Machine Learning, Image Processing,
and Transfer Learning for
Handwritten Spreadsheet Digitization

A Major Qualifying Project (MQP) Report
Submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE
in partial fulfillment of the requirements
for the Degree of Bachelor of Science in

Computer Science,
Data Science,
and Mathematical Sciences

By:
Matthew Haley
Liam Hall
Christopher Langevin
Cameron Norton
Harsh Patel
Elliot Trilling

Project Advisors:
Professor Oren Mangoubi
Professor Randy Paffenroth

Sponsored By:
Professor Gregory Noetscher, U.S. Army Natick Soldier Systems Center

Date: April 2024

This report represents work of WPI undergraduate students submitted to the faculty as
evidence of a degree requirement. WPI routinely publishes these reports on its website
without editorial or peer review. For more information about the projects program at WPI,
see |http: // www.wpi.edu/ Academics/ Projects.

APPROVED FOR PUBLIC RELEASE

http://www.wpi.edu/Academics/Projects

Abstract

This report details the development of a software program aimed at converting handwritten parachute
data records from the Natick Army Lab into an analyzable digital format. Due to the failure of traditional
OCR models to recognize handwritten fractions, a crucial part of the data, we generated a synthetic dataset
to specifically fine-tune these models. The software utilizes image processing and OCR technologies to trans-
late text and replicate the physical document’s layout in a digital format. This innovation streamlines data
analysis, enhancing the Army’s ability to monitor and understand parachute integrity and lifecycle.

i APPROVED FOR PUBLIC RELEASE

Acknowledgements

Our project would not have been possible without the help of our sponsors and advisors. We
would like to thank Dr. Greg Noetscher for his guidance in helping us understanding the requirements
of this project. We are grateful to Natick Army Research Labs for allowing us to work on an impactful
project. We would also like to thank our advisors, Professor Oren Mangoubi and Professor Randy Paffenroth.
Both advisors shared their expertise in Math, Data Science, and Computer Science. Lastly, we appreciate
the departments of Mathematical Sciences and Computer Science at Worcester Polytechnic Institute for
providing the educational foundation that prepared us for this project through a diverse range of classes and
coursework during our undergraduate studies.

ii APPROVED FOR PUBLIC RELEASE

CONTENTS CONTENTS

Contents
1 Introductionl 1
|2 Background)| 2
2.1 Image Processing| 2
2.1.1 About OpenCV/|. e 2
R S 3
2.1.3 Deskewingl. e 3
2.1.4 Grayscaling] 4
2.1.4.1 Grayscaling in OpenCV| 5
2.1.5 Gaussian Blurringl 6
2.1.5.1 Blurring in OpenCV]o o 7
[2.1.6 Binarization (Thresholding)| oL 7
2.1.6.1 Adaptive Thresholding in OpenCV|. 7
[2.1.7 Morphological Transformations| 9
2.1.7.1 Morphological Transtormations in OpenCV| 11
[2.1.8 Perspective Transformation| L 11
2.2 Neural Networksl e 14
2.2.1 Model Based Transfer Learning| L o oL 15
[2.2.2 Synthetic Dataset Generation| L L L 16
223 Transformersl 17
2.2.4 Pre-Trained Models from Huggingkace|. 20
22.4.1 Microsoft TrOCR. Architecturel oo 20
2.2.4.2 Google Vi'T Architecture] 21
2.2.4.3 Seq25Seq Trainer| e 22
3 Methods! 23
B1 Overview of Methodd 23
8.2 Splitting PDF Into Images|. 24
8.3 Image Preprocessing] 24
3.4 Perspective Transtormation| 25
3.4.1 Binary Edge Image Creation| oL 27
3.4.2 Largest Quadrilateral Detection|. o oo 27
8.4.3 Four Point Transformationl oo 28
3.5 Making a Mixed Fraction OCR Model| 29
13.5.1 Initial Fine-tuning using Existing Datasets| 29
13.5.2 Synthetic Mixed Number Dataset Generation| 30
13.5.3 Fine-tuning Mixed Fraction Model| 31
3.5.3.1 Creating a Torch Dataset| 32

iii APPROVED FOR PUBLIC RELEASE

CONTENTS CONTENTS
3.0.3.2 Fine-tuning using Seq25eq Irainer| Lo L. 33

13.5.3.3 Evaluation Against Parachute Data] 33

3.6 Making a Cell Classifier Model|] 34

cell C senerationl Lo o 34

13.6.2 Fine-tuning Cell Classifier Model| 35

3.7 Converting Processed Images Into XLSX Files|. 35
8.7.1 Finding All Cellsona Page| o oo 35

3.7.2 Final Preprocessing and Datasheet Check{ 36

13.7.3 Breaking up Cell Contents for OCR} 37

13.7.4 Creating Images for Debugging Purposes| 37

8.7.5 Pertorming OCR| o 37

B.7.6 Excel Sheet Generationl L 39

3.8 Making a GUI and Generating an Executable] o o000 39
8.8.1 Makinga GUI| 39

3.8.2 Generating an Executablel oo 40
[4_Results| 41
4.1 Pipeline Summary] e e 41
4.2 Quality of Produced XLSX Files|o oo 41
4.3 Comparison of Different Models Used| 43
4.4 Failure Modes ot Program and Problems in Spreadsheets|. 46
4.4.1 Largest Problem: Accurate Handwriting Translation| 46

[£.42 Other Common Problems L 46

4.4.2.1 Missing Lines in Tables Where Printed Text Overflows a Cell] 46

4.4.2.2 Large Vertical Handwritten “1” Treated as Cell Line|. 47

4.4.2.3 Handwritten Text Overflowing Cells| 47

43 Rare Problemsd 48
[6_Conclusionl| 48
ppend 50
[A_How to Run Our Executablel 50
[B_Procrustes Problems| 51
IB.1 Orthogonal Procrustes Problems| 55

|C Back Propagation| 58
[D CNN Encoder/Decoder to Dewarp Images| 65
ID.1 Introductionl. e 65
ID.2 Everything at Once|. o 66
ID.3 Simple Toy Problem| 67
ID.4 Ideas for Future Testing| L 74
[References| 75

iv APPROVED FOR PUBLIC RELEASE

LIST OF FIGURES LIST OF FIGURES

List of Figures

I An example parachute datasheet.| o oo 1

12 An example datasheet before and atter being deskewed. The original image is on the lett. The |

| deskewed 1mage ison theright.| oo oo 4

13 An image of a flower before and after grayscaling is applied. The image on the left is the |

| original image. The image on the right has been grayscaled.| 5

4 An 1image of a flower before and after Gaussian blur is applied. The image on the left is the |

| original image. The image on the right has been blurred). o o v v v v i vt 6

5] An image of a flower before and after adaptivel'hreshold is applied. The image on the left 1s |

| the original image. The image on the right is the binary result.| 7

16 An image of a flower before and after applying erosion with a 3x3 square kernel. The image |

[on the left is the original image. Lhe image on the right has been eroded) 9

|7 An 1mage of a flower betore and after applying dilation with a 3x3 square kernel. The image |

| on the left is the original image. The image on the right has been dilated| 10

18 An 1mage of a flower before and after applying an “open” operation with a 3x3 square kernel. |

| The image on the left is the original image. The image on the right has been “opened”.| . . . 10

19 An image of a flower before and after applying a “close” operation with a 3x3 square kernel. |

[The image on the left is the original image. The image on the right has been “closed’)] 11

110 Three photos of a post-it taken to demonstrate perspective warping. In the first image, the |

| photo 1s taken “straight-on” so the post-it note is accurately depicted as a square. In the |
second 1mage, the photo is taken from an angle so the post-it note becomes a non-square
quadrilateral. The third image takes the second image and aligns it so the top edge is level

(deskewing it) emphasizing that it is truly non-square from this perspective.|. 11

[11 Synthetic Handwritten Calculus Data.o 00000000 16

|12 The transformer architecture as presented by “Attention is All You Need” |[Vaswani et al., 2017].| 18

113 An architectural diagram of the steps the TrOCR model takes to convert an image to text. |

| Diagram from the original paper by Li et al. |Li et al., 2021].] 21

114 An architectural diagram of the steps the Vil model takes to convert an image to a numerical |

| classification. Diagram from the original paper by Dosovitskiy et al. [Dosovitskiy et al., 2021]] 22
115 The flow of information using Seq25eq. Using the parameters from the quickstart guides for
each specific model we can pass these into the arguments class. Once the arguments have
been created, we can pass to Seq2oeqlrainer these arguments, the pretrained model, and the
dataset we want to linetune the model on. From there, Seq2Seqlrainer will run and output

| the training results as well as the final finetuned model.| 23
116 A high-level flowchart of the steps a file takes passing through our code pipeline. Gray is the
endpoints of the pipeline, blue is image preprocessing, orange is for excel sheet generation,

green is synthetic data generation, and yellow is OCR models.]. 24

117 An example of deskewing done, the image on the left i1s skewed while the 1mage on the right |

| has been straightened.| 25

118 An image of a datasheet before and after applying a perspective transform. The image on the |

top 1s the original image. The image on the bottom right has been transtormed. The light |

blue on the bottom of the transformed image is an arbitrary color to fill in newly generated |

... 2

9

An image of a datasheet that has been converted to binary and and had the cell edges extracted.| 27

A\ APPROVED FOR PUBLIC RELEASE

LIST OF FIGURES LIST OF FIGURES

20 An image of a datasheet with an overlay of the largest detected quadrilateral on image (in red).| 28
[21 An example of one of the images from the synthetic calculus dataset. [Pearson, 2023|.| 29
22 'The image on the lett is one of the handwritten fractions found in the parachute data. The
| image on the right is the output produced by the model that was fine-tuned on the calculus
| dataset when acting on the left image.| oo oo 30
23 An example image of a generated synthetic fraction.| 30
24 Example images of synthetic fractions. From left to right: a whole number above a horizontally |
| arranged fraction, a whole number above a vertically arranged fraction, a whole number next |
| to a horizontally arranged fraction, a whole number next to a vertically arranged fraction, |
| only a whole number, only a horizontally arranged fraction, only a vertically arranged fraction.| 31
25 After the synthetic dataset is created and parsed into Python, it then needs to be converted |
| into a format that can be used tfor training. The TrOCR model on Hugging Face provides a |
| processor that allows these labels and 1images to be turned into tensors, which can then be |
| used for our training dataset.| L. 32
26 'The following table was generated by the Seq2SeqIrainer. An evaluation was done every 200 |
| steps against a set of data the model was not trained on to verify the model was not overfitting |
| on the test data. Training loss is the loss from the train dataset, validation loss is from the |
| evaluation dataset, and Cer is the character error rate from validation). 33
27 'The pictures here are examples of fractions from the parachute data that were then passed |
| into the model. The top row is all images that come from the parachute document, and the |
| bottom row 1s all the outputs that the model predicted the text was based on the input image.| 34
28 An image of a datasheet that has been converted to binary and and had the cell edges extracted.| 36
29 An 1mage of a cell containing both printed text and handwritten numbers.|. 37
[30° An image of a datasheet with overlays of cell edge contours (green) and word contours (red).| 38
Bl An image of the graphical user intertface beginning the processing ot a large folder.| 39
32 An example usage of the GUI on a small sample, to show a complete output.| 40
33 The result of running Pylnstaller. The folder “_internal” holds the dependencies of the exe- |
| cutable file, and must be in the same folder as the executable file when 1t isrun.| 40
[34 An example datasheet (top) and the resultant XLSX output file (bottom).. 42
I35 An example datasheet (top) along with the excel sheet output (bottom) using a pre-trained |
[TrOCR modell e 44
136 Output of our model using PyTesseract for OCR on a random datasheet.| 45
137 Example images of handwriting that is dithcult to process.. 46
88 Example datasheet with a missing cell line in the upper right hand corner. The offending cell |
| contains the text “Bottom Right”.| 47
139 Example cell containing handwritten text that gets detected as a cell line. The first slash after |
| the “9” 1s the offending character.| L o 47
40 Examples of cells with handwriting that extends past the boundary of the cell.f 47
41 Examples of rare problems that can occur. In order they are: cells containing rotated printed |
| text; cells with a diagonal slash to accommodate two fractions; arrows indicating entries should |
| be swapped; big text written over the table; cells with crossed out handwriting.| 48
42 A simplified example ot generalized Procrustes analysis modified from Zelditch et al., 2012. |

Atter landmarks are selected for each specimen, landmark configurations are then centered, |

scaled, and rotated such that the Procrustes distance between the configurations is minimized.| 52

vi APPROVED FOR PUBLIC RELEASE

LIST OF FIGURES LIST OF FIGURES

43 Denoising Autoencoder Example on MNIST Dataset. The first row contains input images, |
| the second row contains the input images with added noise, and the third row contains the |
| model’s attempt to reconstruct the original input image from the noisy image.| 65

44 An image of a randomly generated synthetic table before and after being randomly warped. |
[The top image is the original table. Lhe bottom is the warped table] 66

|45 A warped input image (left) and the model output image (right).| 67
|46 Images of random grids of different sizes (28x28, 56x56, 84x84, 112x112).| 68
|47 Initial encoder/decoder architecture written in PyTorch.| 68

48 Examples produced by the original model when trained and tested on datasets of different
sized images. From top to EOttom2 datasets of images of size 28x28, 56x56, SZXSZZ 112x112.
From Ieft to right, the rotated input image, the model prediction, and the true target image| 69

|49 A convolution (left) and transposed convolution (right) [Dumoulin and Visin, 2018|| 70
B0 An 1D CNN feed forward example showing how embedding pixels are a tunction of a local |
| group of pixels [M, 2020[] 71
51 A diagram showing how one pixel in the output image (far right) is a function of a group of |
| local pixels on the input image (far left).|. oo oo oL 71

[52 A diagram showing how one pixel in the output image (far right) is a function of a group of
local pixels on the input image (far left). Because the image is small, each output pixel is a
function of each input pixel| oL 72

|53 A dilated convolution [Dumoulin and Visin, 2018.| 73

[54 Results of the new encoder/decoder using dilations. Each row is a separate example. The
first column 1s the input image, the second column is the model output, the third column is
the target image.| L 73

vii APPROVED FOR PUBLIC RELEASE

1 INTRODUCTION

1 Introduction

The US Army Natick Soldier Systems Center (NSSC or DEVCOM), which is also known as “Natick
Labs”, is located in Natick, Massachusetts. NSSC focuses on a multitude of technologies, including the T-
11 parachute [NSC, 2024]. In the US Army, T-11 parachutes are critical for a multitude of tasks. These
parachutes can transport both personnel and supplies from the sky to the ground. Every time a T-11
parachute is put into use, it is then examined by an officer in the army, using a sheet like the one shown
below. Knowing how much wear and tear has been sustained by particular parachutes is paramount to
their success in performing safely. With the number of parachutes in the inventory of DEVCOM, or the

U.S. Army Combat Capabilities Development Command, there are many of these physical data sheets

|U.S. Army Combat Capabilities Development Command, 2023].

Box #2 T11 Risers DoM: §)zz Inspection Date: 9/z /zL I
‘pmi Min Max DWG Sheet|Zone Top Left|Bottom Left|Top Right |Bottom Right
9 4-Point Stitching Length 1 7/8 |2 1/8 |11-1-7719] 1 E2 =7 | '%_ 2 | 'Yb
11 Slip Assist Loop Length 6 7/8 |7 1/8 |11-1-7719| 1 B3 2 7 ~ 7
12 Glue - Riser set - Check thread 1
presents Go/No-Go |11-1-7719 B2/Bs | (GO| 6O | GO | 6O
Visual Inspection + £ariopy Release Functional w/ Harness (GO/NO GO) : (¢ » I
Inspectap—27"~7
Visual Inspection Notes: 2D Ceans Ji-1- 7051~ |, T1HAM-2RI1IB2O
Box 2 T11R Risers DoM: qQ|zz Inspection Date: ¢/iz/zz |
Min Max Drawing |Sheet|Zone Top Left|Bottom Left|Top Right |Bottom Right
4 |Length of Hook / Pile Tape 14 5/8 |14 7/8 [11-1-7729] 1 |F3 19%1 147 | 147=| 4%
Glue - Riser Set - 11R - Check for
¢ Thread presents Go/no go 11-1-7729 & Several | GO
- Glue - Spreader bar - Check for 5
"WW" thread Go/no go 11-1-7729 Several | GO
Visual Inspection (GO/NO GO): <O
Inspector;, —Z F~"
Visual Inspection Notes: 2D Raans -1- Wzz-1, TI'e- SO

Figure 1: An example parachute datasheet.

While these record sheets contain valuable information, they do not have much value in their

1 APPROVED FOR PUBLIC RELEASE

2 BACKGROUND

physical form as they do not allow for easy analysis. Digitizing them would allow the military to easily track

the status and measurements of the parachutes they are working with.

To improve the statistical processing of data gathered by the U.S. Military on their parachutes,
our team has endeavored to make a machine learning pipeline to transform scans of documents of parachute
data into a digital process that can be more easily processed. We used state-of-the-art machine learning
techniques to perform optical character recognition on each sheet and produce a resulting Excel file. We

hope this pipeline will enable large speedups in the digitization efforts of these records.

Through this project, we will explore many core principles of machine learning. Our main tool
will be neural networks, with a particular focus on the transformer architecture as introduced by the paper
“Attention Is All You Need” [Vaswani et al., 2017]. Our team used pre-trained models effectively and fine-
tuned them for our specific use case. To prepare the dataset for processing by these models, standard image
preprocessing techniques such as resizing, deskewing, grayscaling, blurring, binarization, and morphological
transformations were used. Built onto this are the OpenCV contour detection functions, which aided the

processing of this parachute dataset which contains many contours (in the many gridlines that are present).

2 Background

2.1 Image Processing

Preprocessing images into a consistent and usable format is a critical first step in training and
testing many models. Some relevant image processing techniques for this project include resizing, deskew-
ing, grayscaling, blurring, binarization, and morphological transformations. These techniques represent the

groundwork for preparing images for various applications including contour detection and object recognition.

2.1.1 About OpenCV

The Open Source Computer Vision Library, or OpenCV for short, is a library full of machine
learning and computer vision software. The library has over 2500 algorithms, including programs that can
recognize faces, classify human actions by watching certain videos, track movements of objects, produce
3D points, stitch images together, etc [OpenCV Developers, 2024d]. As the library is Apache 2 licensed,
governing bodies are allowed to use this library [Apa, 2004]. As we are creating this model for the military,

it was very important that this be the case. In addition, OpenCV has a python interface and is supported for

2 APPROVED FOR PUBLIC RELEASE

2.1 Image Processing 2 BACKGROUND

Windows, Linux, Mac OS, and Android. Since the group did not know what operating system the military

uses at the beginning of the project, this made OpenCV a safe bet.

2.1.2 Resizing

The process of resizing an image involves altering its dimensions, either increasing or decreasing
its size while maintaining the original aspect ratio. In the realm of image processing, resizing holds critical
importance for standardizing image dimensions. In research applications, ensuring uniformity in input
data through resizing facilitates consistent and accurate analysis across varied images, providing a stable

foundation for subsequent image processing algorithms and methodologies.

2.1.3 Deskewing

Deskewing emerges as a vital technique aimed at rectifying the skewness or non-alignment within
images. We use the term “deskewing” to refer to the act of rotating an image so that a maximum number
of lines are horizontal or vertical. Skewed images can impede precise text recognition or line detection,
affecting the performance of subsequent processing algorithms. Rectifying skewness significantly enhances
the accuracy and reliability of analyzing textual or line-based content within images, ensuring more precise

and effective interpretation.

We utilized a Python library known as “deskew” to perform deskewing of our images. See [2|for an

example.

3 APPROVED FOR PUBLIC RELEASE

2.1 Image Processing 2 BACKGROUND

CHECK LIST
CHECK LIST
PIN : 11.1-7050-1
P/N : 11-1-7050-1 ARAI
T-11 PERSONNEL P/ HUTE SYSTEM
T-11 PERSONNEL PARACHUTE SYSTEM
TEw | pa nowaen DESCRIPTION ary
TEW |t mumbeR: oescRPTION
o | - 1170501 T-11 PERSONNEL PARACHUTE SYSTEM REF.
11-1-7050-1 T-11 PERSONNEL PARACHUTE SYSTEM REF. 1 11477191 RISER SET, T-11 2
' et RISER SET. 11y N I z S arness AV, 1 :
2 11477221 HAR] g -
3 11-1-77201 reRR s, T 1 - 3 11477201 PACKTRAY ASSEMBLY, T-11 1
PACKTRAY ASSEMBLY, T-11 1 v a e 'DEPLOYMENT BAG ASSEMBLY, T-A1 MAN 1 o
‘ e DEPLOTHENT 0AG ASSENLY, 711 AN N A 820
sn:T11DB-RB.
sv 1110888 [1424
< - 5 e Us_wobirED 5 p
e
633 usL woorriED : 7, o T USL,§FT. EXTENSION 1 v
o [EE=E = :
[ez Ust s P1_extension 7] 7 R SWAP HOOK ASSY. PARA STATIC LINE 1 Cd
7 [RrTn) SNAT HOOK ASSY , PARA STATIC LINE ' [e ASSEMBLY, T-11 MAIN REF.
e PARACHUTE ASSEMBLY, T-11 MAIN = WITH SLIDER (11-1.7058-1) z
'WITH SLIDER (11-1.7050-1 s ATl PARAGHLTE ASSEMBLY, T-11 MAIN 1 /
¥ R PARAGHUTE ASSEMBLY, 711 MAIN 1 re W{LYH
svrimre 1€2Y | setimars L2
] 5 Tiorrosat BRIOLE ASSEMBLY, T-11 MAN 1 7
| 11170821 BRIDLE ASSEMBLY, T-11 MAN 1 v w0 a8t DROGUE ASSEMBLY. T-11 MAN 1 v
10 11-4-7080-1 DROGUE ASSEMBLY, T-11 MAIN 1 g " 170011 DEPLOYMENT SLEEVE ASSEMBLY, T-11 MAIN 1
it 11170611 DEPLOYMENT SLEEVE ASSEMBLY, T-11 MAIN 1 - - 11:1-10005-1 T-11R SINGLE PIN PARACHUTE ASSEMBLY REF.
e 11-1.10005-1 T-11R SINGLE PIN PARACHUTE ASSEMBLY REF. 2z 11499221 T-1R SINGLE PIN GANOPY ASSEMBLY 1
2 15190721 > E Y084
T-11R SINGLE FIN CANOPY ASSEMBLY 1 S sw:T11R_1%0
| s TR 750, / 3 11196091 PACK TRAY ASSY, T-11R SINGLE PIN ' v
[e PAGK TRAY ASSY, T-117 SINGLE P b % v 1119061 FIPGORD ASSY, T-11R SINGLE PIN :
P 15186061 RIPGORD ASSY, T-11R SNGLE PIV 1 v " -r0msa EJEGTOR SPRING ASSY, T-A1R SNGLE PIN v
15 11-1-10008-1 EJECTOR SPRING ASSY, T-11R SINGLE PIN. 1] 1407714 EXTRACTOR AGEY, 1190 SNOLE N !
o SHerarr EXTRAGTOR ASSY, T-11R SINGLE PIN f v 1etomey BRILE LEC ©
. Sior e - - et SOFTAINK ASSY T
B taTee e : [TiAT09n1 CLOSING LOOP ASSY, T-11R v
LA -] CLOSING LOOP ASSY, T-1R 3 ‘4 i J1aT2sa RISER SET, T-11R. 1
1 1.17z1 RISER SET, T-11R i 4
woeorr_ Q0 o 08(31/22
—l o 08/21/22
€ - Packing Check ListForm cresled ON282020 sHEET 10T

Figure 2: An example datasheet before and after being deskewed. The original image is on the left. The
deskewed image is on the right.

2.1.4 Grayscaling

Grayscaling, transforming colored images into gray representations, is a foundational technique in
image processing. By eliminating color information and encoding pixel intensity through shades of gray
(ranging from 0 for black to 255 for white), this reduces the amount of information needed for every image.
Grayscaling provides a way to standardize input images for streamlined analysis. This simplification reduces
computational complexity by focusing solely on luminance values and mitigating color-related variations. By

rendering images in grayscale, it becomes easier to perform additional processing or analysis across diverse

image datasets |[Lehn et al., 2023].

There are two main methods to grayscale images. The first method takes an average of the red,
green, and blue values for the grayscaling value. If we specify r to be red intensity value, b to be the blue

intensity value, and g to be the green intensity value, the grayscaling, or intensity, value will be:

r+b+g
— (1)

I =
3

This method seems flawless at first glance. However, in practice it is not optimal. The human eye

4 APPROVED FOR PUBLIC RELEASE

2.1 Image Processing 2 BACKGROUND

does not react the same to seeing red, green, and blue. While the eye is very sensitive to green light, it is
much less sensitive to blue light. Because of this, a second, more accurate, way of grayscaling was created.

Weighted grayscaling gives each color channel a specific weight which is represented in the following formula:

I=0.299-r+0587-g+0.114-b (2)

where 1, g, b are the color intensities in the range [0, 255] [Gra, 2024]. To see an example of the

method used on a picture, see

2.1.4.1 Grayscaling in OpenCV

In OpenCV, grayscaling is done using the function cvtColor, which takes in an image and a color
type and converts the image to that color type. For the purposes of this project, this function was used to
convert an image using RGB coloring into a grayscale version of the image. In order to do this, the RGB

image and an OpenCYV variable called cv2.COLOR_BGR2GRAY were passed into cvtColor, and a grayscale

version of the image was returned |[OpenCV Developers, 2024a].

Figure 3: An image of a flower before and after grayscaling is applied. The image on the left is the original
image. The image on the right has been grayscaled.

5 APPROVED FOR PUBLIC RELEASE

2.1 Image Processing 2 BACKGROUND

2.1.5 Gaussian Blurring

Image blurring is a procedure that diminishes the sharpness and intricacy of an image. Image

blurring smooths the fine details of the image, resulting in reduced clarity. The primary purpose of applying

image blurring is to eliminate noise [Domke and Aloimonos, 2009].

All images have some amount of intrinsic noise. For example, a photo of a white sheet of paper
will have hundreds of individual pixel values recording how light reflects off the paper and is processed by a

camera sensor in slightly different ways. To reduce some of this noise and improve future image processing,

we utilize Gaussian blurring to smooth local values together [Hummel et al., 1987].

To see an example of Gaussian blurring at work, see

Figure 4: An image of a flower before and after Gaussian blur is applied. The image on the left is the original
image. The image on the right has been blurred.

The Gaussian blurring process works by convoluting an input image with a Gaussian kernel. A
Gaussian kernel is a matrix of values generated from a Gaussian distribution. The values generated are set
by the distance from the center of the kernel and the standard deviation of the distribution, both which
are chosen by the user. To generate the pixel values for the blurred image, the kernel is moved around the
image, with the new pixel values being the sum-product of all pixels in the kernel centered on the pixel being

calculated times their corresponding weight given by the Gaussian kernel. Once this image of new pixel

values is calculated, it is returned as the new ”smoothed” image [Singhal et al., 2017].

Below is the equation used to determine the values of a Gaussian kernel:

Gla,y) = — e 5t 3)

2mo?

Within the equation, o represents the standard deviation, set by the user, while x and y represent

6 APPROVED FOR PUBLIC RELEASE

2.1 Image Processing 2 BACKGROUND

the horizontal and vertical distance from the origin of the kernel respectively [Singhal et al., 2017]. These
values allow for the center pixel to be weighted the highest, with the weights decreasing in magnitude the
further you travel from the center. This results in pixels retaining most of their value during the blurring

process, leading to a still recognizable image.

2.1.5.1 Blurring in OpenCV

In OpenCV, blurring is done by using the function GaussianBlur. This function takes in an input
image, a kernel size, and the standard deviation of the kernel in the X and Y directions and returns a blurred

image. [OpenCV Developers, 2024b]

2.1.6 Binarization (Thresholding)

Binarization/image thresholding is an important technique in image processing. It is used for
converting grayscale images into binary images by highlighting regions of interest based on pixel intensity
values. Traditional thresholding methods apply a fixed threshold value to all pixels in an image. One of the
limitations of traditional thresholding is its inability to adapt to local variations in illumination across an
image. Adaptive thresholding algorithms calculate the threshold for each pixel based on a local neighborhood
around it [Ope, 2024].

2.1.6.1 Adaptive Thresholding in OpenCV

Figure 5: An image of a flower before and after adaptiveThreshold is applied. The image on the left is the
original image. The image on the right is the binary result.

In OpenCV, adaptive thresholding is done using the function adaptiveThreshold. This function

takes in an image, and alters all pixel values to either be zero or the maximum pixel intensity, which in our

7 APPROVED FOR PUBLIC RELEASE

2.1 Image Processing 2 BACKGROUND

case is 255, based on if the pixel value is greater than the weighted sum of the pixels in a small neighborhood

containing the pixel in question [Ope, 2024].

The adaptiveThreshold function takes two parameters. The first, adaptiveMethod, is the function
that is used to determine the pixel value threshold that differentiates a pixel from being either black or
white in the binary image. For this project, we used cv2. ADAPTIVE_THRESH_GAUSSIAN_C. This setting
tells adaptiveThreshold to use the weighted sum of the kernel, with the weights being generated from a
Gaussian distribution, minus a constant set by the user. In our project, a kernel size of 5x5 was used and the
constant that was subtracted off each weighted sum was two, which are represented by the blockSize and C
parameters respectively. The second parameter, thresholdType, determines what value the pixel should be
set to. We used cv2. THRESH_BINARY_INV which setting the pixel value to 0 if it has a higher value then

the calculated threshold for that pixel. Otherwise, the pixel is set to the max value of 255. [Ope, 2024]

Below is the equation used to determine the new value of a given pixel, based on the local threshold

value with src(z, y) representing the value of the pixel being evaluated.

dst(z,y) = 0 if sre(z, y) > T'(@,y) "

maxValue otherwise

As seen above, if a given pixel is darker than the local threshold, then the pixel is turned to white,
otherwise the pixel is turned black. The local threshold value is determined by the weighted average of
the Gaussian filter being applied to a given pixels and its neighbors, determined by using the following

equation:[OpenCV Developers, 2024¢]

T(x,y) 2 (o) eblock StC(@', y') - weight(z', ") C (5)
xy) = - —
Z(l',y’)éblock Welght(xla y,)

The constant C' is predetermined by the user, while the weights themselves are determined by
the same function used for Gaussian Blur, equation [3] with the sigma in this case being determined by the

following equation: [OpenCV Developers, 2024b][Ope, 2024]

o = 0.3 % ((blockSize — 1) « 0.5 — 1) + 0.8 (6)

To see an example of the method used on an image, see [f]

8 APPROVED FOR PUBLIC RELEASE

2.1 Image Processing 2 BACKGROUND

2.1.7 Morphological Transformations

Morphological transformations are a type of simple operation on binary images that require two
inputs: the original image and a structuring element (or kernel) that dictates the operation’s nature. Two
fundamental morphological operators are Erosion and Dilation, with additional variants such as opening and

closing being combinations of the fundamental ones [Mor, 2024].

Erosion, like soil erosion, diminishes the boundaries of the foreground object in binary images. As
the kernel slides through the image in a 2D convolution manner, a pixel in the original image becomes 1
only if all of the pixels under the kernel are also 1; otherwise, it is eroded (set to zero). This process discards
pixels near the boundary, reducing the thickness of the foreground object. Erosion is effective for eliminating

noises and detaching connected objects [Mor, 2024]. To see an example of erosion on an image, see @

Figure 6: An image of a flower before and after applying erosion with a 3x3 square kernel. The image on
the left is the original image. The image on the right has been eroded.

Dilation is the opposite of erosion. A pixel element becomes 1 if at least one pixel under the kernel
is 1, leading to an increase in the white region. Typically, dilation follows erosion, especially in noise removal
scenarios, as erosion shrinks the object. Dilation helps restore the object’s size without reintroducing the
eliminated noise and is also useful for connecting broken parts of an object [Mor, 2024]. To see an example

of dilation on an image, see

Opening, a combination of erosion and then dilation, is employed to remove noise, as erosion takes
care of noise elimination [Mor, 2024]. This combination of the two returns an overall smoother image, as the
erosion removes the sharper edges of an image, while the dilation returns the image back to about the same
size, however it cannot fully reverse an erosion [Sreedhar and Panlal, 2012]. To see an example of opening

on an image, see [§

Closing, the reverse of opening, involves dilation and then erosion. This operation is valuable for

9 APPROVED FOR PUBLIC RELEASE

2.1 Image Processing 2 BACKGROUND

Figure 7: An image of a flower before and after applying dilation with a 3x3 square kernel. The image on
the left is the original image. The image on the right has been dilated.

Figure 8: An image of a flower before and after applying an “open” operation with a 3x3 square kernel. The
image on the left is the original image. The image on the right has been “opened”.

10 APPROVED FOR PUBLIC RELEASE

2.1 Image Processing 2 BACKGROUND

closing small holes within foreground objects [Mor, 2024]. Especially since the dilation going first means
that gaps can be connected in the image, so when erosion occurs, there is a higher likelihood that along

the connection point all of the pixels within the kernel are present [Sreedhar and Panlal, 2012]. To see an

example of closing on an image, see [9

Figure 9: An image of a flower before and after applying a “close” operation with a 3x3 square kernel. The

image on the left is the original image. The image on the right has been “closed”.

2.1.7.1 Morphological Transformations in OpenCV

Within OpenCV, morphologyEx is used to perform two morphological transformations. This func-

tion takes as input an image and a “structuring element” (a small binary matrix). Structuring elements can

be easily generated by making calls to getStructuringElement to generate commonly used kernels.

2.1.8 Perspective Transformation

To introduce the “Perspective Transformation”, we present three perspectives of a post-it note

| :
e .

-z"., i ‘.‘o "
i i aw B2 o

Figure 10: Three photos of a post-it taken to demonstrate perspective warping. In the first image, the photo

is taken “straight-on” so the post-it note is accurately depicted as a square. In the second image, the pl

10to

is taken from an angle so the post-it note becomes a non-square quadrilateral. The third image takes the
second image and aligns it so the top edge is level (deskewing it) emphasizing that it is truly non-square

from this perspective.

11 APPROVED FOR PUBLIC RELEASE

2.1 Image Processing 2 BACKGROUND

In the first image, the post-it note appears as a square, and this might be considered to be its
intrinsic “shape”. In the second image, the viewpoint is no longer orthogonal to the table on which the
post-it sits. The third image emphasizes this warping effect by aligning the top edge of the post-it note
(from the second image) to be parallel with the top of the photo. In the third image, we can see that the
left and right edges of the post-it are no longer at right angles to the top edge. Worse, the edges are not
parallel to each-other. Each of the images of the post-it note contain important information. It would be
useful to make the second and third images to be identical to the first, as it would be easiest for a computer
or a person to read that information. This process can be done through “homography”, or the perspective

transformation.

The perspective transformation is a projective transformation between two images. Simply, the
transform takes a matrix composed of points in an image and multiplies it by the homography matrix to get
a new matrix, which represents the points of a new, deskewed, matrix [Pesce et al., 2023]. In mathematical

notation, the transform is:

P=HP (7)
Where H represents the following:
hi1 hia his
H = 1hy hyy hos (8)
hsi hse 1

Notice that only one value of the matrix is not a variable. This means that many parts of the
matrix must change to account for the different image matrix P [Pesce et al., 2023]. So then, how do we
calculate these variables? In order to do that, a calibration process is done by picking specific points that

relate to each other though these equations.

Tq T
ya| =H* |y (9)
Za 1

12 APPROVED FOR PUBLIC RELEASE

2.1 Image Processing 2 BACKGROUND

T T
1
il - |5 10
= |ve g (10)
Za 1

Above, x,y are the original picked points, &, ¢ are the second picked points, and z,,y,, 2z, are the

chosen points after they are put through the transform. When we combine both of these equations, we get:

T T
H |yl =z |§ (11)
1 1

And after distributing them, we get

2a® = h112+ hi2y+ his
2ay = ho12+ hooy+ has

2q = ha12+ h3ay+1

the relationship between one pair of matching points. As the homograph matrix, H, has exactly eight degrees
of freedom, at minimum four corresponding points are needed to solve this matrix [Lee, 2022]. We combine

this relationship between the four points to get the following:

20 y® 1 0 0 0 —aWe® M [hy, o)
0 0 0 20 O 1 5z 5y | |py, 5
h13
2O 4@ 1 0 0 0 —a0z0 30y | |hy B o "
0 0 0 20 O 1 gz 5y | |py, o)
has
2™y 1 0 0 0 —amgm gy | | py 7
0 0 0 2™ gy 1 —ggm gy]| pg,| o)

In this new matrix form, we are now able to solve for all values of the homography matrix [Lee, 2022].

13 APPROVED FOR PUBLIC RELEASE

2.2 Neural Networks 2 BACKGROUND

2.2 Neural Networks

In order to accurately create a program that can detect text, we first need it to understand several
different types of handwriting. As the US military is so large, many different people are involved in parachute
testing, meaning many individuals write up needed information about data that will be processed through
this program. Thus, we have to show the program many different types of handwriting, and have it learn

what specific characters look like. One of the best ways to do this is with neural networks.

A neural network is a type of machine learning algorithm. The specific type of neural network
in machine learning is comprised of many nodes that communicate information to each other. Traditional
(fully connected/feedforward) neural networks come in layers, with a “weight” connecting each neuron in
the previous layer to a neuron in the next layer, and a “bias” upon each neuron itself, where these are all
just real numbers. These weights and biases can be stored in the structures of linear algebra (matrices and
vectors), as they will be linearly related to each other. Specifically, we can store all the weights between two
layers of neurons in a “weight matrix”, and all the biases for a layer (the layer of neurons after the weight
matrix) in a “bias vector”. If an output of a node is above the specific node’s bias, that node is activated

and a signal is passed on to future nodes. If this bias value is not met, no signal will be passed on.

This notation is as follows: Let w € R™*™ be the weight one of the connections in the neural
network. We write wé-k to represent the weight for the connection from the £ neuron in the (I — 1)t" layer
to the j* neuron in the [*" layer [Nielsen, 2019]. In this scenario, j is the output neuron and k is the input
neuron. As an example, w3, represents the weight for the connection of the 4™ neuron in the 2" to the 1
neuron in the 3'4 layer of a network. In addition, bé- will represent the bias of the j* neuron in the I*? layer,

while aé will represent the activation of the j®* neuron in the I*" layer [Nielsen, 2019).

L is related to all activations in the (I —1)th

With all these notations, we can say that the activation a;

layer with the following equation:

aé» = O’(Z wékafl + bé) (13)
k

For clarification, the sum is over all neurons k located in the (I — 1) layer. We can write this
expression in matrix form by defining w' as the weight matrix for the layer I. Each entry in this matrix w!
are all the weights connected to the I*! layer of neurons [Nielsen, 2019]. We say that the entry in the k*}

column and the j** row will be wé .- For every layer [, a bias vector can be defined, b!, where all of the

components are the values of bg-. Similarly, we can define an activation vector a', where the components are

14 APPROVED FOR PUBLIC RELEASE

2.2 Neural Networks 2 BACKGROUND

the activations components aé» for each neuron in the I** layer [Nielsen, 2019]. Lastly, we can vectorize o, in

equation [T3] to get the following equation:

a' = o(w'a! =t + %) (14)

This formulation allows us to understand how activations from one layer relate to the activations
on the most recent previous layer, letting our view become more “global” than before (focusing not on each
neuron separately). This new expression is also useful in practical situations, as matrix libraries allow easy
and quick ways to implement matrix multiplication, vector addition and subtraction, and vectorization which

makes programs run faster.

Before moving on, let us discuss briefly weighted input. We consider z! to be the weighted input of

all the neurons in layer 1. The equation for the weighted input is the following:

2 =wla! "t 4+ 0 (15)

2.2.1 Model Based Transfer Learning

One of the primary bottlenecks our project faced was a lack of data as we were only provided with
a few example scanned documents. This poses an issue when training a new model. For example, one type
of model we wished to train is one that could perform OCR on handwritten fractions and mixed numbers.
Since we were not able to discover an existing dataset on the topic, part of our group’s approach was to

create a synthetic dataset of handwritten fractions to help fine-tune a pre-trained model.

Model-based transfer learning allows knowledge to be transferred and stored in a model’s settings.
It works on the idea that both the original and new tasks have some similarities. Instead of storing detailed
information about features, this method focuses on storing broader knowledge about how the model works.
This makes the model more efficient and better at understanding the original data without needing to do

complex operations such as re-sampling or inference [Pan, 2014].

If we have a well-trained source model, we can use its knowledge to help train a new model for a

similar task, even if we do not have notable amounts of labeled data for the new task.

For our project, we decided to use utilize transfer knowledge through shared model components.
This type of transfer learning creates a target model by using components or hyperparameters in the source

model. We took parts of the pre-trained model that were good at recognizing general patterns and used

15 APPROVED FOR PUBLIC RELEASE

2.2 Neural Networks 2 BACKGROUND

them to help our model recognize fractions [Aggarwal, 2014].

The prior, or the prior probability distribution is what one may assume may happen before anything
does. For instance, a coin flip. If one feels it is more likely to land on heads, they will guess heads. It is a
prior belief. Using this prior knowledge can help make better estimates before starting. In real-world tasks,
applying this prior info can help build useful models even if there is not an immense amount of data to work
with [Pan, 2014].

In our model this concept can be applied by taking a pre-existing model and fine-tuning it to
whatever dataset we choose. For example, if we have a model that is trained on basic image recognition, we
can tune the final layers to interpret mixed numbers better. To do this we would supply the model with a

dataset of mixed fractions and use this dataset to do our tuning.

2.2.2 Synthetic Dataset Generation

The need for data access, particularly from publicly funded sources, continues to expand. However,
worries regarding the exposure of respondents’ identities and sensitive information are causing data collectors
to restrict access. Synthetic data sets, designed to mimic crucial aspects of real data while enabling valid

statistical analysis, offer a solution to grant broad access to data while addressing privacy and confidentiality

concerns |[Raghunathan, 2021].

Synthetic data itself refers to data generated using a purpose-built mathematical model or algo-

rithm. This is in contrast to real data, which originates from real-world systems such as satellite images or

medical tests [Jordon et al., 2022]. An example of synthetic data is shown below, with a synthetic handwrit-

ten calculus dataset.

Figure 11: Synthetic Handwritten Calculus Data.

16 APPROVED FOR PUBLIC RELEASE

2.2 Neural Networks 2 BACKGROUND

2.2.3 Transformers

Transformers are a neural network architecture proposed by a team of researchers at Google in 2017
[Toews, 2023, in their landmark paper “Attention is All You Need” [Vaswani et al., 2017]. The motivation
for this model was to improve on previous language modeling and machine translation approaches, which

relied on recurrence [Vaswani et al., 2017]. Such recurrent networks are subject to the ¢

‘vanishing gradient”
problem, in which the signal is lost after passing through a network many times [Zhang, 2023]. The major
introduction by this paper is the “Attention” mechanism, which allows for the better handling of long input or

output sequences. In the diagram of the full architecture, these attention mechanisms drive the “Multi-Head

Attention” and “Masked Multi-Head Attention”. The full architecture can be seen below

The proposed solution, and the central element of the paper is the “Attention” mechanism. In its

most basic form, it is as follows:

Attention(Q K,V) = softmax < > % (16)
? i
vV dk

where Q, K, and V are vectors called “Queries”, “Keys”, and “Values”. Specifically, they represent the
output from whichever previous layer(s) that they come from, processed through a linear layer (as found in a
standard feedforward network) corresponding to each of these sets of “queries”, “keys”, and “values”. These
linear transformations upon the previous input are what differentiate and ultimately determine the queries,
keys and values that will be input to the attention mechanism as described in Queries “query” the keys
by means of a dot-product in QKT as the dot-product is the mechanism for determining the similarity
between vectors. These “similarites” are then scaled down by v/dj, where dj is the dimension of both the
queries and the keys (these are equal), then normalized with a softmax function, to produce a probability
distribution which, conceptually, represents the keys which were queried for. These are then multiplied by
the “values” (the information store), at which point, the important information of the input sequence has
been returned from the attention mechanism, without using recurrence or convolution. In this way, the
keys and values make a sort of continuous lookup table that is trained within the model, and the queries
extract information from this lookup table. This “attention” mechanism represents the model “attending” to
different parts of the input sequence, which is the crucial development of this paper, as now information can
flow between tokens in a sequence without using a recurrent model. To achieve the “Multi-head Attention”

and “Masked Multi-Head Attention” of the full model architecture, several of these attention mechanism are

17 APPROVED FOR PUBLIC RELEASE

2.2 Neural Networks 2 BACKGROUND

OQutput
Probabilities

Linear

A

-
l Add & Norm I‘W

Feed
Forward

Add & Norm

I

4)

Multi-Head
Feed Attention
Forward 7 g) J) Nx
—

Add & Norm Jee=

Nx
p—bl Add & Norm l Masked
Multi-Head Multi-Head
Attention Attention
L L
S— J . —)
Positional Positional
Encodin D ¢ |
ncoding y] Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Figure 12: The transformer architecture as presented by “Attention is All You Need” [Vaswani et al., 2017].

18 APPROVED FOR PUBLIC RELEASE

2.2 Neural Networks 2 BACKGROUND

concatenated according to the following:

MultiHead(Q, K, V) = Concat(heady, . .., head;)W ©° (17)

where head; = Attention(QW2, KW/, viv)) (18)

The motivation for this concatenation is to allow the model to concurrently understand different parts of the
input. The only difference between the “Multi-Head Attention” and “Masked Multi-Head Attention” that
are seen in the full architecture is a “mask”, which is simply setting “illegal” connections in the relevant
sublayer to be equal to negative infinity. In the right-hand side block (the decoder), this has the effect of
preventing tokens that have not been produced yet from communicating with the existing tokens (those that
have been generated with previous inferences of the model and passed in as the output embedding), meaning
that the model must learn how to predict the next token only using information from the previous tokens,

and not subsequent tokens.

The “Feed Forward” layer is a standard “fully-connected” sub-layer here. Also depicted between
sub-layers are “residual connections” /“skip connections” which combine input to the sub-layer with output
from the sub-layer. This is seen in the diagram as an arrow into the side of the block called “Add & Norm”.

The activations are then normalized (the “Norm” here), according to:

hi=f <Cgri(ai — i) + bi) (19)

i

Where p and o are the mean and standard deviation of the particular layer’s activations, respectively,

calculated as follows:

1
l_ l
=7 E a; (20)

H
1
I _ AV
o= H;:l(ai pt) (21)

The effect of equation is that the the activations a; have been standardized, which in the general case
means that their mean is zero and that their standard deviation is one. The only deviation from that more
common definition here is that, after the normalization, a learnable gain coefficient is multiplied to the

activations, and a learnable bias is added [Ba et al., 2016].

19 APPROVED FOR PUBLIC RELEASE

2.2 Neural Networks 2 BACKGROUND

Globally, the left block is called the “Encoder”, and the right block is called the “Decoder”. The
basic usage of this architecture is to feed the source sentence into the encoder, and the current state of the
target sentence into the decoder (this being however much of the output sequence has been generated thus
far), to sample the next word. It is important to remember that this is not a recurrent model, which is
the advantage over previous methods, because this reduces the complexity of the path that the information
has to flow down when the model is inferenced from O(n) in the recurrent case, to O(1) in this case

[Vaswani et al., 2017].

2.2.4 Pre-Trained Models from HuggingFace

Although models previously may have needed to be created and trained from scratch for specific
use cases, many pre-trained models have become freely available for use through platforms such as Hugging
Face, an online repository for users to share and download existing models. The final application uses two

of these pre-trained Transformer models that were later fine-tuned for the specific tasks.

2.2.4.1 Microsoft TrOCR Architecture

Microsoft’s TrOCR is a Transformer model trained to perform Optical Character Recognition tasks.
The model consists of an image Transformer as an encoder and a text Transformer decoder, allowing the
model to receive an input image and output a string of characters. The Hugging Face Python library
provides two classes needed to run the model, one for the model itself and one for the image processing step
needed beforehand. The image that needs to be passed is first converted into multiple Tensor objects by the
Processor object, which can then be fed into the Model object to return an output of the string of text that

was in the original image [Li et al., 2021] [Microsoft, 2022, [Face, 2024].

Figure [13[shows the flow of information being passed in through the different stages of the model.
The bottom two images in the diagram show the original image on the bottom right as well as the processed
images on the left. The Processor object converts the original image into smaller 16x16 patches, which are
then flattened into a 1D array. Each of the patches is also labelled with positional information, and each
of this combination of image and position information is then encoded by the first Transformer model. The
second Transformer model then decodes this encoded information and converts this into a series of character

chunks [Li et al., 2021].

On Hugging Face, Microsoft has provided multiple instances of the model trained for different text,

such as handwritten text, printed text, larger sentence text, etc. The ones used for this application were their

20 APPROVED FOR PUBLIC RELEASE

2.2 Neural Networks 2 BACKGROUND

Outputs
oL Lol Lo L] [oo [r] (1] el sl E) Lo [feo] o el f]fs [zos1]

Feed Forward

Feed Forward

Multi-Head Attention

x N Multi-Head Attention xN

Masked Multi-Head Attention
Encoder Decoder

00 e [0 0 [e e [eolfon]fro][][s]
LL"_'JAJL:JLJH IEDE:::;:MW Outputs (shifted right)
T Flatten

HilcENEEE6F HEDONACD S~ |LICENSEE OF MCDONALD’S|

Image Patches Input Image

Figure 13: An architectural diagram of the steps the TrOCR model takes to convert an image to text.
Diagram from the original paper by Li et al. [Li et al., 2021].

base printed model to convert regular text, as well as their base handwritten model which was fine-tuned

for fractional data in order to convert the handwritten fractions found throughout the documents.

2.2.4.2 Google ViT Architecture

Google’s ViT model is a Vision Transformer model that has been trained to work well for image
classification tasks. It is an encoder model that takes an image and gives a numerical value for the category
the image falls into. The model is useful for determining categories for similar looking images, and has
numerous user fine-tuned versions on Hugging Face for tasks such as determining the specific species of cat
from an image or determining how healthy a specific species of plant is based on the leaves. Just like the
TrOCR model, Hugging Face’s library provides a Model class and Processor Class, with the Processor class
converting the image into an input for the Model class. The numerical value for the category goes from 0 to
n-1, with n being the total number of categories as defined beforehand by the user. The user also specifies

which category each number corresponds to (ex. 0 being “healthy leaf”, 1 being “slightly infected”, 2 being

“very unhealthy”, etc.) [Google, 2021}, [Dosovitskiy et al., 2021].

Figure [I4] shows the flow of information being passed in through the model. The steps are very
similar to the first half of the TrOCR model. First the processor turns the original image into 16x16 pixel

patches. These patches are flattened into a 1D array and given positional information. This combination is

fed into the encoder and provides the numerical category value [Dosovitskiy et al., 2021].

On Hugging Face, Google provides a base version of their model as well as instructions on how to

21 APPROVED FOR PUBLIC RELEASE

2.2 Neural Networks 2 BACKGROUND

Vision Transformer (ViT)

MLP
Head

Transformer Encoder

A
@)
MLP
Transformer Encoder

1
|
1
|
I
1
1
|
! ®)
. | "
itz - 090 naon | |(EE
1
1
|
1
1
1

* Extra learnable ' R .
[class] embedding [Linear Projection of Flattened Patches]
L

ST T T 11

m iml G |

LT

Embedded
Patches
Figure 14: An architectural diagram of the steps the ViT model takes to convert an image to a numerical
classification. Diagram from the original paper by Dosovitskiy et al. |[Dosovitskiy et al., 2021].

fine-tune it for a specific use case. For the application, this model was used to classify each image into 4
categories: Handwritten, Printed, Fraction, and Blank. This was because the various models worked better
for certain text types, so classifying the image beforehand allows our pipeline to use the model that would

work best with the image.

2.2.4.3 Seq2Seq Trainer

The Hugging Face model guide provides quickstart links and tutorial notebooks that contain code
and parameters that were found to work well with fine-tuning these models. The main class used in these
quickstart guides is Seq2SeqTrainer, a class that automates the process of backpropagation and gradient
descent. This class is based on Hugging Face’s generic Trainer class but has been modified to work well for
translation and classification tasks. These Trainer classes do various tasks, such as automatic distribution
over multiple GPUs, saving intermediate models after a certain number of steps, saving the model with the
lowest loss, etc. These are tasks that can also be done with base PyTorch but this class makes it easier to
do so. In combination with the TrainerArguments class to pass in the necessary arguments, the Seq2Seq

Trainer class allows us to immediately start finetuning once we have a dataset we want to use for training.

Face, 2023

22 APPROVED FOR PUBLIC RELEASE

3 METHODS

Hugging Face Seq2Seq Arguments
Quickstart Guides Class
\ 4
Hugging Face Il CSIZESZ ivei(t]hTI:Z::Janr
Eging Pretrained Model ' P f Finetuned Model
Models . Arguments for the
and its Processor
model
A

‘ Dataset for Training)

Figure 15: The flow of information using Seq2Seq. Using the parameters from the quickstart guides for each
specific model we can pass these into the arguments class. Once the arguments have been created, we can
pass to Seq2SeqTrainer these arguments, the pretrained model, and the dataset we want to finetune the
model on. From there, Seq2SeqTrainer will run and output the training results as well as the final finetuned
model.

3 Methods

3.1 Overview of Methods

In the following sections we will describe the various steps we undertook to complete this project.
This included fine-tuning multiple pre-trained models and building a pipeline to transform a PDF of scanned
datasheets into a folder of Excel files. What follows is a brief description of the steps that occur in this

pipeline.

Our program a PDF file of scanned datasheets and converts each page into a separate PNG file. In
order to improve future steps, we start by pre-processing each page. This involves a deskew to de-rotate the
page followed by a perspective transformation to fix any perspective deformation. After the document has
been straightened, we locate the edges of each cell in the image to be processed individually. Within each
cell, we try to circle each chunk of text or writing and pass it through a classifier to determine if the group is
blank, handwritten text, typed text, or handwritten numbers. After the group has been classified, it is then
passed to the respective OCR model to be translated. Lastly, the text representation of the group is placed

into the correct cell on a generated Excel sheet. Figure [L6| depicts this process visually as a flowchart.

23 APPROVED FOR PUBLIC RELEASE

3.2 Splitting PDF Into Images

3 METHODS

Start: Scanned
Document (PDF)

Synthetic Mixed
Fraction Dataset

Cell Classifier
Dataset

l

Cell Classifier
Model

l

Mixed
Number
TrOCR Model

End: Collection of
Generate

OCR — . XLSX Files with
SR Transcribed Text

Text OCR Model

Cell N Word
Detection Bubbling

Figure 16: A high-level flowchart of the steps a file takes passing through our code pipeline. Gray is the
endpoints of the pipeline, blue is image preprocessing, orange is for excel sheet generation, green is synthetic
data generation, and yellow is OCR models.

3.2 Splitting PDF Into Images

Implemented in SplitPDFsIntolmages.py

Since images (2D arrays of RGB values) are much easier to manipulate then PDFs, our first step is
to transform each page of an input PDF into a PNG. We do this using a python package called pdf2image,

which makes the process very straightforward.

3.3 Image Preprocessing

Implemented in PreprocessImages.py

Because many datasheets were scanned in at an angle, our first image pre-processing step is to
try to rotate each image until a maximum number of straight lines are horizontal. That is, the image is as
level as it can be. We do this by using a Python package called “deskew” which library calculates the angle
by which the image should be rotated to achieve this effect. An example image [17] before and after being

deskewed is show below.

In addition to deskewing images, we also resize the image in order to have the largest dimension
be four thousand pixels. This makes the images more uniform reducing problems that might occur if each

image was set at a drastically different pixel scale. This process of resizing is the same as described in 2:1.2]

24 APPROVED FOR PUBLIC RELEASE

3.4 Perspective Transformation 3 METHODS

CHECK LIST

CHECK LIST
PIN : 11-1-7050-1
PIN : 11-1-7050-1
T-11 PERSONNEL PARACHUTE SYSTEM
T-11 PERSONNEL PARACHUTE SYSTEM

ITEM PART NUMBER DESCRIPTION ary - s L o
u 11-1-7050-1 T-11 PERSONNEL PARACHUTE SYSTEM REF.
11-1-7050-1 T-11 PERSONNEL PARACHUTE SYSTEM REF. g G T RISTRSET, T 2
! ST RISER SEV, T-11 2 ! 2 11177221 HARNESS ASSY., T-11 1
: e HaRness Assv. 711 [A 3 T PAGKTRAY ASSEMBLY, T11 .
2 LT PACKTRAY ASSEMBLY, T-41 1 v 0 e 'DEPLOYMENT BAG ASSEMBLY, T-A1 MAN 1 Iy
) REETTe DEPLOYMENT DAG ASSEMALY, T-11 MAIN 1 7 seTiipBR8 |1429
sv.T1108R8 |1£29 S Tiea3a USL MODIFIED 1 D
f e VL WowriEe . = G Siane eLeFT. SxTERSON T 7
5 | sz Us s 1 exTension ¥ v 7 T SWAP HOOK ASSY. PARA STATIC LINE 1 v
[7 1118910 SNAP HOOK ASSY, PARA STATIC LINE ' [R ASSEMBLY, T-11 MAIN REF.
e PARACHUTE ASSEMBLY, T-11 MAIN T3 L _
WITH SLIDER s ATl PARAGHLTE ASSEMBLY, T-11 MAIN 1 /
0 1170511 PARACHUTE ASSEMBLY, T:11 MAIN 1 \/ swTimrs WILY
srimre 1E2Y -
] o TaToszy BRIOLE ASSEMBLY, T-11 MAN 1 7
) 1170621 BRIDLE ASSEMBLY, T-11 MAN 1 v w0 70601 OROGUE ASSENBLY, T-11 MAN 1 v
10 11-1-7080-1 DROGUE ASSEMBLY, T-11 MAIN 1 i 11 114-7081-1 DEPLOYMENT SLEEVE ASSEMBLY, T-11 MAIN 1
it 11170611 DEPLOYMENT SLEEVE ASSEMBLY, T-11 MAIN 1 v - 11:1-10005-1 T-11R SINGLE PIN PARACHUTE ASSEMBLY REF.
e 11-1.10005-1 T-11R SINGLE PIN PARACHUTE ASSEMBLY REF. 2 11499221 T-1R SINGLE PIN GANOPY ASSEMBLY 1
2 19199221 T-11R SINGLE FIN CANOPY ASSEMBLY 1 S sw:T11R_ 19088
| s TR 750, 3 11196001 PACK TRAY ASSY, T-11R SINGLE PIN 1 v,
) 11196001 PACK TRAY ASSY, TA1R SINGLE PIN v v " 11106081 RIPOORD ASST, T-1R SGLE P il
" 15186061 RIPGORD ASSY, T-11R SNGLE PIV 1 v " 111100081 EJEGTOR SPRING ASSY, T-A1R SNGLE PIN v
[111100081 EJEGTOR SPRING ASSY, T-11R SINGLE PIN fl 1 iG] EXTRACTOR ARSY, T-HR SHOLE M !
o SHerarr EXTRAGTOR ASSY. T-11R SINGLE PIN v J - (] BRILE LEC ©
- 11407761 BRIDLE LEG 0 = SOEFLIKAGHY, 1
B taTee P - T e CLOSING LOO ASSY, TR v
[I o oo (DO R TN = 7 w Tz WISER SET, 111K v
1 1.17z1 RISER SET, T-11R 1 i

wowore O L 083\/22

e o O8/31/22.

I - Packing Gheck Lisi Form creslad DX28/2020 SHEET 1071

Figure 17: An example of deskewing done, the image on the left is skewed while the image on the right has
been straightened.

3.4 Perspective Transformation

Implemented in DewarpPerspective.py

Not only were the documents rotated, we also found that they had been warped. This is likely from
them being scanned using a phone instead of a flatbed scanner. Instead of the datasheets being perfectly

rectangular, they were non-parallel quadrilaterals. This was discussed in 2.1.8]

The datasheets needed to be unwarped in order for our text box detector to be able to accurately
and consistently detect every text box within a given datasheet. The process of dewarping an image has
several steps. We first convert the page to a binary image that contains only the cell edges. Next we try
to find the largest quadrilateral on the page (which we assume to be the border of a table). Lastly we do
transformation that maps the corners of this quadrilateral into a rectangle thus dewarping the image. See

[I§ for an example datasheet.

25 APPROVED FOR PUBLIC RELEASE

3.4 Perspective Transformation

3 METHODS

[Visual Inspection Notes:

T-11 SYSTEM
i ; Inspector: A F AL LNSeY)
: s / 2% 3 27 | 28
Box |T11 Canopy s [HZ2 H DoM: (9 /2.3 6] 7] s Zg(, 0T 12 a5 [17[2e[do]| 20 YD % | 25 72; [E2
#9 Min | Max | Tension [Sym| Drawing | Sheet|Zone| 1 | 2 3| 4|5 R % 57 AR >‘8 = 5 \{2 : =
T 38135[28 [3B| 3 | | 2)d 24 |318 |3k | s | /2 V2 114 L\ A it
Width 38 39 3-51b 11-1-7104 4 LU Y \, \ \’L| ,b‘ 5 LY K 5 s-l .
2| s K = [e . : L
o EsEsT T BT :
2 Suspension Line Length 254 258 8-121b 2 | 11-2-7081 1 8 I
E S Wm%brﬂ:m‘:l’:;r;m 716 9/16 0 11-1-7105 2 86 // /
measured | | - 3 . "
24 |Vertty Symmetry tems 1, 13, 16 and 22 (Go/No Go) H H 5 §
| Contm /i on canopy st o (comoco: __ /o 0
Confirm s/ 6o): N
i Canopy Matches S/N anIns /NO GO): =S
o actio s Lioe Coninuty (GO/NO GO: ‘Lw —
[Visual Inspection Notes:
42 : spector: 23141 iso
4 DoM: Inspection Date: q Zj p s TR TS
o i sl 2 3 - /z:? T s T e 7 &0]t u]]]a]slel izl 9 [20| 21 22
#10 Min | Max | Tension [Sym) Drawing | Sheet | Zone .q:‘l‘ : :
y | cmersetonman | gy | 303 | seaw |3 faaTie) 1| € "3/‘, i Ve [y A A Y
4 | ComersestionComer | 3 g | 4 18 samer | 2 | e |H Y "-{ L\
Tabs
5 | en.panel Algoment i | o | s |Vl /g || ©
=] I R[7 |1
i -Spacir 6 12 712 11-1-7058 1 2
e e — smass | 1 | a | % \'l)g 74)
32 | sidersmatispacng | 1 V2 | 2 - IE ‘ : e - =
- 2 | 1117104 2 F6 "
- T o] A e : O || = | g | (4 |2 3 3 |\ /3 s (Y4
16 | Arm Section Main Seams. 127 132 3-51b 2 | 1127104 3 7] /1 11 /g ; ! .
| S
B v::‘:;‘[’;::::;‘;;;m 7/16 9/16 o 11-1-7105 2 86 /z A
measured - . =
20 |verty symmetry kems 1,13, 16 and 22 (Go/No Go) £ g £ |oo 5
(confium S/N. s (60/NO GO): [/ .
| Confiem_ .J‘ E

14
T-11 SYSTEM
Box |T11 Canopy S/N: [sz Yy DoM: “L/Z,% |Inspection Date: q/%/ 22 Inspector: RA—[‘»‘ & R suias can
#9 Min | Max | Tension [sym| Drawing [sheet [zone[1 [2 [3 [4 [s [6 [7 [8 [9 [10[n[12[n[1a]1s5]16]1 [18 o] 20 21] 22 23 26 25| 26[27] 28
33 Er g >0 13¥ |38 E 3§35 [38[3Y [°° P |20
20 | sknBang width 38 9 | 351 n1704| 4 | o4 \[6; \/B; ?"IE 5"‘1 :\5;2 29[38 |38 3’5 i/ 3373 3 ?/‘4 £ 3% ‘78 AEAAAS = [3% ﬁa‘z 1 2% 28
2 | smiontreinen | 254 | 20 | g | 2 |mame| 1 | o0 PS5 |P5T A A A A AR e Sk [T 5 B RS ESTES g,
: B]
£l stow | b;:-:r::;mw 7/16 9/16 o 11-1-7105 2 86 // / ’
- a £l]
24 |Verify Symmetry items 1, 13, 16 and 22 (Go/No Go) § £ H § (€3
(Confirm s/N on Matches §/N on Inspection Cord (GO/NO G0): (’o/(rb
(Confirm $/N on Matches $/N on Inspection Sheet Go): L2
[Visoal Inspection + L Continuity (GO/NO GO: [¢3%) (@
Visual Inspection Notes:
e \/ Nk

Box |T11 Canopy S/N: /4/2_4/8 DoM: 07/23 |Inspection Date: ‘?/17/25 |lnspemr: RA"‘A\ / R'LI se]
#10 Min | Max | Tension [Sym| Drawing [Sheet |Zone| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10| 11| 12 | 13 | 14 | 15 | 16 | 17 | 18 [19 [20| 21 [22 [23 [2a [25 [26 [27 [28
3 | CemerSeionMain | gy 303 | s-eb |3 |mama| 1 | e ?/z ; \2 ZI?L A A —1/9

4 | comerseoncomer | 3 o8 | 4 um nane | 2 | e |H (Y l-[L-\

5 | Rein.panel Algrment v nin08| a | s v/lé Vg |\is| ©

1 | sidertanesoacns | 612 | 712 ws | 1 | e [P T [T T

12 | sidersmanspaceg | 112 | 2 w1 | a |2 [Tk l7k =

13 Vent Length 96 100 3-5m | 2 | 1127104 | 2 3 i)

16 | Amsectonmainseams | 127 | 12 | 35k |2 |manos| 3 | R '\Z/Z%ﬂ‘l o ‘-,/g 0 (30 BEYE v i/: Pt ‘/; 30 l‘/iﬁ £ «,\/;; (20 7 A
£ ‘stow bar with stitching 7/16 9/16 J 1117105 2 B6 2 Z Z,

measured 2 2

24 |Verify Symmetry items 1, 13, 16 and 22 (Go/No Ge) -E‘ S E g (7_0 ?
(Confiem $/N (60/NO GO): (VY
(Conflem S/N on Canopy Matehes /N on Sheet Go): / (3]
Visual +Lin Continulty Go: =

[Visual Inspection Notes:

r'N'a
S e

Figure 18: An image of a datasheet before and after applying a perspective transform. The image on the top
is the original image. The image on the bottom right has been transformed. The light blue on the bottom
of the transformed image is an arbitrary color to fill in newly generated pixels.

26

APPROVED FOR PUBLIC RELEASE

3.4 Perspective Transformation 3 METHODS

3.4.1 Binary Edge Image Creation

To generate the binary image with only vertical and horizontal cell edges highlighted, we start by
converting the image to binary. This is done in a three step process: first the image is converted from color to
grayscale as described in secondly that image has Gaussian blur applied to it as described in
and finally the smooth gray image is converted into a binary image as described in Lastly, we utilize
several morphological transformations described in with carefully selected kernels to strategically

extract the horizontal and vertical lines. See [19|for an example.

Figure 19: An image of a datasheet that has been converted to binary and and had the cell edges extracted.

3.4.2 Largest Quadrilateral Detection

In order to reorient a datasheet, we start by finding the largest quadrilateral which hope is the
border of a table of cells. Once we have the largest quadrilateral, we can then perform a perspective
transformation to convert the quadrilateral into a rectangle. To find the largest quadrilateral, we take the
previously generated binary image of edges and iterate through all of the possible closed contours in the
image from largest to smallest by area. We try to approximate each contour using a subset of its initial

points. If we are able to approximate the contour well using a subset set of four points, we have located

27 APPROVED FOR PUBLIC RELEASE

3.4 Perspective Transformation 3 METHODS

a quadrilateral. Next, we check to make sure the top and bottom sides of the quadrilateral are roughly
parallel. In all of the warped images we have seen, the top and bottom are roughly parallel. If the top and
bottom sides are not roughly parallel, we have likely encountered an error and should keep looking for the
next largest quadrilateral. Lastly, we have included a minimum area parameter in order to ensure confidence
that the image can be properly dewarped. If there is no quadrilateral found that is large enough, then the
image is not dewarped and the original image is returned. See [20|showing the largest quadrilateral overlaid

on the original image.

T-11 SYSTEM

{ y ; Inspector: : 1S Y)
5 2
ez 4 o OuES el q/w 2 A{:ﬁ“ls 20| 21| 22| 23| 24| 25| 26| 27| 28
Box |T11 Canopy : heet | Z T 12345 |67 [8|o]wojuj|B]u 15 | 16)17‘ RN R
Max | Tension [Sym| Drawing | Sheet | Zone plziely ‘ WAk
nann |+ [o [T Yo ‘ly ?/E 35[38 [38 | 3)d 34 |38 |38 | N8 ‘2;/ 1 z\ ZSS = Y 2S2S1RSIES
n ‘Skirt Band Width 39 3-51b 3 \/ q u i L . b K E zs1 5“ q})/ 2‘7&7 # 7s
= - o 257257 -f? 3% 217» s -
n ‘Suspension Line Length 254 258 g-121b 2 | 112-7081 1 £ I /
Iz |] | Ity
5 | e g | 76 | o6 0 nazos| 2 | 1 7
= I N - -
§ F ?, i (3
£ VCMVMMN\HMII.H,IS!MZHGWNGGO] § § i
: [/
Confirm /N N (60/NO GO):
r ‘Canopy Matches §/N on Inspection Sheet (GO/NO GOJ:
m_’ﬂ‘;’fm."i.&mmmm (&) V\Q) \‘m&
[Visual Inspection Notes:
3 Inspector: *‘A' |\/.
: % DoM: Inspection Date: GiZ7 27 so S
o s 1248 - o /Z TS5 Te 789 2o a[2]]4lis] 16l 18 |19 | 20| 21 [22|23
#10 Min | Max | Tension |Sym| Drawing | Sheet | Zone “‘: E’ 3,1 "
o | comersectonman | g7 | 303 | segm |3 faaTia) 1| € "3/4' Vo [y 2 A g
v N I
[I S T
o | comersectoncomer | 3 g | 4 18 o | 2 | v |H Y H L-\
Tabs
[| ——— \
9 | Rein.panel Alignment m | |uanos] s P/‘(y | /@ /o] ©
B o | [| 1 | R|7 |1
31 | sideruamespacng | 6 12 | 7 12 w7 | 1 | R
__‘ pase| 1 | a % ‘7}3 74 M7
12 ‘slider Small Spacing. 112 2 11-1 1 2 z l% = Im
13 Vent Length 96 100 3-51b ; 11-1-7104 2 F6 Z Lq - IE ; ‘ . (h ’% " ; ‘1 l" ‘k E \/8] ‘/8 7/3 ‘,
A i/ g J |5
16 | Arm section Main seams | 127 132 3.5 | 2 | 1127104 3 7 [\ ly ' ; 7 :
il A IS M Sy
3 V:::’:;’L::m;m 7116 9/16 o J 11-1-7105 2 B6 /Z Z
measured | | ~ g .
£ VCNNsrymmﬂrvll’l"!l,l!,lilnﬂu[ﬁnl"nﬁo) § E § (7'0 E
= e .
‘Matches' onl): =
o+ i Continuy (SO/NO GOI: ‘LTI/ \/hm
[Visual Inspection Notes:

1/14

Figure 20: An image of a datasheet with an overlay of the largest detected quadrilateral on image (in red).

3.4.3 Four Point Transformation

To perform the perspective transformation, we take in the points denoting the corners of the largest
quadrilateral we found in the last step and use them to calculate a set of target points. We can then use
OpenCV’s getPerspective Transform and warpPerspective functions in order to get the transformation matrix
required to transform the original quadrilateral into the target quadrilateral. Assuming the whole image is
warped in the same manner as the largest quadrilateral (which it has been in all our observed data), the rest

of the image will also be dewarped correctly.

28 APPROVED FOR PUBLIC RELEASE

3.5 Making a Mixed Fraction OCR Model 3 METHODS

3.5 Making a Mixed Fraction OCR Model

The biggest problem the Natick Army Lab found with already existing software was the lack of
support for fractional datasets. Already existing and pretrained OCR models that we could easily evaluate
did not function on any fractions we gave them. Finetuning these models using readily available math
datasets also did not work well on the document fractions as they often overfitted to a specific format of
text. To properly create a fraction model, we needed to create a synthetic dataset of fractions that would
look similar to examples found in the parachute documents. This synthetic dataset allowed us to finetune

an existing OCR model in order to work well on the documents.

3.5.1 Initial Fine-tuning using Existing Datasets

The first initial attempts to train a model involved using existing datasets that were publicly
available for use. This dataset needed to be a) Handwritten, b) Labelled, and ¢) Involved Fractions, which
limited the amount of viable ones that could be used. The most promising one that fit these criteria was
a synthetic handwritten calculus dataset specifically made for OCR tasks. This dataset contained 100,000
synthetically generated images spread evenly across 10 batches, with each of these batches containing a

JSON file with the correct labeling for each image in LaTeX form.[Pearson, 2023]

Figure 21: An example of one of the images from the synthetic calculus dataset. [Pearson, 2023].

For initial testing one batch of 10,000 images was used to fine-tune the TrOCR model (details
regarding how fine-tuning works can be found later on in section [3.6.2)). However, validating this fine-tuned
model with the parachute data resulted in incorrect answers as the model was trained in a calculus dataset

with limits, resulting in every output from the model also being a limit.

Even though these calculus datasets did contain fractions, they would overfit in training leading to
the model always outputting a limit. From this attempt, we concluded we would not be able to finetune
a model on any dataset that contained fractions, but instead on a dataset containing only fractions, which

limited the amount of datasets even further. No public dataset was found that fit this criteria, meaning that

29 APPROVED FOR PUBLIC RELEASE

3.5 Making a Mixed Fraction OCR Model 3 METHODS

|S/ lime/5
, e ¢

Figure 22: The image on the left is one of the handwritten fractions found in the parachute data. The image
on the right is the output produced by the model that was fine-tuned on the calculus dataset when acting
on the left image.

fine-tuning the model would first require generating a dataset of our own.

3.5.2 Synthetic Mixed Number Dataset Generation

Implemented in GenerateSyntheticMizedNumberData.py
E

Figure 23: An example image of a generated synthetic fraction.

In order to fine-tune our model, we created a synthetic dataset of handwritten mixed numbers
and fractions because we were unable to locate such a dataset on the web. This dataset was created by
concatenating together different digits from the MNIST dataset in order to create any whole number, proper
fraction, or mixed fraction. The images we created are modeled after the numbers we found in the cells
on the datasheets. Because there are multiple layouts we found in cells, we have multiple layouts in our

synthetic numbers. They are:

1. A whole number above a horizontally arranged fraction
2. A whole number above a vertically arranged fraction

3. A whole number next to a horizontally arranged fraction
4. A whole number next to a vertically arranged fraction

5. Only a whole number

6. Only a horizontally arranged fraction

7. Only a vertically arranged fraction

30 APPROVED FOR PUBLIC RELEASE

3.5 Making a Mixed Fraction OCR Model 3 METHODS

' ——
sne\e1o sne'° \enoziry

Figure 24: Example images of synthetic fractions. From left to right: a whole number above a horizontally
arranged fraction, a whole number above a vertically arranged fraction, a whole number next to a horizontally
arranged fraction, a whole number next to a vertically arranged fraction, only a whole number, only a
horizontally arranged fraction, only a vertically arranged fraction.

g
\é

To create the fraction slashes, we would randomly select a “1” from the MNIST dataset and would
use it as is when creating a fraction in the horizontal orientation. When the fraction is of vertical orientation,
we would first rotate the “1” ninety degrees to make a horizontal fraction slash. Once an image is created,
we add anywhere from zero to four straight lines near the borders of the image to mimic if there is some
overlap between a written number and the cell it goes into. We initially randomly selected a “1” from any
of the ones provided by MNIST, however since someones had flags we instead made a small group of ones

to select from that were relatively straight lines rotated by different amounts.

After looking through the handwritten mixed numbers, fractions, and whole numbers provided from
the datasheets received from the Natick Labs, we were able to create a list of assumptions about what future
handwritten numbers would look like. These assumptions were: the leading digit of the whole number will
not be zero, all denominators are powers of two with the largest denominator value being sixteen, and all
fractions are proper so the numerator must be odd and less than the denominator. These assumptions were
then reflected in the dataset we generated. This process of tailoring the training dataset to match expected

testing data is known as data snooping.

After images could successfully be generated, the Python script was then altered to create a user-
specified amount of random images into one folder as well as a master JSON file that contained info regarding
each image. This information was the file’s name, the correct labeling of the image, and the type of frac-
tion/number, although the latter was only used for debugging and not needed for training. The file’s name

and label were what was needed to create a dataset that could be used to fine-tune a model.

3.5.3 Fine-tuning Mixed Fraction Model

Implemented in TrainMizedNumberTrOCR.py

After the dataset was created, we could now begin fine-tuning our model to work well with reading

fractional data. The process of fine-tuning involved three main steps to successfully create a model to be

31 APPROVED FOR PUBLIC RELEASE

3.5 Making a Mixed Fraction OCR Model 3 METHODS

used for our application. The first was converting our dataset into a format that could be used for the
fine-tuning process. The second was the process of fine-tuning itself using built-in Hugging Face functions
as well as parameters recommended for the TrOCR model. At the very end we would evaluate the model

against examples from the parachute dataset to verify the model would work properly.

3.5.3.1 Creating a Torch Dataset

The first step is turning our dataset of images in labels into a format that could be used by Python
and other trainer libraries for fine-tuning. The format, in this case, is a Torch Dataset, which is an abstract

“__getitem_” that can be called by existing trainer functions. The

class with generic functions such as
information from the JSON file was brought into our Dataset class by first converting the file into a Pandas

Dataframe. This Dataframe is what our Dataset class iterated through to create Tensors for the image and

the label [PyTorch, 2023].

Extract Label and
File Name for the
Image

Synthetic Image

Generator
v

Use File Name to
Retrieve Image

A\ 4

Microsft TrOCR
From HuggingFace

Creating Dataset for
Training

Image and Label
Pre-Processor for
TrOCR

Convert Label and

Use Pyotch Library
to Generate a
Dataset Class

\ 4

Image to Tensors
using the Processor

Create Array of
Tensors for Correct
Answers and Labels

Figure 25: After the synthetic dataset is created and parsed into Python, it then needs to be converted into
a format that can be used for training. The TrOCR model on Hugging Face provides a processor that allows
these labels and images to be turned into tensors, which can then be used for our training dataset.

This Dataset class is called twice, once to create a training dataset and evaluation dataset. The
training dataset is the larger dataset and is used for giving the model an image and performing backpropaga-
tion and gradient descent by comparing the model’s output to the correct label. The evaluation is a smaller
dataset of values where the model is given an image and the output is compared to the correct label but no
gradient descent is performed. This is to test for any potential over-fitting from the training dataset and to

verify the model can give correct output for images it was not trained on.

32 APPROVED FOR PUBLIC RELEASE

3.5 Making a Mixed Fraction OCR Model 3 METHODS

3.5.3.2 Fine-tuning using Seq2Seq Trainer

Once the two datasets have been created, they can now be used to start fine-tuning our model. As
explained in section this process would involve using Seq2SeqTrainer and passing in our datasets as
well as other training parameters that have already been found to be best for this model. In total, 40,000
images (evenly split over the 7 image categories), were used for the dataset, with 32,000 for training and

8,000 reserved only for validation.

Step Training Loss Validation Loss Cer

200 2.060900 1.355213 0.267117

400 0.556700 0.909492 0.136940

600 0.411900 0.794433 0.096365

800 0.349900 0.582969 0.064243

1000 0.466200 0.523485 0.038039

1200 0.479700 0.481028 0.040575

1400 0.308100 0.488654 0.041420

1600 0.297500 0.431358 0.031276

1800 0.297600 0.374968 0.027050

2000 0.214100 0.349608 0.021133

2200 0.608900 0.347764 0.025359

2400 0.251900 0.331267 0.021133

Figure 26: The following table was generated by the Seq2SeqTrainer. An evaluation was done every 200
steps against a set of data the model was not trained on to verify the model was not overfitting on the test
data. Training loss is the loss from the train dataset, validation loss is from the evaluation dataset, and Cer
is the character error rate from validation.

3.5.3.3 Evaluation Against Parachute Data

Once the model was trained on the synthetic dataset, we needed to verify that it still worked on
the actual parachute dataset. Although our synthetic dataset was made to mirror the types of fractions we
would see in the parachute documents as much as possible, saw previously how overfitting on the data led to
incorrect results so still needed to evaluate the model on the real-world examples to truly know if the model
was ready. We tested a wide variety of different types of fractions, including some typed fractions alongside

the handwritten types, to verify the model was outputting correct fractions.

The results of the validation were satisfactory as we were getting correct results from passing in

33 APPROVED FOR PUBLIC RELEASE

3.6 Making a Cell Classifier Model 3 METHODS

Input Image: ' Is/ﬁ. 1 ?/8 /CI- 79..

Model Qutput: 115/16 17/8 147/8

Figure 27: The pictures here are examples of fractions from the parachute data that were then passed into
the model. The top row is all images that come from the parachute document, and the bottom row is all
the outputs that the model predicted the text was based on the input image.

these images. This allowed us to conclude that this fine-tuned model was ready to be used in our program.

3.6 Making a Cell Classifier Model

As we saw from the fraction model training, the OCR models are very susceptible to overfitting on
their trained datasets, leading to our fraction models to convert every text into a fraction, our regular OCR
models to miss fractions completely, etc. This was a problem as the documents often contained a mixture
of different types of text, including written and handwritten text. Because of this mixing of text types, we
needed to instead create models that were good for individual tasks and then delegate them to translate
the texts they were trained for. This meant we also needed to create a way to classify the types of text
beforehand to know which model it should be passed onto. We solved this by using Google’s ViT model to

classify every text type beforehand so our program could then delegate images to the appropriate model.

3.6.1 Cell Classifier Dataset Generation

With the goal of using specifically tuned OCR models for the different types of cells, we needed a
way to train a classifier on the four types of data that can be within a given text box: typed text, handwritten
text, handwritten numbers, and blank cells. We generated a synthetic dataset to help train a classifier that
would detect the different types of text. The aforementioned synthetic mixed number generator was used to
generate the handwritten numbers for this dataset. To generate the handwritten text, we selected images

from the IAM Handwriting Database, which is an online database of images of handwritten words that were

written by 657 different people |[Marti and Bunke., 2002]. To generate the typed text, we used a Python

library called TextRecognitionDataGenerator to generate words picked from a list of the 1000 most common

words in English. Finally, the blank spaces were created by using OpenCV to generate a blank image. The

34 APPROVED FOR PUBLIC RELEASE

3.7 Converting Processed Images Into XLSX Files 3 METHODS

labels for the dataset are: typed, printed, number, and blank.

3.6.2 Fine-tuning Cell Classifier Model

Similar to the TrOCR model, the training used Seq2SeqTrainer with specific parameters from the
guides that were best suited for the specific model. The dataset was made in the same way as the one for
TrOCR using the four different image types, with 40,000 images (evenly split between the 4 categories),
being split in an 8:2 ratio for training and evaluating. Once the model was done, it was then integrated into
the program to evaluate the results using the actual parachute data. We then made sure that each of the

cells was being passed into the correct model and translated properly by all of our models.

3.7 Converting Processed Images Into XLSX Files

Implemented in ConvertImagesToXLSX.py

Generating XLSX files from our newly cleaned up images (resized, deskewed, dewarped) is a non-
trivial multi-step process. To better determine all of the content on a given datasheet, we determined that
it would be best to process each cell separately. This allows us to focus on processing many smaller /simpler
images with higher accuracy, rather than attempting to perform OCR on the full sheet. This also allows us
to more easily represent the datasheet as an Excel file, since we already have all of the content broken up

by cell.

The first step in the process is to locate the boundary of each cell in the image using various image
processing techniques. Next, we verify the image is in the correct orientation and rotate it 90 degrees if
needed. We then process each cell in the image one by one. Within each cell, we find groups of text and
process each group separately. Each text group is classified as one of “blank”, “printed”, “handwritten”,
or “fraction” and the text group is passed to the appropriate OCR model. Once each text group within a
cell has been processed, the resulting strings are stitched back together to produce the full contents of the
cell. Once we have performed OCR on each cell within an image, we generate an Excel file containing the

extracted data.

3.7.1 Finding All Cells on a Page

To begin the process of locating cells on a page, we first simplify the image by converting it into

binary. This step requires three sub-steps: generating a grayscale image, blurring the image to reduce noise,

35 APPROVED FOR PUBLIC RELEASE

3.7 Converting Processed Images Into XLSX Files 3 METHODS

and lastly using an adaptive threshold function to generate the binary image. With the binary image in
hand, our next goal is to produce a reduced binary image containing only the edges of cells. We utilize a few
simple morphological transformations to extract both horizontal and vertical lines then combine the results

to produce the target image. See an example image here

Figure 28: An image of a datasheet that has been converted to binary and and had the cell edges extracted.

With our new binary image of cell edges, the next step is to find the boundary of all individual
cells. This is done using OpenCV’s ”findContours” function, which returns a list of all contours in the image
as well as a hierarchy containing topological information about the contours. The list from ”findContours”
includes all contours, not just the ones we want. So, we need to filter this list to keep only the contours
around cells. We can do this by only keeping those that have a parent contour but no grandparent contour.
That is, contours that were one level down from the outermost level and none that were two levels down or

lower. This eliminated all contours but except the contours around cells.

3.7.2 Final Preprocessing and Datasheet Check

After finding all of our cell contours, we can now do a few final checks to make sure the page is
ready to be processed. Even after our image pre-processing, a few of the datasheets were still rotated by
exactly 90 degrees out of the correct orientation. We can determine whether or not an image is rotated on
its side by evaluating the average aspect ratio of all contour bounding boxes. By manual inspection of our
training data we were able to determine that on average a text box is going to be about five times wider
than it is tall. If the average aspect ratio falls far enough below this value we conclude the image must be

rotated. If we conclude the image is rotated, we undo this by rotating it by 90 degrees.

36 APPROVED FOR PUBLIC RELEASE

3.7 Converting Processed Images Into XLSX Files 3 METHODS

One last step is to ensure that the document we are processing is actually capable of being converted
into an Excel sheet. Because there are multiple types of documents that may be scanned but our model can
only process spreadsheets, some documents need to be excluded. For example, we saw some documents with
a series of bar-codes related to the parachute that is being tested. We check if a minimum of twenty cell
contours, a somewhat arbitrary number, are detected on a page. If there isn’t at least twenty contours then
we determine that the page was not suitable for our model. If this step is passed, we continue onto Excel

sheet generation.

3.7.3 Breaking up Cell Contents for OCR

There are cases where there is two or more different types of text within a cell. One example can
be seen in figure This makes it difficult to do OCR on the whole cell, so instead we opted to break each
cell into clusters of words to process separately. This was done by converting the cell into a binary image,

removing the cell borders, and then drawing contours around all clusters of words in the remaining image.

Visual Inspection Notes: 2D Bzans -1- Wzz-1, T~ JSON

Figure 29: An image of a cell containing both printed text and handwritten numbers.

3.7.4 Creating Images for Debugging Purposes

In order to visually verify that our contour detection methods are working well, we generate a debug
image with all of the cell and word contours overlaid on the original image. We can then manually inspect
the result to verify that all text boxes have been identified and also that the cell contents have been broken

up. See[30] for an example.

3.7.5 Performing OCR

We separately classify each word contour found in a cell to determine what type of text it is. The
possible options are “printed”, “handwritten”, “fraction”, or “empty”. Once we have determined what type
of text is within the word contour, we select the appropriate fine-tuned model to use for OCR. For each
cell, we iterate through each word contour found and append their OCR outputs into a single string. To

ensure that the different word contours appear in the same order in the excel sheet as they do in the original

37 APPROVED FOR PUBLIC RELEASE

3.7 Converting Processed Images Into XLSX Files 3 METHODS
[T11'Risers DoM:| §jzz, |InspectionDate:|q[iz//zz., |
-k Al Max DWG| Sheet|Zone| [Top Left|Bottom Left/Top Right |Bottom Right

(9] 4'Point Stitching Length

2] [1/8} [12177719 2 1:5¢ 2 1'7@
a3 6)778) |7 e) [1r7719| 1 2| 7 |5 | =

@ Glue - Riser set - Check thread
presents (Go/No-Go) [117177719 B2/85| | ((50)

Visual Inspection + €ariopy Release Functional w/ Harness (GO/NO GO) : '¢—¢) e

Inspectaz: = T
% T1=1 =708 =] T A= ER 182 D)

Box #2 |T11R Risers DoM: Q)zz Inspection Date: §/iz]/zz., |

Min Max| |Drawing| [Sheet[Zone) [Top Left[Bottom Left

Top Right

Bottom Right

(4] [Length of Hook / Pile Tape| 14)/5/8) [14)17/8] [11:17729] (1] [F3
B Glue = Riser Set = 11R = Check for

[Thread presents Go/no go 11-1-7729 Several @

Glue -'Spreader bar - Check for
"WW/ thread Go/no go
Visual Inspection (GO/NO GO):| (GC