:N_build

for p=1:2*M

for q=1:M

argum = freq*abs(g_func(k,x_bar(p))-g_func(j,x_bar(q)));

param1 = (b_end(j)-a_end(j))/2;

param2 = 0.5*(x_bar(p)*(b_end(k)-a_end(k))+b_end(k)+...

a_end(k)-b_end(j)-a_end(j));

Matr(p+2*M*(k-1),q+2*M*(j-1)) = A_func(argum)/sqrt(1-x_bar(q))*...

I_integr(param1,-param2,-t_bar(q+1),-t_bar(q)) + ...

(asin(t_bar(q+1))-asin(t_bar(q)))*(A_func(argum)*log(freq/2)+...

B_func(argum));

end;

for q=(M+1):2*M

argum = freq*abs(g_func(k,x_bar(p))-g_func(j,x_bar(q)));

param1 = (b_end(j)-a_end(j))/2;

param2 = 0.5*(x_bar(p)*(b_end(k)-a_end(k))+b_end(k)+a_end(k)-...

b_end(j)-a_end(j));

Matr(p+2*M*(k-1),q+2*M*(j-1)) = A_func(argum)/sqrt(1+x_bar(q))*...
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I_integr(param1,param2,t_bar(q),t_bar(q+1)) + ...

(asin(t_bar(q+1))-asin(t_bar(q)))*(A_func(argum)*log(freq/2)+...

B_func(argum));

end;

end;

end;

end;

function x=A_func(z)

x = -0.5/pi*besselj(0,z);

function x=B_func(z)

global Euler

if (z~=0)

x = 0.25*1i*besselh(0,z) + 0.5/pi*besselj(0,z)*log(z/2);

else

x = 1i/4 - 0.5*Euler/pi;

end;

function x = g_func(j,t)

global a_end

global b_end

x = (b_end(j)-a_end(j))/2*t + (b_end(j)+a_end(j))/2;

%%-------------------------------------------------------------

� Defining city parameters: a, b are the building ends coordinates for one cluster, space
are the distances between the buildings for one cluster, l char is characteristic length.

%%-------------------------------------------------------------

function [a,b,space,l_char] = Init_city()

a = [0 2.2 4.7]; b = [1.8 4.2 6.2]; space = [0.4 0.5 0.3]; l_char = 1;

%%-------------------------------------------------------------

� Calculating integral (3.23).

%%-------------------------------------------------------------

function g = I_integr(a,b,x_beg,x_end)

% Calculation of int[x_beg,x_end] { ln|at-b| / sqrt(1-t) } dt,

% -1<=end,start<=1

g_1 = 4*(sqrt(1-x_end) - sqrt(1-x_beg));

if (b>a)

g_2 = func_1(x_end,a,b) - func_1(x_beg,a,b);

else

if (b<a)
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g_2 = func_3(x_end,a,b) - func_3(x_beg,a,b);

else

g_2 = func_2(x_end,a,b) - func_2(x_beg,a,b);

end;

end;

g = g_1 - 2*g_2;

function x=func_1(t,a,b)

x = sqrt(1-t)*log(abs(a*t-b)) + 2*sqrt((b-a)/a)*atan(sqrt((a-a*t)/(b-a)));

function x=func_2(t,a,b)

if t==1

x=0;

else

x = sqrt(1-t)*log(abs(a*t-a));

end;

function x=func_3(t,a,b)

x = (sqrt(1-t) - sqrt((a-b)/a))*log(abs(a*t-b)) +...

2*sqrt((a-b)/a)*log(abs(sqrt(a-a*t) + sqrt(a-b)));

%%-------------------------------------------------------------

B.2 Different building city - periodic case.

� Solving equation (1.15). Here theta in the code stands for α in the thesis, and θnumi is
assumed to be 1.

%%-------------------------------------------------------------

function [ksi,theta] = min_diff(Mi,numi,in_guess)

global N_build

global M_grid

global num

global phi_temp

M_grid = Mi; num=numi;

[a_end, b_end, period, l_char] = Init_geom;

N_build = length(a_end);

options=optimset(’Display’,’iter’,’TolFun’,1e-6,’TolX’,1e-6);

[x, fval,exitflag] = fsolve(@Get,in_guess,options);
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for k=1:N_build

h=(b_end(k)-a_end(k))/(2*M_grid);

s=a_end+h:h:b_end-h;

end;

ksi = x(num);

theta=x; theta(num)=1;

function F = Get(x)

global N_build

global M_grid

global num

global phi_temp

theta = x;

theta(num) = 1;

[difference,phi_temp] = check(M_grid,x(num),theta);

F = difference;

%%-------------------------------------------------------------

� Subtracting right-hand side from left-hand side for a pair of the frequency ksi and the
foundations displacements theta in (1.15). Should be zero if solution is correct.

%%-------------------------------------------------------------

function [difference] = check(Mi,ksi,theta)

freq = ksi; M = Mi;

[a_end, b_end, period, l_char] = Init_geom;

N = length(a_end);

gamma_b = 1.5; f_b = 0.5; b = 1.5; r = 0.1;

c_b = 0.5/l_char*(b_end-a_end);

p_ksi = c_b.^2*freq^2 - (b*f_b)^2;

q_ksi = 2*r*c_b.^2*freq^2/f_b.*(c_b.^2*freq^2-(1+1/gamma_b)*p_ksi);

p=1:2*M; x_bar = -1+(2*p-1)/(2*M); q=0:2*M; t_bar = -1+q/M;

Matr = zeros(2*M*N,2*M*N);

rhs = zeros(2*M*N,1);

for q=1:2*M

95



% asin(t_{q+1})-asin(t_{q}) need to be computed just once,

% and then can be used for each line of the matrix

darcsin(q) = asin(t_bar(q+1))-asin(t_bar(q));

end;

Matr = syst_matrix(M,ksi);

for j=1:N

rhs((2*M*(j-1)+1):2*M*j) = theta(j);

end;

phi = Matr\rhs;

for j=1:N

sum = 0;

for q=1:2*M

sum = sum + darcsin(q)*phi(q + (j-1)*2*M);

end;

T(j) = real(0.5*sum);

difference(j) = q_ksi(j)*theta(j) - p_ksi(j)*T(j);

end;

%%-------------------------------------------------------------

� Initializing the city parameters.

%%-------------------------------------------------------------

function [a_end, b_end, period, l_char] = Init_geom;

a_end = [0 1.3 3 4 5.4 6.8]; b_end = [1 2.6 3.5 5 6.2 7.4];

period = 7.9; l_char = 1;

%%-------------------------------------------------------------

� %%-------------------------------------------------------------

function Matr = syst_matrix(Mi,ksi)

global freq

global fund_zero_out

global a_end

global b_end

global period

Euler = 0.5772156649015328;

freq = ksi;

% Frequency

M = Mi;

% Grid size

[a_end, b_end, period] = Init_geom;
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N_build = length(a_end);

% Quantity of the buildings

fund_zero_out = limit(freq,period);

% Limit of a fundamental solution as its argument goes to zero

p=1:2*M; x_bar = -1+(2*p-1)/(2*M);

q=0:2*M; t_bar = -1+q/M;

Matr = zeros(2*M*N_build,2*M*N_build);

for q=1:2*M

% asin(t_{q+1})-asin(t_{q}) need to be computed just once,

% and then can be used for each line of the matrix

darcsin(q) = asin(t_bar(q+1))-asin(t_bar(q));

end;

Matr = zeros(2*M*N_build,2*M*N_build);

% Assembling matrix for system (28)

for k=1:N_build

for j=1:N_build

for p=1:2*M

for q=1:M

argum = freq*abs(g_func(k,x_bar(p))-g_func(j,x_bar(q)));

param1 = (b_end(j)-a_end(j))/2;

param2 = 0.5*(x_bar(p)*(b_end(k)-a_end(k))+b_end(k)+a_end(k)-...

b_end(j)-a_end(j));

Matr(p+2*M*(k-1),q+2*M*(j-1)) = A_func(argum)/sqrt(1-x_bar(q))*...

I_integr(param1,-param2,-t_bar(q+1),-t_bar(q)) + ...

(asin(t_bar(q+1))-asin(t_bar(q)))*(A_func(argum)*log(freq/2)+...

B_func(argum));

end;

for q=(M+1):2*M

argum = freq*abs(g_func(k,x_bar(p))-g_func(j,x_bar(q)));

param1 = (b_end(j)-a_end(j))/2;

param2 = 0.5*(x_bar(p)*(b_end(k)-a_end(k))+b_end(k)+a_end(k)-...

b_end(j)-a_end(j));

Matr(p+2*M*(k-1),q+2*M*(j-1)) = A_func(argum)/sqrt(1+x_bar(q))*...

I_integr(param1,param2,t_bar(q),t_bar(q+1)) + ...

(asin(t_bar(q+1))-asin(t_bar(q)))*(A_func(argum)*log(freq/2)+...

B_func(argum));

end;
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end;

end;

end;

function x=A_func(z)

x = -0.5/pi*besselj(0,z);

function x=B_func(z)

global freq

global fund_zero_out

global period

if (z~=0)

x = fundamental(period,freq,0,z/freq,0,0) + 0.5/pi*besselj(0,z)*log(z/2);

else

x = fund_zero_out;

end;

function x = g_func(j,t)

global a_end

global b_end

x = (b_end(j)-a_end(j))/2*t + (b_end(j)+a_end(j))/2;

%%-------------------------------------------------------------

� Code I integral.m to calculate integrals (3.23) is exactly the same as for the free-space
case.

� Finding the limit of B0(z) from (3.29) as z → 0.

%%-------------------------------------------------------------

function lim = limit(period,freq)

Euler = 0.5772156649015328;

lim = 1i/4 - 0.5*Euler/pi + 1i/4*bessel0_series(period,freq,5,4,7);

%%-------------------------------------------------------------

� Code to calculate (2.21).

%%-------------------------------------------------------------

function G = bessel0_series(di,wave_k,M1i,M2i,Ni)

Euler = 0.57721566490153286;

d = di;

% Period

beta = 0;

% Dependence of the incident waves

k = wave_k;

% Wavelength/frequency
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p = 2*pi/d;

M1 = M1i; M2 = M2i; N=Ni; a=3;

sum = 0;

for m=-M1:M1

beta_m = beta+p*m;

temp = sqrt(abs(k^2-beta_m^2));

if (beta_m^2-k^2)>0

gamma_m = temp;

else

gamma_m = -i*temp;

end;

sum = sum + erfz(0.5*gamma_m*d/a)/gamma_m;

end;

part1 = 0.5*sum/d;

sum = 0;

for m=-M2:(-1)

sum1 = 0; coeff=0.5*k*d/a;

for n=0:N

sum1 = sum1 + coeff^(2*n)*E_func(n+1,a^2*m^2)/factorial(n);

end;

sum = sum + exp(i*m*beta*d)*sum1;

end;

for m=1:M2

sum1 = 0; coeff=0.5*k*d/a;

for n=0:N

sum1 = sum1 + coeff^(2*n)*E_func(n+1,a^2*m^2)/factorial(n);

end;

sum = sum + exp(i*m*beta*d)*sum1;

end;

part2 = 0.25*sum/pi;

% if m=0, n>=1

sum = 0;

coeff=0.5*k*d/a;

for n=1:N

sum = sum + coeff^(2*n)/n/factorial(n);

end;

part3 = sum/(4*pi);

part4 = 0.5*log(0.5*k*d/a)/pi - 1i/4 + 0.25*Euler/pi;

G = (part1 + part2 + part3 + part4)*4/1i;
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%%-------------------------------------------------------------

� Fundamental solution of the Helmholtz equation. Periodic case.

%%-------------------------------------------------------------

function gr = fundamental(period,freq,x1,x2,y1,y2)

gr = green(period,freq,x1,x2,y1,y2);

%%-------------------------------------------------------------

� Code to calculate the periodic Green’s function.

%%-------------------------------------------------------------

function g = green(period,kappa,xi,yi,ksii,etai)

if abs(xi-ksii) > 1e-1

g = green_approx(500,period,kappa,xi,yi,ksii,etai);

else

g = green_approx_ewald(8,3,31,period,kappa,xi,yi,ksii,etai);

end;

%%-------------------------------------------------------------

� Spectral form (2.13).

%%-------------------------------------------------------------

function alt = green_approx(Mi,di,ki,xi,yi,ksii,etai)

alt = 0;

ksi = ksii; eta = etai;

%Source point

d = di;

% Period

beta = 0;

% Dependence of the incident waves

k = ki;

% Wavelength

p = 2*pi/d; M = Mi; X = xi - ksi; Y = yi - eta;

sum = 0;

for m=-M:M

beta_m = beta+p*m;

temp = sqrt(abs(k^2-beta_m^2));

if (beta_m^2-k^2)>0

gamma_m = temp;

else

gamma_m = -i*temp;

end;

sum = sum + exp(-gamma_m*abs(X))*exp(1i*beta_m*Y)/gamma_m;

end;

alt = sum/(2*d);
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%%-------------------------------------------------------------

� Ewald’s method.

%%-------------------------------------------------------------

function G = green_approx_ewald(M1i,M2i,Ni,di,ki,xi,yi,ksii,etai)

d = di;

% Period

beta = 0;

% Dependence of the incident waves

k = ki;

% Wavelength/frequency

M1 = M1i; M2 = M2i; N=Ni;

X = xi - ksii; Y = yi - etai;

p = 2*pi/d;

a=5;

% Calculating E integrals

E = zeros(N+1,2*M2+1);

for m=-M2:M2

r_m = (X^2+(Y-m*d)^2)^0.5;

x = (a*r_m/d)^2;

if x==0

fprintf(’Singularity!!! Some r_m is zero :(’);

break

else

E(1,m+M2+1) = expint(x);

end;

for n=1:N

E(n+1,m+M2+1) = exp(-x)/n - x/n*E(n,m+M2+1);

end;

end;

sum = 0;

for m=-M1:M1

beta_m = beta+p*m;

temp = sqrt(abs(k^2-beta_m^2));

if (beta_m^2-k^2)>0

gamma_m = temp;

else

gamma_m = -i*temp;

end;

sum = sum + exp(i*beta_m*Y)/(gamma_m*d)*(exp(gamma_m*X)*...
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erfz(0.5*gamma_m*d/a+a*X/d)+...

exp(-gamma_m*X)*erfz(0.5*gamma_m*d/a-a*X/d));

end;

part1 = 0.25*sum;

sum = 0;

for m=-M2:M2

r_m = (X^2+(Y-m*d)^2)^0.5;

sum1 = 0;

for n=0:N

sum1 = sum1 + (0.5*k*d/a)^(2*n)*E(n+1,m+M2+1)/factorial(n);

end;

sum = sum + exp(i*m*beta*d)*sum1;

end;

part2 = 0.25*sum/pi;

G = part1 + part2;

%%-------------------------------------------------------------

� Calculation of the complementary error function (2.16) by implementing “A method
for calculating the complex complementary error function with prescribed accuracy”
by Knut Petras (see [25]).

%%-------------------------------------------------------------

function x=erfz(z)

if imag(z)==0

x = erfc(z);

else

if abs(z)<4

% Using formula (2)

sum = 0;

for n=0:200

sum = sum + (-1)^n*z^(2*n+1)/(factorial(n)*(2*n+1));

end;

x = 1-2*sum/sqrt(pi);

else

% Using formula (4)

modul = abs(z);

sum = 1;

k = (abs(z))^2;

for n=1:(k-1)

sum = sum + (-1)^n*odd_fact(n)/(2*z^2)^n;

end;

x = sum/(sqrt(pi)*z*exp(z^2));
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end;

end;

function q=odd_fact(m)

%% Calculating product "odd factorial" 1*3*5*...*(2*m-1)

prod = 1;

for k = 1:m

prod = prod*(2*k-1);

end;

q = prod;

%%-------------------------------------------------------------

� Calculating the exponential integral (2.17).

%%-------------------------------------------------------------

function E = E_func(n,x)

if (x==0)

if (n~=1)

E = 1/(n-1);

end;

else

if (n==1)

E = expint(x);

else

if (n==0)

E = exp(-x)/x;

else

E = exp(-x)/(n-1) + x/(1-n)*E_func(n-1,x);

end;

end;

end;

%%-------------------------------------------------------------

103



Appendix C

Maple code

Maple code to calculate limits (2.39) and (2.37).

> restart;

> with(linalg);

> assume(t,real);

> assume(tau,real);

> x1 := 0.4*(cos(t) - 0.4*sin(t) - 0.5*sin(2*t));

> x2 :=0.4*cos(t)+0.2*sin(t)+0.5;

> x := <x1,x2>;

> y := eval(x,t=tau);

> z := y-x;

> tang1 := diff(x1,t);

> tang2 := diff(x2,t);

> nu := <tang2,-tang1>;

> nu_tau := eval(nu,t=tau);

> numerator := 2*combine(nu_tau.z);

> denomin := combine(z.z);

> K_2 := simplify(numerator/denomin);

> lim:=limit(K_2,t=tau);

> answer := simplify(lim);

> L_2 := 4*(sin(0.5*(t-tau)))^2/(z.z);

> lim_2 := simplify(limit(L_2,t=tau));
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