
EGAD: The Electron Grid
of Aligned Documents

A Major Qualifying Project

Submitted to the Faculty of

Worcester Polytechnic Institute

in partial fulfillment of the requirements for the

Degree in Bachelor of Science

in

Interactive Media and Game Development

by

Bailey Sostek

Date: 25 April 2019

Project Advisor:

Brian Moriarty, IMGD Professor of Practice

This report represents work of WPI undergraduate students submitted to the faculty as evidence of a
degree requirement. WPI routinely publishes these reports on its web site without editorial or peer review.

For more information about the projects program at WPI, see http://www.wpi.edu/Academics/Projects.

http://www.wpi.edu/Academics/Projects

E l e c t r o n G r i d o f A l i g n e d D o c u m e n t s V1.0 | 1

Abstract

This report documents the design and build process for the Electron Grid of Aligned

Documents (EGAD). This framework is an open source project which allows any developer to

quickly and efficiently make grid-based applications linking webpages to one another. Modules

called widgets can be inserted into any grid cell to implement additional functionality that a

developer may want to incorporate into their application. Several commonly-needed widgets are

provided, as well as a thoroughly-documented API supporting the development of custom

widgets.

E l e c t r o n G r i d o f A l i g n e d D o c u m e n t s V1.0 | 2

Acknowledgements

This paper would not have been possible without the expert guidance of my mentor and

close friend, Professor Brian Moriarty. His knowledge of JavaScript ES6, the resources he

provided, and his design background were invaluable through the development of this

framework. Next, I would like to thank Bill Chamberlain for his guidance when I was learning to

program. I would not have pursued an education in computer science were it not for the free-

form learning environment of his classroom. The frequent puzzles which illustrated fundamental

computer science concepts proved to be exceptionally helpful when furthering my education.

Next, I would like to thank Joe Rose for his personal guidance and mentorship throughout my

early high school years. Without the persistent guidance of Rachel Palleschi, my writing skills

would not have developed to the point where writing a paper of this magnitude was possible.

This paper is a direct result of the impact she made on my life. David Medvitz provided me with

excellent guidance through the later years of high school. His connection with me allowed me to

pursue advance computer science concepts while still in high school, and he heavily encouraged

me to attend WPI. Were it not for his advice I would have never have found a field I love as

much as this one. Finally, I would like to thank my parents and grandparents. The

encouragement from my parents and feedback they have given me through growing up has really

shaped me into who I am. They have given me so much support and enabled me to pursue a

dream of mine. Without the direct help of my parents and grandparents I would not have been

able to attend the schools that shaped me so much, for that opportunity I am incredibly grateful.

Thank you.

E l e c t r o n G r i d o f A l i g n e d D o c u m e n t s V1.0 | 3

Contents

Abstract .. 1

Acknowledgements ... 2

Grid .. 5

Save System ... 8

Widget .. 9

Webview ... 13

File Tree ... 14

Code Editor .. 16

Development Console .. 18

Tab Bar .. 19

Canvas .. 20

Process Spawner .. 22

Development Customizable Menu System .. 24

Real world Applications ... 25

Perlenspiel IDE .. 26

FraudTek IDE ... 28

3D Viewer .. 30

GitHub ... 31

Works cited .. 32

Appendix .. 33

Documentation .. 33

E l e c t r o n G r i d o f A l i g n e d D o c u m e n t s V1.0 | 4

Development

Initially, the Electron Grid of Aligned Documents (EGAD) was conceived as an

integrated development environment (IDE) for the Perlenspiel game engine. However, it soon

became evident that, with the addition of abstraction layers, a more flexible and powerful

framework could be created. The project evolved into a generalized tool supporting the creation

of applications consisting of an arbitrary grid of web pages, combined with common tools useful

to developers when working with Electron.

The inspiration for this project came from Visual Studio Code1, an Integrated

Development Environment made with the Electron framework. EGAD is similar to Visual

Studio Code in that it is based on Electron, and allows users to dock and move panels around.

EGAD differs from Visual Studio Code in that it assumes nothing about the type of application

that is being developed, except that its UI will be grid-based. EGAD handles both the

initialization of grid panels and a pipeline for communicating state changes between panels. It

can be used to build any Web-based application requiring a flexible panel layout.

Any EGAD panel can be occupied with prebuilt utilities called widgets. EGAD provides

a small library of commonly-needed widgets, including a webpage viewer, file browser, code

editor, development console, and a tab bar. The framework also documents how custom widgets

can be created, giving developers the flexibility to extend EGAD for use in a wide variety of to

applications. One example would be a tool that allows users to post to multiple social media sites

at the same time. This application could have three webpages open at the same time, as well as a

1 https://code.visualstudio.com

https://code.visualstudio.com/

E l e c t r o n G r i d o f A l i g n e d D o c u m e n t s V1.0 | 5

text input widget, and a post button widget. When the button was pressed, messages entered into

the input widget would be posted to all three social media sites concurrently.

Grid

EGAD’s essential functionality is its ability to create and manipulate a grid of functional

application modules. The grid is made up of horizontally resizable columns, each containing

child rows that can be individually resized vertically. Locations in the grid are are referred to as

cells. For example, the grid presented in Figure 1 is comprised of five columns, each containing

five rows. EGAD’s API function grid.getWidget(column, row) can be called to reference a

specific cell in the grid. This returns

Figure 1. 5 x 5 grid of cells.

 Figure 1. Independent column format.

thus increasing the use case flexibility of the EGAD framework.

the widget stored in cell (column, row). If there is no

widget at the location specified, the value null is

returned. Similarly the grid.setWidget(column, row,

widget) function can be used to set or replace the widget

residing in a grid cell.

The grid.addWidget(column, row, widget)

function is used to add an entirely new cell to the grid at

the specified location. This allows for grids to have

independently-formatted rows or columns. Figure 2

depicts a grid with one cell in column one, and three

cells in column two. Structuring rows in this free-form

manner enables a variety of application designs,

E l e c t r o n G r i d o f A l i g n e d D o c u m e n t s V1.0 | 6

 The network of white bars distinguishing cell boundaries in the grid are referred to as

drags. All cells in the grid detect what drags represent their boundaries, and can be resized

dynamically when any of these drags are moved. To move a drag, a user simply clicks on the

white boundary and drags it to a desired location. All the drags that move horizontally span the

entire height of the window. This ensures that all cells within a column will have a consistent

size. Rows are not consistent throughout the grid. Every column can contain an arbitrary number

of rows. The only guarantee about a column is that it will have at least one row. Figure 3

illustrates how moving a drag horizontally will resize all cells in a column, however resizing a

drag vertically will only change the size of cells in that column.

Figure 3. Demonstration of horizontal and vertical resizing.

 Every cell in the grid can contain a single widget. Widgets are containers for displaying

and manipulating data. When a grid is initialized, an array of widgets is specified. These widgets

are synchronously initialized, which means that the second widget will not be initialized until the

first widget is done initializing. The parent widget class is abstract; therefore, independent

developers can design their own widgets to add functionality needed for specific applications.

 EGAD offers a library of built in widgets which provide commonly-needed functionality,

allowing developers to quickly start developing an application. Figure 4 shows a 5x5 grid

initialized with three instances of the built-in file tree widget. Each of these instances are

completely independent. They can point to different file locations on the disk, have different

E l e c t r o n G r i d o f A l i g n e d D o c u m e n t s V1.0 | 7

stylistic themes, and can configure properties of their specific file tree without affecting the

appearance or functionality of other widgets.

Figure 2. 5 x 5 grid with three file tree widgets.

The number of cells in a given column is not fixed. At any time, an EGAD application

can modify how many cells there are in a column by calling the grid.addWidget() function.

Widgets can be removed from the grid by calling grid.removeWidget(). These functions allow

the layout of an application to be modified at any time. A possible use case for this functionality

is to show a tooltip widget when the user is interacting with a certain piece of data. When the

tooltip is no longer needed, the widget can be removed.

E l e c t r o n G r i d o f A l i g n e d D o c u m e n t s V1.0 | 8

Save System

 Whenever an application built with EGAD is closed, a custom save object is generated

representing the exact state of the grid. To achieve this preservation of the grid state, all columns

are iterated through and their widths are recorded. Then the height of each cell in each column is

recorded. This forms a two-dimensional array of width and height data that can be used to

recreate the dimensions of the grid when re-opened.

 Cells containing widgets need to have a way to persist data as well. The parent widget

class has an abstract Save function that is overridden by child widget classes. The

implementations of this method in child classes return JSON objects containing all persistent

data needed for that specific widget. For example, the file tree widget generates a custom save

object with a “path” attribute which keeps track of the directory to which the file tree is pointing.

These custom JSON objects are inserted into the object containing the width and height data of

the associated cell. This JSON object is then written to a configuration file specified by the

developer. When the application is re-opened, the save file is loaded, and the JSON data inside is

parsed back into a save object. As the grid is initialized, each widget reads its relative save

information from the save object to return to the state existing when the application was closed.

 If additional save information is needed, the developer can integrate with the fileManager

class, to read and write files. This class acts as a wrapper for the default node.js file system

module fs,2 and enables a developer to easily read, write and manage external files and integrate

them with their application.

2 https://code-maven.com/reading-a-file-with-nodejs

https://code-maven.com/reading-a-file-with-nodejs
https://nodejs.org/api/fs.html#fs_file_system

E l e c t r o n G r i d o f A l i g n e d D o c u m e n t s V1.0 | 9

Widget

 Widgets are the fundamental display container used by EGAD. The parent widget class is

an abstract class which defines many useful helper functions and data management tools. This

parent class also defines many fields that every widget needs to support.

 Widgets must contain a name describing itself, a column (x), and a row (y) position to be

directly parented to in the grid, and a reference to a DOM element that the widget can internally

modify. This DOM element is what is inserted into the application when a widget is parent to an

(x, y) cell. Widgets also maintain a list of references to other widgets with which they may need

to exchange data. This is how widgets communicate between one another.

 Widgets also generate a JSON object, and store any configuration data they need inside

that object as attributes. All configuration data that a widget needs when it is initialized is read

from this object, which EGAD saves the object’s state when the application is closed.

 The final field that every widget has is an isLoaded Boolean that returns true once a

widget has successfully been initialized. This field is used when widgets want to communicate

between one another. If the widget that is trying to be accessed isLoaded is false, there is no

guarantee that any field within that widget will be defined. If isLoaded is true, then the widgets

constructor has been called, insuring that all fields on the widget are initialized and safe to

reference.

 In order for widgets to rely on one another, it is paramount that the initialization order of

all widgets can be controlled. If widget A relies on widget B, and widget A’s constructor

references fields in widget B, if widget B has not finished initializing, some or all of its fields

may be undefined. One would think that this solution could be solved by simply assuring that

E l e c t r o n G r i d o f A l i g n e d D o c u m e n t s V1.0 | 10

widget B will have been initialized by widget A’s constructor. However, it is not that simple.

Assume that we create widget B immediately before widget A as is seen in Figure 5.

Figure 3. Importance of initialization order.

Widget B could spawn asynchronous processes in its constructor. This would cause widget B to

be in a state where its constructor has terminated yet not be fully initialized. Since its constructor

has terminated, the next line of the program would execute to create widget A. If widget A goes

on to reference widget B in its own constructor, there is no guarantee that the fields being

accessed will be defined. Now widget A has finished executing its constructor with references to

undefined in places that should reference fields of widget B. By this time the asynchronous calls

made by widget B have finished executing, and widget B updates its DOM element to use the

data retrieved from the asynchronous calls. This will put the grid in a state where widget B looks

as if it were initialized first, however widget A really finished initializing first, and contains

references to invalid data taken from widget B.

 The solution to this problem is to assert that any widget created must return a promise

from its initialization call. Any asynchronous calls made within this constructor must be handled

in such a way that the promise does not resolve until all asynchronous calls have terminated.

With these rules in place, an array of widgets can be initialized within a locking loop, as

illustrated in Figure 6.

E l e c t r o n G r i d o f A l i g n e d D o c u m e n t s V1.0 | 11

Figure 4. Implementation of synchronous loop structure.

This loop uses a new feature of JavaScript ES6, async await3. The keyword async can preface

any function within JavaScript. This keyword asserts that within the body of the function some

asynchronous function will be executed. This keyword also enables the use of a second keyword,

await. The keyword await must preface an asynchronous function call. When the code in Figure

6 on line 513 is interpreted, the execution of line 514 will halt until the asynchronous call

spawned from line 513 terminates. The code being executed on line 513 is evaluating the

promise returned from a widget’s initialize function. This promise was designed to not return

until all asynchronous calls in a widget’s initialize function have terminated. Therefore, Figure 6

depicts a blocking chain that will wait to initialize the next widget in the chain until the previous

link has finished initializing. This design ensures that widget B will be initialized by the time it is

passed to widget A.

 One of the design goals for widgets was for them to encapsulate all of their functionality

within their class. The reason for this is that it enables any widget developed for an EGAD

application to be deployed in any other EGAD project. In the future, users will be able to search

the web for an EGAD widget that they would like to include in their project, and hopefully find

one that works as-is, or which can edited to fit their needs. The open-source EGAD project will

3 https://www.ecma-international.org/ecma-262/8.0/#sec-async-function-definitions

https://www.ecma-international.org/ecma-262/8.0/#sec-async-function-definitions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/await
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/await
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/await
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/AsyncFunction
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/AsyncFunction

E l e c t r o n G r i d o f A l i g n e d D o c u m e n t s V1.0 | 12

allow users to develop applications quickly through open-source widgets developed by other

community members.

EGAD’s library of pre-defined widgets are intended to help developers implement

common functionality quickly, and to demonstrate how flexible widgets can be. The included

widgets are a webpage viewer, a file browser, a code editor, a tab bar, and a console. These

widgets are especially useful for developing Integrated Development Environments. Initially this

project was targeted at making IDE’s, however with changes like the abstract widget class, many

more applications can be developed with this framework. Rather than making an exhaustive set

of widgets for all possible applications, the abstract widget structure was created to allow

developers to build their own new widgets easily.

 Figure 7 depicts a custom widget built for the EGAD framework. The application that

this custom widget was developed to allow users to manipulate models in 3D space. A helpful

tool for this kind of manipulation is a transform viewer that displays the rotation and scale of a

3D model. The widget depicted in Figure 7 uses three sliders and an array of text cells to show

the transform of the 3D model’s current position in space. The widget can be placed into any cell

and will automatically display itself. The widget also records its current sliders values inside of

its save object. This preserves the state of all sliders between the application closing and

opening. This widget was quickly implemented, relying heavily on the built-in properties of

widgets to manage persistent data and display the widget on the screen.

Figure 7. Custom transform widget.

E l e c t r o n G r i d o f A l i g n e d D o c u m e n t s V1.0 | 13

Webview

 The goal behind the Webview widget is to wrap the Electron Webview4 DOM element

within an EGAD widget. Webviews act as more powerful IFrames, in that they allow a

developer to tap into the output stream of a webpage. Webviews also provide access to a V85

instance interpreting any JavaScript in the webpage. The ability to access these streams is

wrapped to internal functions that allow a developer to execute a callback whenever data is

written to the page’s output. Other calls exist to run JavaScript within the Webview. This

provides developers with immense power and control over the pages that they display within

Webview widgets. Developers can use JavaScript to interact with all aspects of the webpage and

listen to responses from the webpage through the output stream.

Developers can embed any webpage into their application by simply specifying the URL

of the desired page. The URL can either point to an external webpage hosted on the Internet, or it

can specify a local path to an .html file. The ability to communicate directly with these web

pages

4 https://electronjs.org/docs/api/webview-tag
5 https://v8.dev

Figure 5. 3 x 3 grid of Webviews.

allows developers to have web pages interact

with one another. Figure 8 depicts a 3x3 grid with

four Webviews inside of it. The centermost

Webview is pointing to an HTML file included in

the project, where the other thee Webviws are

pointing to popular social media sites.

https://electronjs.org/docs/api/webview-tag
https://v8.dev/

E l e c t r o n G r i d o f A l i g n e d D o c u m e n t s V1.0 | 14

File Tree

 One feature which many projects rely on is the ability to traverse a file structure. To

implement this within EGAD, the FancyTree6 library was selected and wrapped within a widget.

This library requires the developer to pass a JSON object representing a file directory structure to

the fancy tree class constructor. In order to generate this JSON object, the node.js file system

module is used. This module allows a computer’s local storage to be accessed through JavaScript

using EGAD’s getProjectFiles() function, which allows a user to access all files and

subdirectories within a specific directory. This method also utilizes an ignore object to omit

certain files from the JSON object returned. Much like a .gitignore7, this object is a blacklist of

files to exclude from the returned object. If the developer wanted to ignore all .html files in all

directories, they would use the wildcard ‘*’ character. This would appear as “*.html” inside of

their ignore object. If only a specific file should be ignored, it can be excluded by simply typing

its name (such as “index.html”) inside the ignore object. If all files of a specific name with

different file extensions should be ignored, the wildcard character can be used. The following

would ignore all files named example with any file extension: “example.*”.

Figure 9 depicts the output of the getProjectFiles() method, and shows the resulting File

Tree widget that is generated from this data. The desired outcome of this widget is to allow the

developer to simply specify a directory that they want the user to have access to, and have this

directory and all sub directories represented visually in an interactable tree. Much like the

Webview widget, the File Browser widget requires an additional URL parameter to be passed in

through the widgets configData object. This URL can point to any location on the host computer.

6 https://github.com/mar10/fancytree/wiki
7 https://git-scm.com/docs/gitignore

https://github.com/mar10/fancytree/wiki
https://git-scm.com/docs/gitignore

E l e c t r o n G r i d o f A l i g n e d D o c u m e n t s V1.0 | 15

Figure 6. Sample output of getProjectFiles() method.

In future versions of EGAD, this module will be improved to support remote file server

access through the FTP8 protocol. This will enable far more complex applications by allowing

developers to create an FTP widget which could connect to a remotely-hosted server or database

and display the resulting files in a tree structure.

8 https://tools.ietf.org/html/rfc959

https://tools.ietf.org/html/rfc959

E l e c t r o n G r i d o f A l i g n e d D o c u m e n t s V1.0 | 16

Code Editor

 The Code Editor widget is a language-agnostic editor which allows a user to edit any

programming language specified by the developer. This widget also contains a custom Language

Parser which suggests commands that a user could be trying to type. Code Mirror9 is the base

editor tool that the widget is designed and built around. Code Mirror is open source, widely used,

incredibly flexible, and well-documented making it an excellent choice for a language-agnostic

editor. The widget takes in an additional parameter called languageMap which associates file

extensions with languages. This widget has configurable hotkeys for saving the code being

edited to a file, as well as facilities for copying, pasting, and commenting code, and registering

function callbacks to be executed whenever a hotkey is triggered.

 The language parser works by loading a JSON object which describes the language.

Information such as variable keywords, scope declaration characters, comment headers and

footer as well as any function names are included in this object. When a file is loaded, the file

extension is checked against a map of known associations stored within the Code Editor widget.

For example, if a file was opened with the extension .js, the JavaScript configuration file would

be loaded. Then all scopes within the file are detected and a tree structure is generated. This tree

has information about the line start and end of every scope in the file. This information allows

the Language Parser to know exact which scope any line of the file is within. Additionally,

whenever a new line is added or removed from the file, all scopes below that point are offset

such that the line start and end values of all scopes in the tree hold true throughout editing the

file. After all scopes have been established, the file is iterated through line by line and broken up

9 https://codemirror.net

https://codemirror.net/

E l e c t r o n G r i d o f A l i g n e d D o c u m e n t s V1.0 | 17

into smaller tokens. These tokens are compared to the list of known variable keywords to try and

determine what the user is trying to type. When variables are created, they are inserted into the

scope that the cursor currently. Figure 10 shows an example of a JavaScript file with scopes and

variables highlighted. Whenever a new character is added to the file, the changed line is

tokenized. The last token is compared to all known functions that exist in the language, as well

as any variables that are accessible in that scope. The parser then generates a set of predictions as

to what variable or function names the user could be trying to type. The user can then confirm

one of the suggestions to autocomplete what they were typing without typing the entire

expression.

A real-world use case for this “IntelliSense” functionality is suggesting library functions

for the Perlenspiel game engine. In Figure 10, the IntelliSense being displayed is referencing a

JSON object listing all library functions of Perlenspiel. This presents programmers with possible

functions that they could be trying to reference and inserts the exact spelling of the library

functions into the code editor.

Figure 7. Example of Code Editor widget.

E l e c t r o n G r i d o f A l i g n e d D o c u m e n t s V1.0 | 18

Development Console

 The Console widget acts as a wrapper to interface with standard input and output streams.

This widget was developed to integrate with Webview widgets or processes spawned from

EGAD. Figure 11 depicts the output of a Webview widget wrapped to an instance of the

development console widget. Whenever the Webview writes to its output stream through a

JavaScript call to console.log, the stream text is also passed into the development console

widget. The development console widget simply wraps this output to its own output text area.

The development console also has an input text field. The arrows in Figure 11 depict a command

being sent to the stdin stream of the WebView. The command that is being interpreted tells the

Webview to write “Test” to its console. This write to console is then sent to the Webview’s

output stream which causes “Test” to show up in the Development Console output area.

Figure 8. Illustration of stream flow.

 Developers are also able to link Development Console widgets to other processes

spawned by EGAD. Whenever EGAD spawns a process, references to the input and output

streams of that process are stored for later use. These streams can easily be mapped to a

Development Console to view the print statements generated from a running process.

E l e c t r o n G r i d o f A l i g n e d D o c u m e n t s V1.0 | 19

Tab Bar

 The Tab Bar widget allows a user to switch between multiple files open at the same time.

This widget requires a reference to a File Browser widget. The Tab Bar widget listens for the file

tree to signal that a file has been double clicked on. When this event is sensed, the file that was

clicked on is passed to the Tab Bar widget, which looks at the file extension and executes the

callback function registered for that type of file. It is the developer’s responsibility to provide

callback functionality for every file type that they want the ability to open. Figure 12 shows the

result of a callback function which adds an image div to the DOM when a “.png” file is clicked.

Whenever a new file is clicked on, the Tab Bar will create a new tab for that specific file. These

tabs can be clicked on to run the callback function for that file.

 Currently, EGAD tabs are not able to be closed or moved around. This limited

functionality is due to the time invested in this project so far. The Tab Bar widget was not a

priority for the sample applications being developed, so only basic functionality has been

integrated so far. In future versions of EGAD, polishing up the visuals of the tab bar and

enabling users to drag tabs around will be priority features.

Figure 9. Callback Function on Tab Bar widget.

E l e c t r o n G r i d o f A l i g n e d D o c u m e n t s V1.0 | 20

Canvas

 The Canvas widget was designed to provide an easy way for developers to integrate with

WebGL10. WebGL is a web implementation of the Open Graphics Library (OpenGL) 11 which

provides hardware acceleration for graphics applications on web pages. Since each cell of the

EGAD grid is its own web page, WebGL can be used to provide a hardware-accelerated canvas

to the developer. WebGL canvases are often used as the basis for HTML5 games. If a developer

were to make a game engine based off the EGAD framework, a cell could be populated with a

WebGL canvas and other cells could be used for debug information and world editing utilities.

Also, since EGAD is written on top of Electron, the project can be compiled to native

executables and distributed across systems easily.

 The Canvas widget itself preserves no information between runs of the application, and

simply acts as a display which other JavaScript files can subscribe to. If a developer writes a

piece of code to integrate with WebGL, such as a render function that draws an element, they can

send this element to the canvas by calling canvas.subscribeToDraw(<drawFunction>). This

function adds the specified function to an array of callbacks to be executed whenever the canvas

redraws. This way developers can add draw functionality to the canvas class without modifying

the canvasWidget class itself. These callback functions are executed at a fixed interval; EGAD

assumes that the fastest the canvas can be refreshed is 255 times per second. Every additional

draw call added to this function increases the total time it takes to render a frame of the game,

possibly decreasing the overall performance. Since most games target 60 fps, there is a lot of

leeway for adding additional draw calls. If a developer wants to set the canvas to render at a

10 https://www.khronos.org/webgl/
11 https://www.khronos.org/opengl/

https://www.khronos.org/webgl/
https://www.khronos.org/opengl/

E l e c t r o n G r i d o f A l i g n e d D o c u m e n t s V1.0 | 21

fixed frame rate, they can simply call canvas.setFrameRate(int frames) to limit the refresh rate

to ‘frames’ per second.

Figure 10. Blank WebGL canvas.

Figure 13 depicts a blank Canvas widget adjacent to a Transform widget. There is

nothing displayed in the canvas window, because WebGL implementation is the application

developer’s responsibility. There are many ways to implement a WebGL renderer, rather than

one best way to implement things. Libraries such as pixi.js and three.js12 provide excellent

implementations of many commonly desired WebGL use cases. The canvas being blank allows it

to easily be used as a render target for libraries such as three.js.

12 http://www.pixijs.com/; https://threejs.org

http://www.pixijs.com/
https://threejs.org/

E l e c t r o n G r i d o f A l i g n e d D o c u m e n t s V1.0 | 22

Process Spawner

 One of the most powerful features of node.js13 is its ability to start a native process and

capture the streams going into and out of that process. EGAD encapsulates this functionality

inside a utility class called processSpawner. This class allows the developer to spawn native

processes and pass callback functions to the input and output streams of those processes. Any

time stdin detects input, it will trigger the callback function passed into the processSpawner and

forward the input data to the callback function. Similarly, any time stdout detects that data has

been written, the callback function for stdout will be triggered with the output data passed to the

function. The processSpawner class also allows a developer to register interest in a process

terminating through an additional callback function. This function is triggered whenever the

spawned process terminates, and the exit code of the process is forwarded to the onClose

callback function.

Figure 14 shows the output stream of a spawned process being mapped to the V8

developer console. The spawned process is a game engine which sends all of its logging data to

standard out. These prints are caught and logged to the console. The console also has an input

field where a user can type. Anything that is typed into this input field is sent to the game engine.

The game engine sends the text from this input stream directly into its scripting engine and

assumes that the sent code is valid JavaScript. The engine will then interpret the script and

compute the result. This is useful for debugging and gives developers access to variables inside

the game engine at runtime

13 https://nodejs.org/en/

https://nodejs.org/en/

E l e c t r o n G r i d o f A l i g n e d D o c u m e n t s V1.0 | 23

 One possible application for the processSpawner is to compile and then run code written

inside a Code Editor widget. Another possible application for the processSpawner is to run test

cases on a running program. If internal variables of the process can be queried through stdin, and

then printed to stdout, a simple automation test application could be written to check that objects

are in certain states at certain times. This would allow users to create automated test cases, and

regression tests to help maintain functionality in an application throughout the development

lifecycle. Developers would even be able to detect the program closing prematurely by

registering a callback function when the process terminates. They would then be able to compare

the exit code of the process against a known return value to ensure that the process ran to

completion.

Figure 11. Depiction of spawned process output stream.

E l e c t r o n G r i d o f A l i g n e d D o c u m e n t s V1.0 | 24

Development Customizable Menu System

 Applications have drastically different menu layouts. In order to support as many layout

options as possible, nothing can be assumed about the menu requirements for an application. If a

Fullscreen application or game were to be developed a menu may not be wanted at all. In a photo

editing application, there could be extensive menus. All customization and callback functions

need to be pushed onto the developer’s hands. In EGAD, this is implemented through a

straightforward interface which allows the developer to map callback functions to hotkey

commands. This mapping can then be parented to a menu tab the developer creates such as “file”

or “edit” or “preferences”. This menu functionality is encapsulated within a helper class. New

menu tabs can be defined by simply calling the function

menuBuilder.addMenuDropDown(<name>). This function will create a new tab called ‘name’

to the menu. To add functions to tabs, a developer simply needs to call

menuBuilder.registerFunctionCallback(<tab>, <name>, <key>, <function>). This function

adds a new option to <tab> with the name <name>. For instance, a developer may add the ‘save’

option to the ‘file’ tab. <key> indicates the hot key which triggers this menu option. In the case

of ‘save’ this key would most likely be ‘S’ so when ‘ctrl + S’ is pressed the ‘save’ function will

be called. The <function> parameter is the string name of a function within editor.js to execute

when this menu item is triggered. Figure 15 shows a menu next to the code required to build that

menu.

//---
// Build Menu here
//---
let file_dd = menu.addMenuDropDown("File");
menu.registerAppCallback(file_dd, 'Quit', 'Q', 'quit');
menu.registerFunctionCallback(file_dd, 'Save', 'S', 'save');
menu.registerFunctionCallback(file_dd, 'New', '=', 'newWidget');
menu.registerFunctionCallback(file_dd, 'Remove', '-', 'removeWidget');
menu.registerWindowCallback(file_dd, 'Developer Console', 'I', 'toggleDevTools');
let help_dd = menu.addMenuDropDown("Help");
let test_dd = menu.addMenuDropDown("Test");
let project_dd = menu.addMenuDropDown("Project");
 Figure 12. Code needed to build a menu.

E l e c t r o n G r i d o f A l i g n e d D o c u m e n t s V1.0 | 25

Real world Applications

 To accompany the release of EGAD Version 1.0, three example applications were

developed to provide a starting point for different kinds of applications. The first project that was

developed was a language-specific Integrated Development Environment called the Perlenspiel

IDE. Perlenspiel is the custom library that this IDE was developed to edit. The language file that

Perlenspiel uses is included and well documented, so users can adapt this application to fit their

language-specific needs.

 The second application which was developed is a tool that spawns a process and then

maps the input and output streams of this process to the V8 developer console. The purpose of

this application is to show users how easily native processes can be manipulated through this

framework. This application could be modified to fit a wide variety of needs. The final

application that was developed is a 3D Model viewer which uses an OpenGL enabled Canvas

widget, as well as a custom Transform widget. This application allows users to view 3D .ply files

and modify their transforms in space. The reason this application was developed is to show users

how simple it is to create new widgets for the EGAD framework. The Transform widget is a

well-documented custom widget that will work in any EGAD project. These three applications

serve as jumping-off points for users who want to develop their own applications in EGAD.

E l e c t r o n G r i d o f A l i g n e d D o c u m e n t s V1.0 | 26

Perlenspiel IDE

 Professor Brian Moriarty developed the Perlenspiel game engine for use in his digital

game design courses at WPI. In these courses, students use JetBrains WebStorm14 to develop

web games in Perlenspiel. WebStorm is an integrated development environment that focuses on

developing websites. This tool works very well for developing Perlenspiel games; however, there

are several missing features that would allow students to develop Perlenspiel games faster. A

tool with features such as, the ability to view the output game in real time, IntelliSense

recognizing and suggesting Perlenspiel library functions, and the ability to view and change

variable values in real time, would allow students to debug their games in new visual ways not

possible with traditional WebStorm.

 EGAD would be an excellent choice for developing the application described above. The

editor itself would be comprised of a grid utilizing many of EGAD’s built-in widgets. The gird

would be comprised of three columns. The left column would contain a file tree, and a custom

documentation widget. The center column would contain a Tab Bar widget, a Code Editor

widget with a custom language file, and a Console widget. The right column would contain a

Webview widget pointing to the Perlenspiel game being developed as well as a Webview widget

displaying the documentation for Perlenspiel. This design provides exactly enough functionality

for Perlenspiel specifically and only requires the development of one custom widget.

14 https://www.jetbrains.com/webstorm/

https://www.jetbrains.com/webstorm/

E l e c t r o n G r i d o f A l i g n e d D o c u m e n t s V1.0 | 27

Figure 13. Perlenspiel Integrated Development Environment.

 Figure 16 shows version 1.0 of the Perlenspiel IDE Application. Whenever code is typed

in the code editor, the language interpreter generates IntelliSense suggestions which appear in the

leftmost column. Every time code is saved, the live output is updated. Any console logs from the

live output are wrapped to the output stream. Code can be injected to the live output through the

input field under the output stream. This input field is evaluated by the live output’s V8 instance,

which allows for any variable to be changed in real time.

 This application allows for easier development and testing of games made with the

Perlenspiel game engine. Rather than saving a Perlenspiel webpage and replaying the game to

the state where changes have been made, developers can evaluate and change the values of

variables throughout the development process in real time.

E l e c t r o n G r i d o f A l i g n e d D o c u m e n t s V1.0 | 28

FraudTek IDE

 The FraudTek game engine is written with a Java backend which interprets JavaScript

game code at runtime. The engine loads a custom library into its JavaScript interpreter in order to

register many additional commands and primitive types. These additions are unique to FraudTek

and unknown to all JavaScript IDE’s IntelliSense. This makes it difficult to write FraudTek

scripts because spelling errors and referencing unknown library calls are not caught by a

traditional IDE. The editor simply does not know if a reference is spelled correctly or not

because it has no knowledge of these library specific references. Another problem with script

creation in traditional IDE’s is that there is no way to directly execute the FraudTek script

interpreter to test the newly created scripts. The script interpreter is a java executable that wraps

errors to stdout and allows running scripts to be modified in real time through stdin.

 The EGAD framework would allow a developer to easily create a IDE to program

FraudTek scripts. A 2x2 grid could be created containing a FileTree widget, a custom

IntelliSense widget, a Code Editor widget, and a Console widget. The FileTree would point to

the active FraudTek project directory. All custom language functions would be added to a

custom language file which integrate with the custom IntelliSense widget to provide suggestions

about the FraudTek Script that is currently being written. The Code Editor widget would be

formatted as if it were plain JavaScript, however, have knowledge of the custom FraudTek

Functions through the custom language file. The Console widget would be wrapped to an

instance of FraudTek spawned through the process spawner. Overall this application could be

created with minimal custom development and provide an incredibly more intuitive editing

experience when creating FraudTek files.

E l e c t r o n G r i d o f A l i g n e d D o c u m e n t s V1.0 | 29

Figure 14. FraudTek Editor.

Figure 17 depicts the FraudTek Editor. A File Tree shows all files in the project in the top

left corner. Below that, a IntelliSense shows all possible functions that can be called from the

current line the cursor is on inside of the Editor. The Editor shows a script file which can be

edited and interpreted at any time. Below the Editor a Console widget allows the developer to

query a running instance of FraudTek to monitor variables or modify a running script. The Right

column is the V8 output console. This output is wrapped to the FraudTek process returned from

the process spawner and is updated whenever a new instance of FraudTek is run. Overall this

application took little time to build and provides immense utility to a FraudTek developer.

E l e c t r o n G r i d o f A l i g n e d D o c u m e n t s V1.0 | 30

3D Viewer

 The 3D viewer is an application to demonstrate the 3D performance capabilities of the

EGAD library. The application uses a Canvas widget and a Transform widget to allow the user

to modify the rotation of a model in 3D space. Figure 18 shows a WebGL enabled canvas on the

left and a Transform widget on the right. The canvas widget can interact with the WebGL canvas

to modify the rotation of various objects in the scene. In the future, this application will be

further developed into a 3D game engine, where users can click on elements on the WebGL

canvas and see that entities properties in the right panel.

Figure 15 | WebGL enabled Canvas with Transform

E l e c t r o n G r i d o f A l i g n e d D o c u m e n t s V1.0 | 31

GitHub

 EGAD is an open source framework available on GitHub which includes everything

needed for a developer to get started. Anyone can view the entire source of the EGAD

Framework directly on GitHub or fork the repository to make their own improvements. If a

drastic oversight was made while developing the framework, anyone can come up with a fix and

submit a pull request to have their change added to the official EGAD repository. The

documentation for EGAD is also included in the repository to encourage developers to learn how

to use the built-in functionality of EGAD, as well as extend that functionality. The project can

simply be cloned to a developer’s computer. This project is open source to facilitate adoption and

encourage adaptation.

The repository can be viewed at https://github.com/bhsostek/EGAD

https://github.com/bhsostek/EGAD

E l e c t r o n G r i d o f A l i g n e d D o c u m e n t s V1.0 | 32

Works cited

Electron
https://github.com/electron/electron

Code Mirror
https://codemirror.net

Light Table
http://lighttable.com

Atom Editor
https://github.com/atom

Node JS
https://nodejs.org/en/

vs Code using Electron as a backend
https://arstechnica.com/information-technology/2015/04/microsofts-new-code-editor-is-built-on-
googles-chromium/

ES6 async await:
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function

Fancy Tree:
http://wwwendt.de/tech/fancytree/demo/sample-api.html
https://wwwendt.de/tech/fancytree/doc/jsdoc/FancytreeNode.html

Gitignore
https://git-scm.com/docs/gitignore

FTP
https://tools.ietf.org/html/rfc959

https://github.com/electron/electron
https://codemirror.net/
http://lighttable.com/
https://github.com/atom
https://nodejs.org/en/
https://arstechnica.com/information-technology/2015/04/microsofts-new-code-editor-is-built-on-googles-chromium/
https://arstechnica.com/information-technology/2015/04/microsofts-new-code-editor-is-built-on-googles-chromium/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
http://wwwendt.de/tech/fancytree/demo/sample-api.html
https://wwwendt.de/tech/fancytree/doc/jsdoc/FancytreeNode.html
https://git-scm.com/docs/gitignore
https://tools.ietf.org/html/rfc959

Source:

Source:

Grid
Grid

Creates a new Grid, this contains columns, rows, and drag elements. Columns
are vertical and can have n rows inside them. Rows are containers for divs, as
the rows are resided, the div content will also be resided to fit.

Constructor

new Grid(width, height, columns, rows)

grid/grid.js, line 35

The Grid class takes in the window width and height, passed in to establish a basic window size. The
default grid has no rows or columns within it. To add content call the Grid#createColumn method.

Parameters:

Name Type Description

width Number This is the width of the grid in pixels.

height Number This is the height of the grid in pixels.

columns Number This is the number of columns that the grid should be initialized with.

rows Number This is the number of rows that each column should have.

Methods

addColumn(column)

grid/grid.js, line 362

This method can be called to add a column to the current grid. The grid is flexible, and has a constants
size of 100%, when a new column is added, the default width of the column is (1/n)% where n is the
number of columns in the grid. This method can be called at any time to add a new column.

Parameters:

http://localhost:63342/GridTestNew/root/documentation/grid_grid.js.html
http://localhost:63342/GridTestNew/root/documentation/grid_grid.js.html#line35
http://localhost:63342/GridTestNew/root/documentation/grid_grid.js.html
http://localhost:63342/GridTestNew/root/documentation/grid_grid.js.html#line362

Source:

Source:

Source:

Name Type DescriptionName Type Description

column Column The Column that will be added.

addDrag(drag)

grid/grid.js, line 392

This method lets the user register a new drag to appear on the window.

Parameters:

Name Type Description

drag H_Drag The Horizontal drag to add to the window.

addWidget(widget)

grid/grid.js, line 707

This function adds a widget into the grid of widgets being displayed

Parameters:

Name Type Description

widget Widget This widget will be added into the grid at widget.col widget.row

createColumn(elements, properties) → {Column}

grid/grid.js, line 133

Creates a Column. A column is a resizable container for data. Columns contain an index (left to right)
starting at 0, representing which column they are numerically on the screen. Columns also contain a list
of children

Parameters:

Name Type Description

elements Array This is an array or a single html element. For every dom element
passed, a new unique row will be created in this column

http://localhost:63342/GridTestNew/root/documentation/global.html#Column
http://localhost:63342/GridTestNew/root/documentation/grid_grid.js.html
http://localhost:63342/GridTestNew/root/documentation/grid_grid.js.html#line392
http://localhost:63342/GridTestNew/root/documentation/global.html#H_Drag
http://localhost:63342/GridTestNew/root/documentation/grid_grid.js.html
http://localhost:63342/GridTestNew/root/documentation/grid_grid.js.html#line707
http://localhost:63342/GridTestNew/root/documentation/Widget.html
http://localhost:63342/GridTestNew/root/documentation/global.html#Column
http://localhost:63342/GridTestNew/root/documentation/grid_grid.js.html
http://localhost:63342/GridTestNew/root/documentation/grid_grid.js.html#line133

Source:

Source:

Name Type Description

properties Object These are additional configuration parameters that can be passed into a
column.

Properties

Name Type Description

color String A hexadecimal color to apply to the background of
this column.

id String a string representing the ID that should be
associated with this column

Returns:
A json object representing a Column.

Type Column

createDrag(col1, col2) → {H_Drag}

grid/grid.js, line 288

Creates a horizontal Drag. A horizontal drag is a small element conjoining two Columns. Clicking and
dragging on a Drag will change the relative scale of the linked columns.

Parameters:

Name Type Description

col1 Column The first column

col2 Column The second column

Returns:
Returns a json object representing a horizontal drag.

Type H_Drag

createVDrag(row1, row2) → {V_Drag}

grid/grid.js, line 330

Creates a vertical Drag. A vertical drag is a small element conjoining two rows. Clicking and dragging on
a vertical Drag will change the relative scale of the linked rows.

Parameters:

http://localhost:63342/GridTestNew/root/documentation/global.html#Column
http://localhost:63342/GridTestNew/root/documentation/global.html#H_Drag
http://localhost:63342/GridTestNew/root/documentation/grid_grid.js.html
http://localhost:63342/GridTestNew/root/documentation/grid_grid.js.html#line288
http://localhost:63342/GridTestNew/root/documentation/global.html#Column
http://localhost:63342/GridTestNew/root/documentation/global.html#Column
http://localhost:63342/GridTestNew/root/documentation/global.html#H_Drag
http://localhost:63342/GridTestNew/root/documentation/global.html#V_Drag
http://localhost:63342/GridTestNew/root/documentation/grid_grid.js.html
http://localhost:63342/GridTestNew/root/documentation/grid_grid.js.html#line330

Source:

Source:

Source:

Source:

Name Type DescriptionName Type Description

row1 Element

row2 Element

Returns:
Returns a json object representing a Column.

Type V_Drag

executeCallbacks()

grid/grid.js, line 468

This function executes all registered callback functions inside of this grid.

generateSaveObject() → {Object}

grid/grid.js, line 536

This method is called when the editor is saving the active configuration. All columns and rows report their
widths and heights respectivly. A multi-dimensional array object is constructed. This array has all of the
height data needed to recreacte the current editor spacing on the next editor load.

Returns:
sizes - The widths and heights of the current window configuration.

Type Object

getCOLUMNS() → {Array.<Column>}

grid/grid.js, line 585

Get all columns in this grid.

Returns:
COLUMNS - The columns that make up this grid.

Type Array.<Column>

getHEIGHT() → {Integer}

grid/grid.js, line 577

Get the grid height.

Returns:

http://localhost:63342/GridTestNew/root/documentation/global.html#V_Drag
http://localhost:63342/GridTestNew/root/documentation/grid_grid.js.html
http://localhost:63342/GridTestNew/root/documentation/grid_grid.js.html#line468
http://localhost:63342/GridTestNew/root/documentation/grid_grid.js.html
http://localhost:63342/GridTestNew/root/documentation/grid_grid.js.html#line536
http://localhost:63342/GridTestNew/root/documentation/global.html#Column
http://localhost:63342/GridTestNew/root/documentation/grid_grid.js.html
http://localhost:63342/GridTestNew/root/documentation/grid_grid.js.html#line585
http://localhost:63342/GridTestNew/root/documentation/global.html#Column
http://localhost:63342/GridTestNew/root/documentation/grid_grid.js.html
http://localhost:63342/GridTestNew/root/documentation/grid_grid.js.html#line577

Source:

Source:

Source:

HEIGHT - The height of the window.

Type Integer

getWidget(col, row) → {Widget|null}

grid/grid.js, line 678

This function returns the widget stored in grid cell (col, row). If there is no widget in that cell null is
returned.

Parameters:

Name Type Description

col Integer This the column or X of the grid that you are trying to access.

row Integer This the row or Y of the grid that you are trying to access.

Returns:
widget - This is the widget in grid cell (col, row) if there is no widget in that cell, null is returned.

Type Widget | null

getWIDTH() → {Integer}

grid/grid.js, line 569

Get the grid width.

Returns:
WIDTH - The width of the window.

Type Integer

init(widgets)

grid/grid.js, line 667

Initializes the grid with Widgets. A Widget is a synchronously spawned promise. This function will iterate
through the widgets array and initialize one widget after another. This way later widgets can have earlier
widgets passed into them. Example [Document(requires:[]), Tab(requires:[Document])] In this example
the Widget Document requires nothing and is the first widget to be initialized in the program. Tab is the
second widget to be initialized, and it requires Document. When Tab's initialize method is called, the
value of Document will be stable and usable. This chaining method can be propagated forwards to allow
widgets to require previously initialized widgets.

See Widget for information on built in widgets and how to create your own.

Parameters:

http://localhost:63342/GridTestNew/root/documentation/Widget.html
http://localhost:63342/GridTestNew/root/documentation/grid_grid.js.html
http://localhost:63342/GridTestNew/root/documentation/grid_grid.js.html#line678
http://localhost:63342/GridTestNew/root/documentation/Widget.html
http://localhost:63342/GridTestNew/root/documentation/grid_grid.js.html
http://localhost:63342/GridTestNew/root/documentation/grid_grid.js.html#line569
http://localhost:63342/GridTestNew/root/documentation/grid_grid.js.html
http://localhost:63342/GridTestNew/root/documentation/grid_grid.js.html#line667
http://localhost:63342/GridTestNew/root/documentation/Widget.html

Source:

Source:

Name Type DescriptionName Type Description

widgets Array This is an array of Widget elements that will be initialized in array
order.

(async) initalize(widgets, COLUMNS, saveData) → {Promise.<void>}

grid/grid.js, line 614

Asynchronous loop which will Synchronous populates a cell with an intialized widget untill all widgets are
initialized, at this point it will then return.

Parameters:

Name Type Description

widgets Array.<Widget> Uninitialized widgets to be initialized and loaded into the grid.

COLUMNS Array.<Column> The Columns that make up this EGAD grid.

saveData Object A save object representing the state of all widgets the last time
the application was closed.

Returns:
- This promise resolves once all widgets are initialized.

Type Promise.<void>

initializeWidgit(widget, saveData) → {Promise.<any>}

grid/grid.js, line 596

This call wraps the widget promise constructor inside of another promise. The return value of this function
is awaited upon inside of the initialize method.

Parameters:

Name Type Description

widget Widget An uninitialized widget to initialize.

saveData Object An object containing information about the state of widgets the last time
the application was closed.s

Returns:
This returns a promise wrapped around the widget's init function. The promise resolves when the widget
finishes initializing.

Type Promise.<any>

http://localhost:63342/GridTestNew/root/documentation/grid_grid.js.html
http://localhost:63342/GridTestNew/root/documentation/grid_grid.js.html#line614
http://localhost:63342/GridTestNew/root/documentation/Widget.html
http://localhost:63342/GridTestNew/root/documentation/global.html#Column
http://localhost:63342/GridTestNew/root/documentation/grid_grid.js.html
http://localhost:63342/GridTestNew/root/documentation/grid_grid.js.html#line596
http://localhost:63342/GridTestNew/root/documentation/Widget.html

Source:

Source:

Source:

Source:

loadGridSizes(sizes)

grid/grid.js, line 505

This method is called on editor load. It takes in an array of size configuration data. This data is used to
position all grid elements such that they retain the positions they were in the last time the editor was
closed.

Parameters:

Name Type Description

sizes Array The sizes of the grid elements.

onDrag(event, index1, index2)

grid/grid.js, line 421

This function is called to whenever a horizontal drag event is triggered.

Parameters:

Name Type Description

event Event This is the drag event that was detected.

index1 Integer This is the index of the first column to be offset by this drag event.

index2 Integer This is the index of the second column to be offset by this drag event.

onDragEnd()

grid/grid.js, line 481

This event is triggered after a horizontal drag has finished moving, it is used to set the absolute position
of the 2 columns referenced by the drag event.

onVDrag(event, row1, row2)

grid/grid.js, line 443

This function is called to whenever a vertical drag event is triggered.

Parameters:

Name Type Description

http://localhost:63342/GridTestNew/root/documentation/grid_grid.js.html
http://localhost:63342/GridTestNew/root/documentation/grid_grid.js.html#line505
http://localhost:63342/GridTestNew/root/documentation/grid_grid.js.html
http://localhost:63342/GridTestNew/root/documentation/grid_grid.js.html#line421
http://localhost:63342/GridTestNew/root/documentation/grid_grid.js.html
http://localhost:63342/GridTestNew/root/documentation/grid_grid.js.html#line481
http://localhost:63342/GridTestNew/root/documentation/grid_grid.js.html
http://localhost:63342/GridTestNew/root/documentation/grid_grid.js.html#line443

Source:

Source:

Source:

Source:

Name Type Description

event Event This is the drag event that was detected.

row1 Integer This is the index of the first row to be offset by this drag event.

row2 Integer This is the index of the second row to be offset by this drag event.

refresh()

grid/grid.js, line 404

This function is called to reposition all of the drags and grid elements to proper positions after a drag has
occurred, or any externalmovementt actions.

removeWidget(widget)

grid/grid.js, line 715

This function adds a widget into the grid of widgets being displayed

Parameters:

Name Type Description

widget Widget This widget will be added into the grid at widget.col widget.row

resize()

grid/grid.js, line 496

This function is used to sync the values of WIDTH and HEIGHT after the document window has been
resided.

setWidget(col, row, widget)

grid/grid.js, line 693

This function changes the contents of cell (col, row) to widget. Null can be passed in to remove a widget
from the grid, the row that that widget was in will persist however

Parameters:

Name Type Description

col Integer This the column or X of the grid that you are trying to access.

http://localhost:63342/GridTestNew/root/documentation/grid_grid.js.html
http://localhost:63342/GridTestNew/root/documentation/grid_grid.js.html#line404
http://localhost:63342/GridTestNew/root/documentation/grid_grid.js.html
http://localhost:63342/GridTestNew/root/documentation/grid_grid.js.html#line715
http://localhost:63342/GridTestNew/root/documentation/Widget.html
http://localhost:63342/GridTestNew/root/documentation/grid_grid.js.html
http://localhost:63342/GridTestNew/root/documentation/grid_grid.js.html#line496
http://localhost:63342/GridTestNew/root/documentation/grid_grid.js.html
http://localhost:63342/GridTestNew/root/documentation/grid_grid.js.html#line693

Name Type Description

row Integer This the row or Y of the grid that you are trying to access.

widget Widget This is the widget that cell (col, row) should be set to.

http://localhost:63342/GridTestNew/root/documentation/Widget.html

Source:

Source:

Widget
Widget

There is a collection of built in widgets tailored to making editor applications.

 FileBrowser for information on built in widgets and how to create your own.

Constructor

new Widget(configData, dependencies)

widgets/widget.js, line 21

The Widget class takes in configData about where to position this widget in the grid, as well as a list of dependencies.

Parameters:

Name Type Description

configData Object This is an object of config data, It will have the following fields as well as any
custom fields that child classes require.

Properties

Name Type Description

name String This is the name of this widget.

col Integer This is the Column that this widget should be added to.

row Integer This is the row of of the Column that this widget should be added
to.

dependencies Object This is a map of String Names to Widgets which this object relies on.

Methods

getCol() → {Integer}

widgets/widget.js, line 89

Get the position in columns(Left = 0 to Right = n) of this widget.

Returns:
colIndex - The column index of this Widget.

Type Integer

getElement() → {Element}

http://localhost:63342/GridTestNew/root/documentation/widgets_widget.js.html
http://localhost:63342/GridTestNew/root/documentation/widgets_widget.js.html#line21
http://localhost:63342/GridTestNew/root/documentation/widgets_widget.js.html
http://localhost:63342/GridTestNew/root/documentation/widgets_widget.js.html#line89

Source:

Source:

Source:

Source:

widgets/widget.js, line 81

Get the dom element that represents this widget.

Returns:
element - The dom object for this widget.

Type Element

getRow() → {Integer}

widgets/widget.js, line 97

Get the position in rows(Top = 0 to Bottom = n) of this widget.

Returns:
rowIndex - The row index of this Widget.

Type Integer

(abstract) init() → {Promise}

widgets/widget.js, line 54

This function is implemented by every child class of widget. Any initialization that needs to happen will be put inside of this
function.

Returns:
Returns a promise that will be executed when an instance of this widget is generated.

Type Promise

setElement(element)

widgets/widget.js, line 70

Set the dom element that represents this widget.

Parameters:

Name Type Description

element Element The dom object for this widget.

http://localhost:63342/GridTestNew/root/documentation/widgets_widget.js.html
http://localhost:63342/GridTestNew/root/documentation/widgets_widget.js.html#line81
http://localhost:63342/GridTestNew/root/documentation/widgets_widget.js.html
http://localhost:63342/GridTestNew/root/documentation/widgets_widget.js.html#line97
http://localhost:63342/GridTestNew/root/documentation/widgets_widget.js.html
http://localhost:63342/GridTestNew/root/documentation/widgets_widget.js.html#line54
http://localhost:63342/GridTestNew/root/documentation/widgets_widget.js.html
http://localhost:63342/GridTestNew/root/documentation/widgets_widget.js.html#line70

Source:

Source:

Inherited From:

WebviewWidget
WebviewWidget

new WebviewWidget(x, y, url) → {WebviewWidget}

widgets/webviewWidget.js, line 13

Parameters:

Name Type Description

x Integer the Column to add this widget to.

y Integer the Row to add this widget to.

url String This is the URL of the document to display in a webview. It can be remote or
a local path.

Returns:
Returns a WebviewWidget, an instance of the Widget class which allows a user to display a remote
webpage, or a local html file.

Type WebviewWidget

Extends

Widget

Methods

getCol() → {Integer}

widgets/widget.js, line 89

Widget#getCol

Get the position in columns(Left = 0 to Right = n) of this widget.

Returns:
colIndex - The column index of this Widget.

Type Integer

http://localhost:63342/GridTestNew/root/documentation/WebviewWidget.html
http://localhost:63342/GridTestNew/root/documentation/widgets_webviewWidget.js.html
http://localhost:63342/GridTestNew/root/documentation/widgets_webviewWidget.js.html#line13
http://localhost:63342/GridTestNew/root/documentation/WebviewWidget.html
http://localhost:63342/GridTestNew/root/documentation/Widget.html
http://localhost:63342/GridTestNew/root/documentation/widgets_widget.js.html
http://localhost:63342/GridTestNew/root/documentation/widgets_widget.js.html#line89
http://localhost:63342/GridTestNew/root/documentation/Widget.html#getCol

Source:

Inherited From:

Source:

Inherited From:

Source:

Overrides:

Source:

Source:

getElement() → {Element}

widgets/widget.js, line 81

Widget#getElement

Get the dom element that represents this widget.

Returns:
element - The dom object for this widget.

Type Element

getRow() → {Integer}

widgets/widget.js, line 97

Widget#getRow

Get the position in rows(Top = 0 to Bottom = n) of this widget.

Returns:
rowIndex - The row index of this Widget.

Type Integer

(async) init() → {Promise.<any>}

widgets/webviewWidget.js, line 21

Widget#init

This function overrides the parent widget initialization call and creates a webview element with the
desired document displayed inside.

Returns:

Type Promise.<any>

postinit()

widgets/webviewWidget.js, line 40

This function is called after initialization has occurred on this widget, by this time all fields this widget
references should be initialized.

setElement(element)

widgets/widget.js, line 70

http://localhost:63342/GridTestNew/root/documentation/widgets_widget.js.html
http://localhost:63342/GridTestNew/root/documentation/widgets_widget.js.html#line81
http://localhost:63342/GridTestNew/root/documentation/Widget.html#getElement
http://localhost:63342/GridTestNew/root/documentation/widgets_widget.js.html
http://localhost:63342/GridTestNew/root/documentation/widgets_widget.js.html#line97
http://localhost:63342/GridTestNew/root/documentation/Widget.html#getRow
http://localhost:63342/GridTestNew/root/documentation/widgets_webviewWidget.js.html
http://localhost:63342/GridTestNew/root/documentation/widgets_webviewWidget.js.html#line21
http://localhost:63342/GridTestNew/root/documentation/Widget.html#init
http://localhost:63342/GridTestNew/root/documentation/widgets_webviewWidget.js.html
http://localhost:63342/GridTestNew/root/documentation/widgets_webviewWidget.js.html#line40
http://localhost:63342/GridTestNew/root/documentation/widgets_widget.js.html
http://localhost:63342/GridTestNew/root/documentation/widgets_widget.js.html#line70

Inherited From: Widget#setElement

Set the dom element that represents this widget.

Parameters:

Name Type Description

element Element The dom object for this widget.

http://localhost:63342/GridTestNew/root/documentation/Widget.html#setElement

Source:

Source:

FileTreeWidget
FileTreeWidget

new FileTreeWidget(x, y, path, fileManager) → {FileTreeWidget}

widgets/fileTreeWidget.js, line 16

Parameters:

Name Type Description

x Integer This is the Column that this widget should be added to.

y Integer This is the row of of the Column that this widget should be added
to.

path String This is a string representing the path to the directory this file
tree should display. Paths relative to the root folder are
denoted with '~/folderName'.

fileManager FileManager This is a reference to the fileManager class which provides this
widget with access to the computers File System.

Returns:
Returns a FileTreeWidget, an instance of the Widget class.

Type FileTreeWidget

Extends

Widget

Methods

doubleClick(event, data)

widgets/fileTreeWidget.js, line 84

This function is the callback method injected into this fileTreeWidget. Whenever a user double clicks on a
file inside of the file tree, this function is called. This function should be modified to a specific developers
needs.

http://localhost:63342/GridTestNew/root/documentation/FileTreeWidget.html
http://localhost:63342/GridTestNew/root/documentation/widgets_fileTreeWidget.js.html
http://localhost:63342/GridTestNew/root/documentation/widgets_fileTreeWidget.js.html#line16
http://localhost:63342/GridTestNew/root/documentation/FileManager.html
http://localhost:63342/GridTestNew/root/documentation/FileTreeWidget.html
http://localhost:63342/GridTestNew/root/documentation/Widget.html
http://localhost:63342/GridTestNew/root/documentation/widgets_fileTreeWidget.js.html
http://localhost:63342/GridTestNew/root/documentation/widgets_fileTreeWidget.js.html#line84

Source:

Inherited From:

Source:

Inherited From:

Source:

Inherited From:

Parameters:

Name Type Description

event Object The event object contains information about what node was clicked as well as
the specific DOM element that was interacted with.

data Object Data holds all of the data for that FileTree node.

getCol() → {Integer}

widgets/widget.js, line 89

Widget#getCol

Get the position in columns(Left = 0 to Right = n) of this widget.

Returns:
colIndex - The column index of this Widget.

Type Integer

getElement() → {Element}

widgets/widget.js, line 81

Widget#getElement

Get the dom element that represents this widget.

Returns:
element - The dom object for this widget.

Type Element

getRow() → {Integer}

widgets/widget.js, line 97

Widget#getRow

Get the position in rows(Top = 0 to Bottom = n) of this widget.

Returns:
rowIndex - The row index of this Widget.

Type Integer

(async) init() → {Promise}

http://localhost:63342/GridTestNew/root/documentation/widgets_widget.js.html
http://localhost:63342/GridTestNew/root/documentation/widgets_widget.js.html#line89
http://localhost:63342/GridTestNew/root/documentation/Widget.html#getCol
http://localhost:63342/GridTestNew/root/documentation/widgets_widget.js.html
http://localhost:63342/GridTestNew/root/documentation/widgets_widget.js.html#line81
http://localhost:63342/GridTestNew/root/documentation/Widget.html#getElement
http://localhost:63342/GridTestNew/root/documentation/widgets_widget.js.html
http://localhost:63342/GridTestNew/root/documentation/widgets_widget.js.html#line97
http://localhost:63342/GridTestNew/root/documentation/Widget.html#getRow

Source:

Overrides:

Source:

Inherited From:

Source:

Source:

widgets/fileTreeWidget.js, line 33

Widget#init

This function recursively opens subdirectories from the given path, and then produces a file-tree object to
be displayed within this file browser widget.

Returns:
Returns an asynchronous promise that will resolve on tree generation.

Type Promise

setElement(element)

widgets/widget.js, line 70

Widget#setElement

Set the dom element that represents this widget.

Parameters:

Name Type Description

element Element The dom object for this widget.

subscribe(observer)

widgets/fileTreeWidget.js, line 95

This function allows any class to pass functions into the observers object, when a file is clicked on, every
observer will have their callback functions trigger.

Parameters:

Name Type Description

observer function Observer is a callback function to execute when a file is double
clicked on.

translateRelative() → {String}

widgets/fileTreeWidget.js, line 71

This function converts the '~' character into a path to the fileManger.PATH value. This value can be
configured in the fileManager configuration file, therefore ~ will always point to that variable. This allows
users to use realtive pathing by simply putting '~' in front of their path.

Returns:
Returns the path to a folder relative to root.
Type String

http://localhost:63342/GridTestNew/root/documentation/widgets_fileTreeWidget.js.html
http://localhost:63342/GridTestNew/root/documentation/widgets_fileTreeWidget.js.html#line33
http://localhost:63342/GridTestNew/root/documentation/Widget.html#init
http://localhost:63342/GridTestNew/root/documentation/widgets_widget.js.html
http://localhost:63342/GridTestNew/root/documentation/widgets_widget.js.html#line70
http://localhost:63342/GridTestNew/root/documentation/Widget.html#setElement
http://localhost:63342/GridTestNew/root/documentation/widgets_fileTreeWidget.js.html
http://localhost:63342/GridTestNew/root/documentation/widgets_fileTreeWidget.js.html#line95
http://localhost:63342/GridTestNew/root/documentation/widgets_fileTreeWidget.js.html
http://localhost:63342/GridTestNew/root/documentation/widgets_fileTreeWidget.js.html#line71

Source:

Source:

codeEditorWidget
codeEditorWidget

new codeEditorWidget(x, y, language, themeopt) → {WebviewWidget}

widgets/codeEditorWidget.js, line 14

Parameters:

Name Type Attributes Default Description

x Integer This is the Column that this widget should be
added to.

y Integer This is the row of of the Column that this
widget should be added to.

language String This is the language that CodeMirror should
target when formatting the contents of this
widget.

theme String <optional> darcula CodeMirror theme to use when formatting this
editor. Any theme in the
'node_modules/codemirror/theme/' directory will
work. Just pass the name of the css file and
this does the rest.

Returns:
Returns a WebviewWidget, an instance of the Widget class which allows a user to display a remote
webpage, or a local html file.

Type WebviewWidget

Extends

Widget

Methods

getCol() → {Integer}

widgets/widget.js, line 89

http://localhost:63342/GridTestNew/root/documentation/WebviewWidget.html
http://localhost:63342/GridTestNew/root/documentation/widgets_codeEditorWidget.js.html
http://localhost:63342/GridTestNew/root/documentation/widgets_codeEditorWidget.js.html#line14
http://localhost:63342/GridTestNew/root/documentation/WebviewWidget.html
http://localhost:63342/GridTestNew/root/documentation/Widget.html
http://localhost:63342/GridTestNew/root/documentation/widgets_widget.js.html
http://localhost:63342/GridTestNew/root/documentation/widgets_widget.js.html#line89

Inherited From:

Source:

Inherited From:

Source:

Inherited From:

Source:

Overrides:

Widget#getCol

Get the position in columns(Left = 0 to Right = n) of this widget.

Returns:
colIndex - The column index of this Widget.

Type Integer

getElement() → {Element}

widgets/widget.js, line 81

Widget#getElement

Get the dom element that represents this widget.

Returns:
element - The dom object for this widget.

Type Element

getRow() → {Integer}

widgets/widget.js, line 97

Widget#getRow

Get the position in rows(Top = 0 to Bottom = n) of this widget.

Returns:
rowIndex - The row index of this Widget.

Type Integer

(async) init(configData) → {Promise.<any>}

widgets/codeEditorWidget.js, line 30

Widget#init

This function overrides the parent widget initialize function and creates a code editor to be displayed
within this widget.

Parameters:

Name Type Description

configData Object This object contains important information about the state that this
widget was in the last time the application closed. The exact value
inside of the widget is passed back into it here. This object also
contains information about what language this editor is editing.

http://localhost:63342/GridTestNew/root/documentation/Widget.html#getCol
http://localhost:63342/GridTestNew/root/documentation/widgets_widget.js.html
http://localhost:63342/GridTestNew/root/documentation/widgets_widget.js.html#line81
http://localhost:63342/GridTestNew/root/documentation/Widget.html#getElement
http://localhost:63342/GridTestNew/root/documentation/widgets_widget.js.html
http://localhost:63342/GridTestNew/root/documentation/widgets_widget.js.html#line97
http://localhost:63342/GridTestNew/root/documentation/Widget.html#getRow
http://localhost:63342/GridTestNew/root/documentation/widgets_codeEditorWidget.js.html
http://localhost:63342/GridTestNew/root/documentation/widgets_codeEditorWidget.js.html#line30
http://localhost:63342/GridTestNew/root/documentation/Widget.html#init

Source:

Source:

Source:

Inherited From:

Returns:

Type Promise.<any>

postinit()

widgets/codeEditorWidget.js, line 78

This function is called after initialization has occurred on this widget, by this time all fields this widget
references should be initialized.

save() → {Object}

widgets/codeEditorWidget.js, line 87

This function overrides the parent widget save function. The save object returned contians the language,
theme, and content of the code editor.

Returns:

Type Object

setElement(element)

widgets/widget.js, line 70

Widget#setElement

Set the dom element that represents this widget.

Parameters:

Name Type Description

element Element The dom object for this widget.

http://localhost:63342/GridTestNew/root/documentation/widgets_codeEditorWidget.js.html
http://localhost:63342/GridTestNew/root/documentation/widgets_codeEditorWidget.js.html#line78
http://localhost:63342/GridTestNew/root/documentation/widgets_codeEditorWidget.js.html
http://localhost:63342/GridTestNew/root/documentation/widgets_codeEditorWidget.js.html#line87
http://localhost:63342/GridTestNew/root/documentation/widgets_widget.js.html
http://localhost:63342/GridTestNew/root/documentation/widgets_widget.js.html#line70
http://localhost:63342/GridTestNew/root/documentation/Widget.html#setElement

Source:

Source:

Inherited From:

consoleWidget
consoleWidget

new consoleWidget(x, y, textSizeopt) → {canvasWidget}

widgets/consoleWidget.js, line 20

Parameters:

Name Type Attributes Default Description

x Integer This is the Column that this widget should be added
to.

y Integer This is the row of of the Column that this widget
should be added to.

textSize Integer <optional> 18 The font size to use in the console.

Returns:
Returns a canvasWidget, an instance of the Widget class which allows a user to draw on an html canvas.

Type canvasWidget

Extends

Widget

Methods

getCol() → {Integer}

widgets/widget.js, line 89

Widget#getCol

Get the position in columns(Left = 0 to Right = n) of this widget.

Returns:
colIndex - The column index of this Widget.

Type Integer

http://localhost:63342/GridTestNew/root/documentation/canvasWidget.html
http://localhost:63342/GridTestNew/root/documentation/widgets_consoleWidget.js.html
http://localhost:63342/GridTestNew/root/documentation/widgets_consoleWidget.js.html#line20
http://localhost:63342/GridTestNew/root/documentation/canvasWidget.html
http://localhost:63342/GridTestNew/root/documentation/Widget.html
http://localhost:63342/GridTestNew/root/documentation/widgets_widget.js.html
http://localhost:63342/GridTestNew/root/documentation/widgets_widget.js.html#line89
http://localhost:63342/GridTestNew/root/documentation/Widget.html#getCol

Source:

Inherited From:

Source:

Inherited From:

Source:

Overrides:

Source:

getElement() → {Element}

widgets/widget.js, line 81

Widget#getElement

Get the dom element that represents this widget.

Returns:
element - The dom object for this widget.

Type Element

getRow() → {Integer}

widgets/widget.js, line 97

Widget#getRow

Get the position in rows(Top = 0 to Bottom = n) of this widget.

Returns:
rowIndex - The row index of this Widget.

Type Integer

(async) init() → {Promise.<any>}

widgets/consoleWidget.js, line 32

Widget#init

This function overrides the parent widget initialize function and creates a console to be displayed within
this widget.

Returns:

Type Promise.<any>

log(message)

widgets/consoleWidget.js, line 119

This function allows a string to be passed in to then be printed to the consoles output.

Parameters:

Name Type Description

message String This is the message to print to this consoles output area.

http://localhost:63342/GridTestNew/root/documentation/widgets_widget.js.html
http://localhost:63342/GridTestNew/root/documentation/widgets_widget.js.html#line81
http://localhost:63342/GridTestNew/root/documentation/Widget.html#getElement
http://localhost:63342/GridTestNew/root/documentation/widgets_widget.js.html
http://localhost:63342/GridTestNew/root/documentation/widgets_widget.js.html#line97
http://localhost:63342/GridTestNew/root/documentation/Widget.html#getRow
http://localhost:63342/GridTestNew/root/documentation/widgets_consoleWidget.js.html
http://localhost:63342/GridTestNew/root/documentation/widgets_consoleWidget.js.html#line32
http://localhost:63342/GridTestNew/root/documentation/Widget.html#init
http://localhost:63342/GridTestNew/root/documentation/widgets_consoleWidget.js.html
http://localhost:63342/GridTestNew/root/documentation/widgets_consoleWidget.js.html#line119

Source:

Inherited From:

Source:

setElement(element)

widgets/widget.js, line 70

Widget#setElement

Set the dom element that represents this widget.

Parameters:

Name Type Description

element Element The dom object for this widget.

subscribe(observer)

widgets/consoleWidget.js, line 132

This function allows developers to register function callbacks to be excuted whenever enter is pressed
when text is inside the input field of this console. The text is passed into all callback functions.

Parameters:

Name Type Description

observer function Function to be called whenever enter is pressed from the consoles input
field.

http://localhost:63342/GridTestNew/root/documentation/widgets_widget.js.html
http://localhost:63342/GridTestNew/root/documentation/widgets_widget.js.html#line70
http://localhost:63342/GridTestNew/root/documentation/Widget.html#setElement
http://localhost:63342/GridTestNew/root/documentation/widgets_consoleWidget.js.html
http://localhost:63342/GridTestNew/root/documentation/widgets_consoleWidget.js.html#line132

Source:

Source:

Inherited From:

tabWidget
tabWidget

new tabWidget(x, y, fileTreeWidget) → {canvasWidget}

widgets/tabWidget.js, line 19

Parameters:

Name Type Description

x Integer This is the Column that this widget should be added to.

y Integer This is the row of of the Column that this widget should be
added to.

fileTreeWidget FileTreeWidget Reference to a FileTree.

Returns:
Returns a tabWidget, an instance of the Widget class which creates a new tab every time a file in the file
tree is double clicked on.

Type canvasWidget

Extends

Widget

Methods

getCol() → {Integer}

widgets/widget.js, line 89

Widget#getCol

Get the position in columns(Left = 0 to Right = n) of this widget.

Returns:
colIndex - The column index of this Widget.

Type Integer

http://localhost:63342/GridTestNew/root/documentation/canvasWidget.html
http://localhost:63342/GridTestNew/root/documentation/widgets_tabWidget.js.html
http://localhost:63342/GridTestNew/root/documentation/widgets_tabWidget.js.html#line19
http://localhost:63342/GridTestNew/root/documentation/global.html#FileTreeWidget
http://localhost:63342/GridTestNew/root/documentation/canvasWidget.html
http://localhost:63342/GridTestNew/root/documentation/Widget.html
http://localhost:63342/GridTestNew/root/documentation/widgets_widget.js.html
http://localhost:63342/GridTestNew/root/documentation/widgets_widget.js.html#line89
http://localhost:63342/GridTestNew/root/documentation/Widget.html#getCol

Source:

Overrides:

Source:

Source:

Inherited From:

Source:

Overrides:

getElement() → {HTMLElement|*}

widgets/tabWidget.js, line 106

Widget#getElement

Getter for this widgets tab element. Used to append child nodes to the base tab bar element.

Returns:

Type HTMLElement | *

getPath(node) → {String}

widgets/tabWidget.js, line 147

This function is used to get an absolute path for a specific file from a FancyTree node element.

Parameters:

Name Type Description

node FancytreeNode This is a fancy tree node, a path is generated from this call.

Returns:
The file path to the root directory of this node.

Type String

getRow() → {Integer}

widgets/widget.js, line 97

Widget#getRow

Get the position in rows(Top = 0 to Bottom = n) of this widget.

Returns:
rowIndex - The row index of this Widget.

Type Integer

(async) init() → {Promise.<any>}

widgets/tabWidget.js, line 39

Widget#init

This function overrides the parent widget initialize function and creates a tab bar to be displayed within
this widget.

http://localhost:63342/GridTestNew/root/documentation/widgets_tabWidget.js.html
http://localhost:63342/GridTestNew/root/documentation/widgets_tabWidget.js.html#line106
http://localhost:63342/GridTestNew/root/documentation/Widget.html#getElement
http://localhost:63342/GridTestNew/root/documentation/widgets_tabWidget.js.html
http://localhost:63342/GridTestNew/root/documentation/widgets_tabWidget.js.html#line147
http://localhost:63342/GridTestNew/root/documentation/widgets_widget.js.html
http://localhost:63342/GridTestNew/root/documentation/widgets_widget.js.html#line97
http://localhost:63342/GridTestNew/root/documentation/Widget.html#getRow
http://localhost:63342/GridTestNew/root/documentation/widgets_tabWidget.js.html
http://localhost:63342/GridTestNew/root/documentation/widgets_tabWidget.js.html#line39
http://localhost:63342/GridTestNew/root/documentation/Widget.html#init

Source:

Source:

Source:

Returns:

Type Promise.<any>

openFile(filePath)

widgets/tabWidget.js, line 68

This function takes a filePath, and adds a new tab to the tab bar, as well as calls the callback function
defined for this file type if it is known.

Parameters:

Name Type Description

filePath String The Path to a file to open. Perform the callback function registered for
this file type.

performCallbackForFileType(title)

widgets/tabWidget.js, line 126

This function determines if any callbacks for the passed file extension are known. If they are known they
will be performed.

Parameters:

Name Type Description

title String This is the name of a file. The file extension is stripped from the file.

registerFiletype(extension, callback)

widgets/tabWidget.js, line 57

This lets you register a callback to trigger when a file of a specifc type is opened Callback must contain
{extension:"the file extension", callback:function()}

Parameters:

Name Type Description

extension String This is the file extension that you want to register a callback for,
ie '.png'

callback function This is the function you want to execute when a file of type
'extension' is clicked on.

http://localhost:63342/GridTestNew/root/documentation/widgets_tabWidget.js.html
http://localhost:63342/GridTestNew/root/documentation/widgets_tabWidget.js.html#line68
http://localhost:63342/GridTestNew/root/documentation/widgets_tabWidget.js.html
http://localhost:63342/GridTestNew/root/documentation/widgets_tabWidget.js.html#line126
http://localhost:63342/GridTestNew/root/documentation/widgets_tabWidget.js.html
http://localhost:63342/GridTestNew/root/documentation/widgets_tabWidget.js.html#line57

Source:

Source:

Source:

Inherited From:

resizeTabs()

widgets/tabWidget.js, line 113

This function is called whenever this widget is resized, it will automatically set each widget to be the
correct size.

save() → {Object}

widgets/tabWidget.js, line 162

This is simply a wrapper to the parent widget save function.

Returns:

Type Object

setElement(element)

widgets/widget.js, line 70

Widget#setElement

Set the dom element that represents this widget.

Parameters:

Name Type Description

element Element The dom object for this widget.

http://localhost:63342/GridTestNew/root/documentation/widgets_tabWidget.js.html
http://localhost:63342/GridTestNew/root/documentation/widgets_tabWidget.js.html#line113
http://localhost:63342/GridTestNew/root/documentation/widgets_tabWidget.js.html
http://localhost:63342/GridTestNew/root/documentation/widgets_tabWidget.js.html#line162
http://localhost:63342/GridTestNew/root/documentation/widgets_widget.js.html
http://localhost:63342/GridTestNew/root/documentation/widgets_widget.js.html#line70
http://localhost:63342/GridTestNew/root/documentation/Widget.html#setElement

Source:

Source:

Source:

Inherited From:

canvasWidget
canvasWidget

new canvasWidget(x, y, width, height) → {canvasWidget}

widgets/canvasWidget.js, line 16

Parameters:

Name Type Description

x Integer This is the Column that this widget should be added to.

y Integer This is the row of of the Column that this widget should be added to.

width Integer This is the width in pixels that this canvas element should take up.

height Integer This is the height in pixels that this canvas element should take up.

Returns:
Returns a canvasWidget, an instance of the Widget class which allows a user to draw on an html canvas.

Type canvasWidget

Extends

Widget

Methods

draw()

widgets/canvasWidget.js, line 93

getCol() → {Integer}

widgets/widget.js, line 89

Widget#getCol

Get the position in columns(Left = 0 to Right = n) of this widget.

http://localhost:63342/GridTestNew/root/documentation/canvasWidget.html
http://localhost:63342/GridTestNew/root/documentation/widgets_canvasWidget.js.html
http://localhost:63342/GridTestNew/root/documentation/widgets_canvasWidget.js.html#line16
http://localhost:63342/GridTestNew/root/documentation/canvasWidget.html
http://localhost:63342/GridTestNew/root/documentation/Widget.html
http://localhost:63342/GridTestNew/root/documentation/widgets_canvasWidget.js.html
http://localhost:63342/GridTestNew/root/documentation/widgets_canvasWidget.js.html#line93
http://localhost:63342/GridTestNew/root/documentation/widgets_widget.js.html
http://localhost:63342/GridTestNew/root/documentation/widgets_widget.js.html#line89
http://localhost:63342/GridTestNew/root/documentation/Widget.html#getCol

Source:

Inherited From:

Source:

Inherited From:

Source:

Overrides:

Returns:
colIndex - The column index of this Widget.

Type Integer

getElement() → {Element}

widgets/widget.js, line 81

Widget#getElement

Get the dom element that represents this widget.

Returns:
element - The dom object for this widget.

Type Element

getRow() → {Integer}

widgets/widget.js, line 97

Widget#getRow

Get the position in rows(Top = 0 to Bottom = n) of this widget.

Returns:
rowIndex - The row index of this Widget.

Type Integer

(async) init(configData)

widgets/canvasWidget.js, line 33

Widget#init

This function overrides the parent widgets init function to create a new canvas widget.

Parameters:

Name Type Description

configData Object This is the save object passed back into the function, the only
important field on this object is 'fps' which determines the target
framerate of the canvas. * @return {Promise} - This promise resolves
once this widget has initialized.

postinit()

http://localhost:63342/GridTestNew/root/documentation/widgets_widget.js.html
http://localhost:63342/GridTestNew/root/documentation/widgets_widget.js.html#line81
http://localhost:63342/GridTestNew/root/documentation/Widget.html#getElement
http://localhost:63342/GridTestNew/root/documentation/widgets_widget.js.html
http://localhost:63342/GridTestNew/root/documentation/widgets_widget.js.html#line97
http://localhost:63342/GridTestNew/root/documentation/Widget.html#getRow
http://localhost:63342/GridTestNew/root/documentation/widgets_canvasWidget.js.html
http://localhost:63342/GridTestNew/root/documentation/widgets_canvasWidget.js.html#line33
http://localhost:63342/GridTestNew/root/documentation/Widget.html#init

Source:

Source:

Source:

Inherited From:

Source:

Source:

widgets/canvasWidget.js, line 59

This function triggers after the widget has initialized, at this point all fields should be able to be
referenced. In the canvas widget this function registers a callback function to run 'fps' times per second.

save() → {Object}

widgets/canvasWidget.js, line 122

This function generates a save object so that this widget can initialize to the state which it is in the next
time the application starts.

Returns:

Type Object

setElement(element)

widgets/widget.js, line 70

Widget#setElement

Set the dom element that represents this widget.

Parameters:

Name Type Description

element Element The dom object for this widget.

setFameRate(fps)

widgets/canvasWidget.js, line 105

This function allows a user to adjust the rate at which the screen refreshes. The parameter fps specifies
the new target frame-rate.

Parameters:

Name Type Description

fps Integet The target frame rate for this canvas.

subscribeToDraw(observer)

widgets/canvasWidget.js, line 82

http://localhost:63342/GridTestNew/root/documentation/widgets_canvasWidget.js.html
http://localhost:63342/GridTestNew/root/documentation/widgets_canvasWidget.js.html#line59
http://localhost:63342/GridTestNew/root/documentation/widgets_canvasWidget.js.html
http://localhost:63342/GridTestNew/root/documentation/widgets_canvasWidget.js.html#line122
http://localhost:63342/GridTestNew/root/documentation/widgets_widget.js.html
http://localhost:63342/GridTestNew/root/documentation/widgets_widget.js.html#line70
http://localhost:63342/GridTestNew/root/documentation/Widget.html#setElement
http://localhost:63342/GridTestNew/root/documentation/widgets_canvasWidget.js.html
http://localhost:63342/GridTestNew/root/documentation/widgets_canvasWidget.js.html#line105
http://localhost:63342/GridTestNew/root/documentation/widgets_canvasWidget.js.html
http://localhost:63342/GridTestNew/root/documentation/widgets_canvasWidget.js.html#line82

This function allows a user to subscribe to this widgets draw call, The passed function will have gl passed
to it, and will be called 'fps' times per second.

Parameters:

Name Type Description

observer function This is a callback function to execute fps times per second.

Source:

Source:

Source:

FileManager
FileManager

new FileManager()

util/fileManager.js, line 22

Creates a file manager. This class can read and write files.

Methods

convertFileToFolderObject(subdir, fileName) → {Promise.<any>}

util/fileManager.js, line 260

Helper function for the 'getProjectFiles' function, This function converts directories to directory endpoints,
then recursively calls the getProjectFiles function to add children endpoints to itself.

Parameters:

Name Type Description

subdir Directory name to convert to an object.

fileName File name to convert to an object.

Returns:
Returns an object representing this directory and all children of this directory.

Type Promise.<any>

convertFileToObject(fileName) → {Object}

util/fileManager.js, line 247

Helper function for the 'getProjectFiles' function, simply converts a string name, into an object indicating
that this file is an endpoint, not a directory.

Parameters:

Name Type Description

http://localhost:63342/GridTestNew/root/documentation/util_fileManager.js.html
http://localhost:63342/GridTestNew/root/documentation/util_fileManager.js.html#line22
http://localhost:63342/GridTestNew/root/documentation/util_fileManager.js.html
http://localhost:63342/GridTestNew/root/documentation/util_fileManager.js.html#line260
http://localhost:63342/GridTestNew/root/documentation/util_fileManager.js.html
http://localhost:63342/GridTestNew/root/documentation/util_fileManager.js.html#line247

Source:

Source:

Source:

Name Type Description

fileName File name to convert to an object.

Returns:

Type Object

getProjectFiles(subdir, ignore) → {Promise.<any>}

util/fileManager.js, line 178

This function is a recursive call, it will propogate through all subdirectories of 'subdir' until all child
directories have been traversed.

Parameters:

Name Type Description

subdir String The directory to open and convert to a JSON object.

ignore Ignore This is the blacklist information to reference when generating this object.

Returns:
This promise will resolve once all subdirectories have been traversed and a valid save object is
generated.

Type Promise.<any>

initialize() → {Promise.<any>}

util/fileManager.js, line 36

This function is used to initialize this file manager. When this function is called, a promise is returned. The
promise will resolve once the file defined by 'SAVE_PATH/CONFIG_FILE' has been read and parsed into
a JSON object.

Returns:

Type Promise.<any>

loadFile(fileName) → {Promise.<any>}

util/fileManager.js, line 61

This function allows a user to load a file relative to the 'SAVE_PATH' for example, if the user were to pass
'sampleLanguage.json' to this file, the framework would try to load the file 'root/sampleLanguage.json'
Once the file has been found, the contents will be read as utf8 text and returned as a promise. This
promise resolves once all lines of the file have been read and are contained within the 'data' object.

http://localhost:63342/GridTestNew/root/documentation/util_fileManager.js.html
http://localhost:63342/GridTestNew/root/documentation/util_fileManager.js.html#line178
http://localhost:63342/GridTestNew/root/documentation/global.html#Ignore
http://localhost:63342/GridTestNew/root/documentation/util_fileManager.js.html
http://localhost:63342/GridTestNew/root/documentation/util_fileManager.js.html#line36
http://localhost:63342/GridTestNew/root/documentation/util_fileManager.js.html
http://localhost:63342/GridTestNew/root/documentation/util_fileManager.js.html#line61

Source:

Source:

Parameters:

Name Type Description

fileName

Returns:

Type Promise.<any>

(async) readFromProperties(fieldName) → {Promise.<any>}

util/fileManager.js, line 106

This function is the inverse of 'writeToProperties' It allows a user to read the field 'fieldName' off of the
properties object.

Parameters:

Name Type Description

fieldName The field to read.

Returns:
This function returns a promise that resolves when the data is read off of the field, and rejects when their
is an error reading that specific field.

Type Promise.<any>

writeToFile(fileName, data) → {Promise.<any>}

util/fileManager.js, line 155

This function allows a user to write data to an arbitrary file. The user can specify the file in 'fileName' and
the contents of that file in the 'data' object. The file refrenced by file name will be in the path defined by
'SAVE_PATH/fileName'.

Parameters:

Name Type Description

fileName The name of the file to write to.

data The data to write to the file.

Returns:

Type Promise.<any>

http://localhost:63342/GridTestNew/root/documentation/util_fileManager.js.html
http://localhost:63342/GridTestNew/root/documentation/util_fileManager.js.html#line106
http://localhost:63342/GridTestNew/root/documentation/util_fileManager.js.html
http://localhost:63342/GridTestNew/root/documentation/util_fileManager.js.html#line155

Source:

(async) writeToProperties(field, data) → {Promise.<any>}

util/fileManager.js, line 82

This function allows a developer to esaily write to the config json object. This object is persisted between
instances of the application running.

Parameters:

Name Type Description

field String This is the field on the config object that you want to set.

data Object This is the value that 'field' should be set to.

Returns:
This function returns a promise which resolves if the write was successful, or rejects if there was an error.

Type Promise.<any>

http://localhost:63342/GridTestNew/root/documentation/util_fileManager.js.html
http://localhost:63342/GridTestNew/root/documentation/util_fileManager.js.html#line82

Source:

Source:

languageParser
languageParser

new languageParser(languageInformation) → {languageParser}

util/languageParser.js, line 39

The language parser class allows for quick indexing and predictive searching of user defined functions.

Parameters:

Name Type Description

languageInformation Object This is the key to a language, all aspects of the language
such as functions, primitive types, and commenting information
are defined within this object.

Returns:
Returns a new language parser ready to parse the language defined by

Type languageParser

Methods

addFunction(l_function)

util/languageParser.js, line 241

This function is used when reading the language description. This function generates a hashmap of
functions defined within this languages domain. These functions are looked up when generating
IntelliSence

Parameters:

Name Type Description

l_function l_function The language specific function to add to this languages registered
functions.

cursorInScope(cursor, scope) → {boolean}

http://localhost:63342/GridTestNew/root/documentation/languageParser.html
http://localhost:63342/GridTestNew/root/documentation/util_languageParser.js.html
http://localhost:63342/GridTestNew/root/documentation/util_languageParser.js.html#line39
http://localhost:63342/GridTestNew/root/documentation/languageParser.html
http://localhost:63342/GridTestNew/root/documentation/util_languageParser.js.html
http://localhost:63342/GridTestNew/root/documentation/util_languageParser.js.html#line241

Source:

Source:

Source:

util/languageParser.js, line 175

This function takes a cursor and a scope and returns true if the cursor is inside of the scope.

Parameters:

Name Type Description

cursor cursor object

scope scope to check cursor against.

Returns:
If cursor 'cursor' is inside of scope 'scope'

Type boolean

cursorToScope(cursor) → {*}

util/languageParser.js, line 158

This function returns which scope the cursor is currently in. A cursor object contains a line number and a
character.

Parameters:

Name Type Description

cursor Cursor An object representing a cursors position inside of this file.

Returns:
Returs the scope that the cursor is inside of.

Type *

getLastToken(tokenArrayg) → {*}

util/languageParser.js, line 326

Returns the last token of a line

Parameters:

Name Type Description

tokenArrayg

Returns:

Type *

http://localhost:63342/GridTestNew/root/documentation/util_languageParser.js.html
http://localhost:63342/GridTestNew/root/documentation/util_languageParser.js.html#line175
http://localhost:63342/GridTestNew/root/documentation/util_languageParser.js.html
http://localhost:63342/GridTestNew/root/documentation/util_languageParser.js.html#line158
http://localhost:63342/GridTestNew/root/documentation/util_languageParser.js.html
http://localhost:63342/GridTestNew/root/documentation/util_languageParser.js.html#line326

Source:

Source:

Source:

getSubScope(scope) → {Array.<Scope>}

util/languageParser.js, line 209

This function returns all child scopes of a desired scope.

Parameters:

Name Type Description

scope Scope The scope to get the children of.

Returns:
Returns the array of child scopes parented to 'scope'.

Type Array.<Scope>

getSuggestion(string, cursor) → {Array.<l_function>}

util/languageParser.js, line 257

This function returs an array of l_functions which the user could be typing. This function performs a fuzzy
search through the list of defined functions and generates a subset of functions that are similar to 'string'

Parameters:

Name Type Description

string String String to search

cursor Cursor position in the file

Returns:
Returns an array of l_functions which the user could be trying to type.

Type Array.<l_function>

loadFileSpecificData(fileData)

util/languageParser.js, line 69

This function takes in data from a file and generate a tree structure for this file representing the scopes of
this file. This scoping information is used to determine local variables.

Parameters:

Name Type Description

http://localhost:63342/GridTestNew/root/documentation/util_languageParser.js.html
http://localhost:63342/GridTestNew/root/documentation/util_languageParser.js.html#line209
http://localhost:63342/GridTestNew/root/documentation/util_languageParser.js.html
http://localhost:63342/GridTestNew/root/documentation/util_languageParser.js.html#line257
http://localhost:63342/GridTestNew/root/documentation/util_languageParser.js.html
http://localhost:63342/GridTestNew/root/documentation/util_languageParser.js.html#line69

Source:

Source:

Name Type Description

fileData String This is a string of all lines of a file, with each line delimited with
the \n character.

offsetScopes(delta, cursor)

util/languageParser.js, line 222

When code is added to or removed from a document at a position, scopes need to be offset by that
ammount. Example, if there is a scope which starts on line 42, but lines 5-10 are deleted, then the scope
starting on 42 will now start on 36. This function updates all scopes so they are still in the correct place.

Parameters:

Name Type Description

delta Integer Number of lines to offset scopes by, either positive for new lines, or
negative for deletions.

cursor Cursor The position of the cursor, so we know where these lines were inserted or
deleted relative to.

tokeniseString(string) → {Array.<String>}

util/languageParser.js, line 297

This function takes in a string and turns it into an array of string tokens.

Parameters:

Name Type Description

string String String to tokenise

Returns:
- Array of string tokens

Type Array.<String>

http://localhost:63342/GridTestNew/root/documentation/util_languageParser.js.html
http://localhost:63342/GridTestNew/root/documentation/util_languageParser.js.html#line222
http://localhost:63342/GridTestNew/root/documentation/util_languageParser.js.html
http://localhost:63342/GridTestNew/root/documentation/util_languageParser.js.html#line297

Source:

Source:

Source:

Source:

menuBuilder
menuBuilder

new menuBuilder()

util/menuBuilder.js, line 10

Creates a menuBuilder. This class provides utilites which helps a user build a menu bar for their
application

Methods

findMenuDropDown(name) → {*}

util/menuBuilder.js, line 97

This function creates a new drop down tab on the menu. Example, 'file' will create a new tab called 'file'

Parameters:

Name Type Description

name The name of the tab to add to the menyu.

Returns:
Returns a reference to the menu object [name] this object is passed into the registerCallback functions to
correctly add functionality to tabs.

Type *

getMenu()

util/menuBuilder.js, line 18

This function is simply a getter for this classes MENU object. The MENU object hold all configuration
data needed to create the menu at the top of the window.

registerAppCallback(menu, name, character, function_name)

util/menuBuilder.js, line 65

http://localhost:63342/GridTestNew/root/documentation/util_menuBuilder.js.html
http://localhost:63342/GridTestNew/root/documentation/util_menuBuilder.js.html#line10
http://localhost:63342/GridTestNew/root/documentation/util_menuBuilder.js.html
http://localhost:63342/GridTestNew/root/documentation/util_menuBuilder.js.html#line97
http://localhost:63342/GridTestNew/root/documentation/util_menuBuilder.js.html
http://localhost:63342/GridTestNew/root/documentation/util_menuBuilder.js.html#line18
http://localhost:63342/GridTestNew/root/documentation/util_menuBuilder.js.html
http://localhost:63342/GridTestNew/root/documentation/util_menuBuilder.js.html#line65

Source:

Source:

This function allows a user to create menu elements to trigger events on the main electron app object.

Parameters:

Name Type Description

menu The tab of the menu to add this functionality to.

name The name of this event

character The character to associate this functionality with, Example S for save
would map the hotkey ctrl+S to this function.

function_name The textual name of the function to call on the app. Example, 'quit'
will call app.quit() to close the application.

registerFunctionCallback(menu, name, character, function_name)

util/menuBuilder.js, line 82

This function allows a user to create menu elements to trigger events on the editor.js class.

Parameters:

Name Type Description

menu The tab of the menu to add this functionality to.

name The name of this event

character The character to associate this functionality with, Example S for save
would map the hotkey ctrl+S to this function.

function_name The textual name of the function to call on the editor.js object.
Example, 'save' will call the editor.save() function.

registerWindowCallback(menu, name, character, function_name)

util/menuBuilder.js, line 48

This function allows a user to create menu elements to trigger events on the Electron BrowserWindow
object defined in app.js.

Parameters:

Name Type Description

menu The tab of the menu to add this functionality to.

name The name of this event

http://localhost:63342/GridTestNew/root/documentation/util_menuBuilder.js.html
http://localhost:63342/GridTestNew/root/documentation/util_menuBuilder.js.html#line82
http://localhost:63342/GridTestNew/root/documentation/util_menuBuilder.js.html
http://localhost:63342/GridTestNew/root/documentation/util_menuBuilder.js.html#line48

Name Type Description

character The character to associate this functionality with, Example S for save
would map the hotkey ctrl+S to this function.

function_name The textual name of the function to call on the BrowserWindow object.
Example, 'toggleDevTools' will open the devTools.

Source:

Source:

processSpawner
processSpawner

new processSpawner()

util/processSpawner.js, line 9

Creates a processSpawner. This class allows a user to spawn a native process and acces the stdin and
stdout streams spawned from the process.

Methods

spawn(cmd, args, stdIN, stdOUT, onCLOSE) → {Promise.<any>}

util/processSpawner.js, line 22

This function allows a developer to spawn an arbatrary process on the host pc, and subscribe to various
events the spawned process emits.

Parameters:

Name Type Description

cmd String The command to execute.

args Array.<String> Command line arguments to pass into the command.

stdIN function Function to execute whenever data is written to stdin of the
process.

stdOUT function Function to execute whenever the process sends data to stdOut

onCLOSE function Function to execute when the process terminates.

Returns:
Returns a promise that will resolve once the process has spawned and is running.

Type Promise.<any>

http://localhost:63342/GridTestNew/root/documentation/util_processSpawner.js.html
http://localhost:63342/GridTestNew/root/documentation/util_processSpawner.js.html#line9
http://localhost:63342/GridTestNew/root/documentation/util_processSpawner.js.html
http://localhost:63342/GridTestNew/root/documentation/util_processSpawner.js.html#line22

	Abstract
	Acknowledgements
	Development
	Grid
	Save System
	Webview
	File Tree
	Code Editor

	Process Spawner
	Development Customizable Menu System

	Real world Applications
	Perlenspiel IDE
	FraudTek IDE
	3D Viewer

	GitHub
	Works cited
	Appendix
	Documentation

	EGAD- Documentation.pdf
	Grid - Documentation
	Widget - Documentation

