
Machine Learning, Image Processing,
and Transfer Learning for

Handwritten Spreadsheet Digitization

A Major Qualifying Project (MQP) Report
Submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE
in partial fulfillment of the requirements
for the Degree of Bachelor of Science in

Computer Science,
Data Science,

and Mathematical Sciences

By:
Matthew Haley

Liam Hall
Christopher Langevin

Cameron Norton
Harsh Patel
Elliot Trilling

Project Advisors:
Professor Oren Mangoubi
Professor Randy Paffenroth

Sponsored By:
Professor Gregory Noetscher, U.S. Army Natick Soldier Systems Center

Date: April 2024

This report represents work of WPI undergraduate students submitted to the faculty as
evidence of a degree requirement. WPI routinely publishes these reports on its website

without editorial or peer review. For more information about the projects program at WPI,
see http://www.wpi.edu/Academics/Projects.

APPROVED FOR PUBLIC RELEASE

http://www.wpi.edu/Academics/Projects

Abstract

This report details the development of a software program aimed at converting handwritten parachute
data records from the Natick Army Lab into an analyzable digital format. Due to the failure of traditional
OCR models to recognize handwritten fractions, a crucial part of the data, we generated a synthetic dataset
to specifically fine-tune these models. The software utilizes image processing and OCR technologies to trans-
late text and replicate the physical document’s layout in a digital format. This innovation streamlines data
analysis, enhancing the Army’s ability to monitor and understand parachute integrity and lifecycle.

i APPROVED FOR PUBLIC RELEASE

Acknowledgements

Our project would not have been possible without the help of our sponsors and advisors. We
would like to thank Dr. Greg Noetscher for his guidance in helping us understanding the requirements
of this project. We are grateful to Natick Army Research Labs for allowing us to work on an impactful
project. We would also like to thank our advisors, Professor Oren Mangoubi and Professor Randy Paffenroth.
Both advisors shared their expertise in Math, Data Science, and Computer Science. Lastly, we appreciate
the departments of Mathematical Sciences and Computer Science at Worcester Polytechnic Institute for
providing the educational foundation that prepared us for this project through a diverse range of classes and
coursework during our undergraduate studies.

ii APPROVED FOR PUBLIC RELEASE

CONTENTS CONTENTS

Contents

1 Introduction 1

2 Background 2

2.1 Image Processing . 2

2.1.1 About OpenCV . 2

2.1.2 Resizing . 3

2.1.3 Deskewing . 3

2.1.4 Grayscaling . 4

2.1.4.1 Grayscaling in OpenCV . 5

2.1.5 Gaussian Blurring . 6

2.1.5.1 Blurring in OpenCV . 7

2.1.6 Binarization (Thresholding) . 7

2.1.6.1 Adaptive Thresholding in OpenCV . 7

2.1.7 Morphological Transformations . 9

2.1.7.1 Morphological Transformations in OpenCV 11

2.1.8 Perspective Transformation . 11

2.2 Neural Networks . 14

2.2.1 Model Based Transfer Learning . 15

2.2.2 Synthetic Dataset Generation . 16

2.2.3 Transformers . 17

2.2.4 Pre-Trained Models from HuggingFace . 20

2.2.4.1 Microsoft TrOCR Architecture . 20

2.2.4.2 Google ViT Architecture . 21

2.2.4.3 Seq2Seq Trainer . 22

3 Methods 23

3.1 Overview of Methods . 23

3.2 Splitting PDF Into Images . 24

3.3 Image Preprocessing . 24

3.4 Perspective Transformation . 25

3.4.1 Binary Edge Image Creation . 27

3.4.2 Largest Quadrilateral Detection . 27

3.4.3 Four Point Transformation . 28

3.5 Making a Mixed Fraction OCR Model . 29

3.5.1 Initial Fine-tuning using Existing Datasets . 29

3.5.2 Synthetic Mixed Number Dataset Generation . 30

3.5.3 Fine-tuning Mixed Fraction Model . 31

3.5.3.1 Creating a Torch Dataset . 32

iii APPROVED FOR PUBLIC RELEASE

CONTENTS CONTENTS

3.5.3.2 Fine-tuning using Seq2Seq Trainer . 33

3.5.3.3 Evaluation Against Parachute Data . 33

3.6 Making a Cell Classifier Model . 34

3.6.1 Cell Classifier Dataset Generation . 34

3.6.2 Fine-tuning Cell Classifier Model . 35

3.7 Converting Processed Images Into XLSX Files . 35

3.7.1 Finding All Cells on a Page . 35

3.7.2 Final Preprocessing and Datasheet Check . 36

3.7.3 Breaking up Cell Contents for OCR . 37

3.7.4 Creating Images for Debugging Purposes . 37

3.7.5 Performing OCR . 37

3.7.6 Excel Sheet Generation . 39

3.8 Making a GUI and Generating an Executable . 39

3.8.1 Making a GUI . 39

3.8.2 Generating an Executable . 40

4 Results 41

4.1 Pipeline Summary . 41

4.2 Quality of Produced XLSX Files . 41

4.3 Comparison of Different Models Used . 43

4.4 Failure Modes of Program and Problems in Spreadsheets . 46

4.4.1 Largest Problem: Accurate Handwriting Translation 46

4.4.2 Other Common Problems . 46

4.4.2.1 Missing Lines in Tables Where Printed Text Overflows a Cell 46

4.4.2.2 Large Vertical Handwritten “1” Treated as Cell Line 47

4.4.2.3 Handwritten Text Overflowing Cells . 47

4.4.3 Rare Problems . 48

5 Conclusion 48

Appendices 50

A How to Run Our Executable 50

B Procrustes Problems 51

B.1 Orthogonal Procrustes Problems . 55

C Back Propagation 58

D CNN Encoder/Decoder to Dewarp Images 65

D.1 Introduction . 65

D.2 Everything at Once . 66

D.3 Simple Toy Problem . 67

D.4 Ideas for Future Testing . 74

References 75

iv APPROVED FOR PUBLIC RELEASE

LIST OF FIGURES LIST OF FIGURES

List of Figures

1 An example parachute datasheet. 1

2 An example datasheet before and after being deskewed. The original image is on the left. The
deskewed image is on the right. 4

3 An image of a flower before and after grayscaling is applied. The image on the left is the
original image. The image on the right has been grayscaled. 5

4 An image of a flower before and after Gaussian blur is applied. The image on the left is the
original image. The image on the right has been blurred. 6

5 An image of a flower before and after adaptiveThreshold is applied. The image on the left is
the original image. The image on the right is the binary result. 7

6 An image of a flower before and after applying erosion with a 3x3 square kernel. The image
on the left is the original image. The image on the right has been eroded. 9

7 An image of a flower before and after applying dilation with a 3x3 square kernel. The image
on the left is the original image. The image on the right has been dilated. 10

8 An image of a flower before and after applying an “open” operation with a 3x3 square kernel.
The image on the left is the original image. The image on the right has been “opened”. . . . 10

9 An image of a flower before and after applying a “close” operation with a 3x3 square kernel.
The image on the left is the original image. The image on the right has been “closed”. 11

10 Three photos of a post-it taken to demonstrate perspective warping. In the first image, the
photo is taken “straight-on” so the post-it note is accurately depicted as a square. In the
second image, the photo is taken from an angle so the post-it note becomes a non-square
quadrilateral. The third image takes the second image and aligns it so the top edge is level
(deskewing it) emphasizing that it is truly non-square from this perspective. 11

11 Synthetic Handwritten Calculus Data. 16

12 The transformer architecture as presented by “Attention is All You Need” [Vaswani et al., 2017]. 18

13 An architectural diagram of the steps the TrOCR model takes to convert an image to text.
Diagram from the original paper by Li et al. [Li et al., 2021]. 21

14 An architectural diagram of the steps the ViT model takes to convert an image to a numerical
classification. Diagram from the original paper by Dosovitskiy et al. [Dosovitskiy et al., 2021]. 22

15 The flow of information using Seq2Seq. Using the parameters from the quickstart guides for
each specific model we can pass these into the arguments class. Once the arguments have
been created, we can pass to Seq2SeqTrainer these arguments, the pretrained model, and the
dataset we want to finetune the model on. From there, Seq2SeqTrainer will run and output
the training results as well as the final finetuned model. 23

16 A high-level flowchart of the steps a file takes passing through our code pipeline. Gray is the
endpoints of the pipeline, blue is image preprocessing, orange is for excel sheet generation,
green is synthetic data generation, and yellow is OCR models. 24

17 An example of deskewing done, the image on the left is skewed while the image on the right
has been straightened. 25

18 An image of a datasheet before and after applying a perspective transform. The image on the
top is the original image. The image on the bottom right has been transformed. The light
blue on the bottom of the transformed image is an arbitrary color to fill in newly generated
pixels. 26

19 An image of a datasheet that has been converted to binary and and had the cell edges extracted. 27

v APPROVED FOR PUBLIC RELEASE

LIST OF FIGURES LIST OF FIGURES

20 An image of a datasheet with an overlay of the largest detected quadrilateral on image (in red). 28

21 An example of one of the images from the synthetic calculus dataset. [Pearson, 2023]. 29

22 The image on the left is one of the handwritten fractions found in the parachute data. The
image on the right is the output produced by the model that was fine-tuned on the calculus
dataset when acting on the left image. 30

23 An example image of a generated synthetic fraction. 30

24 Example images of synthetic fractions. From left to right: a whole number above a horizontally
arranged fraction, a whole number above a vertically arranged fraction, a whole number next
to a horizontally arranged fraction, a whole number next to a vertically arranged fraction,
only a whole number, only a horizontally arranged fraction, only a vertically arranged fraction. 31

25 After the synthetic dataset is created and parsed into Python, it then needs to be converted
into a format that can be used for training. The TrOCR model on Hugging Face provides a
processor that allows these labels and images to be turned into tensors, which can then be
used for our training dataset. 32

26 The following table was generated by the Seq2SeqTrainer. An evaluation was done every 200
steps against a set of data the model was not trained on to verify the model was not overfitting
on the test data. Training loss is the loss from the train dataset, validation loss is from the
evaluation dataset, and Cer is the character error rate from validation. 33

27 The pictures here are examples of fractions from the parachute data that were then passed
into the model. The top row is all images that come from the parachute document, and the
bottom row is all the outputs that the model predicted the text was based on the input image. 34

28 An image of a datasheet that has been converted to binary and and had the cell edges extracted. 36

29 An image of a cell containing both printed text and handwritten numbers. 37

30 An image of a datasheet with overlays of cell edge contours (green) and word contours (red). 38

31 An image of the graphical user interface beginning the processing of a large folder. 39

32 An example usage of the GUI on a small sample, to show a complete output. 40

33 The result of running PyInstaller. The folder “ internal” holds the dependencies of the exe-
cutable file, and must be in the same folder as the executable file when it is run. 40

34 An example datasheet (top) and the resultant XLSX output file (bottom). 42

35 An example datasheet (top) along with the excel sheet output (bottom) using a pre-trained
TrOCR model. 44

36 Output of our model using PyTesseract for OCR on a random datasheet. 45

37 Example images of handwriting that is difficult to process. 46

38 Example datasheet with a missing cell line in the upper right hand corner. The offending cell
contains the text “Bottom Right”. 47

39 Example cell containing handwritten text that gets detected as a cell line. The first slash after
the “9” is the offending character. 47

40 Examples of cells with handwriting that extends past the boundary of the cell. 47

41 Examples of rare problems that can occur. In order they are: cells containing rotated printed
text; cells with a diagonal slash to accommodate two fractions; arrows indicating entries should
be swapped; big text written over the table; cells with crossed out handwriting. 48

42 A simplified example of generalized Procrustes analysis modified from Zelditch et al., 2012.
After landmarks are selected for each specimen, landmark configurations are then centered,
scaled, and rotated such that the Procrustes distance between the configurations is minimized. 52

vi APPROVED FOR PUBLIC RELEASE

LIST OF FIGURES LIST OF FIGURES

43 Denoising Autoencoder Example on MNIST Dataset. The first row contains input images,
the second row contains the input images with added noise, and the third row contains the
model’s attempt to reconstruct the original input image from the noisy image. 65

44 An image of a randomly generated synthetic table before and after being randomly warped.
The top image is the original table. The bottom is the warped table. 66

45 A warped input image (left) and the model output image (right). 67

46 Images of random grids of different sizes (28x28, 56x56, 84x84, 112x112). 68

47 Initial encoder/decoder architecture written in PyTorch. 68

48 Examples produced by the original model when trained and tested on datasets of different
sized images. From top to bottom, datasets of images of size 28x28, 56x56, 84x84, 112x112.
From left to right, the rotated input image, the model prediction, and the true target image. 69

49 A convolution (left) and transposed convolution (right) [Dumoulin and Visin, 2018]. 70

50 An 1D CNN feed forward example showing how embedding pixels are a function of a local
group of pixels [M, 2020]. 71

51 A diagram showing how one pixel in the output image (far right) is a function of a group of
local pixels on the input image (far left). 71

52 A diagram showing how one pixel in the output image (far right) is a function of a group of
local pixels on the input image (far left). Because the image is small, each output pixel is a
function of each input pixel. 72

53 A dilated convolution [Dumoulin and Visin, 2018]. 73

54 Results of the new encoder/decoder using dilations. Each row is a separate example. The
first column is the input image, the second column is the model output, the third column is
the target image. 73

vii APPROVED FOR PUBLIC RELEASE

1 INTRODUCTION

1 Introduction

The US Army Natick Soldier Systems Center (NSSC or DEVCOM), which is also known as “Natick

Labs”, is located in Natick, Massachusetts. NSSC focuses on a multitude of technologies, including the T-

11 parachute [NSC, 2024]. In the US Army, T-11 parachutes are critical for a multitude of tasks. These

parachutes can transport both personnel and supplies from the sky to the ground. Every time a T-11

parachute is put into use, it is then examined by an officer in the army, using a sheet like the one shown

below. Knowing how much wear and tear has been sustained by particular parachutes is paramount to

their success in performing safely. With the number of parachutes in the inventory of DEVCOM, or the

U.S. Army Combat Capabilities Development Command, there are many of these physical data sheets

[U.S. Army Combat Capabilities Development Command, 2023].

Figure 1: An example parachute datasheet.

While these record sheets contain valuable information, they do not have much value in their

1 APPROVED FOR PUBLIC RELEASE

2 BACKGROUND

physical form as they do not allow for easy analysis. Digitizing them would allow the military to easily track

the status and measurements of the parachutes they are working with.

To improve the statistical processing of data gathered by the U.S. Military on their parachutes,

our team has endeavored to make a machine learning pipeline to transform scans of documents of parachute

data into a digital process that can be more easily processed. We used state-of-the-art machine learning

techniques to perform optical character recognition on each sheet and produce a resulting Excel file. We

hope this pipeline will enable large speedups in the digitization efforts of these records.

Through this project, we will explore many core principles of machine learning. Our main tool

will be neural networks, with a particular focus on the transformer architecture as introduced by the paper

“Attention Is All You Need” [Vaswani et al., 2017]. Our team used pre-trained models effectively and fine-

tuned them for our specific use case. To prepare the dataset for processing by these models, standard image

preprocessing techniques such as resizing, deskewing, grayscaling, blurring, binarization, and morphological

transformations were used. Built onto this are the OpenCV contour detection functions, which aided the

processing of this parachute dataset which contains many contours (in the many gridlines that are present).

2 Background

2.1 Image Processing

Preprocessing images into a consistent and usable format is a critical first step in training and

testing many models. Some relevant image processing techniques for this project include resizing, deskew-

ing, grayscaling, blurring, binarization, and morphological transformations. These techniques represent the

groundwork for preparing images for various applications including contour detection and object recognition.

2.1.1 About OpenCV

The Open Source Computer Vision Library, or OpenCV for short, is a library full of machine

learning and computer vision software. The library has over 2500 algorithms, including programs that can

recognize faces, classify human actions by watching certain videos, track movements of objects, produce

3D points, stitch images together, etc [OpenCV Developers, 2024d]. As the library is Apache 2 licensed,

governing bodies are allowed to use this library [Apa, 2004]. As we are creating this model for the military,

it was very important that this be the case. In addition, OpenCV has a python interface and is supported for

2 APPROVED FOR PUBLIC RELEASE

2.1 Image Processing 2 BACKGROUND

Windows, Linux, Mac OS, and Android. Since the group did not know what operating system the military

uses at the beginning of the project, this made OpenCV a safe bet.

2.1.2 Resizing

The process of resizing an image involves altering its dimensions, either increasing or decreasing

its size while maintaining the original aspect ratio. In the realm of image processing, resizing holds critical

importance for standardizing image dimensions. In research applications, ensuring uniformity in input

data through resizing facilitates consistent and accurate analysis across varied images, providing a stable

foundation for subsequent image processing algorithms and methodologies.

2.1.3 Deskewing

Deskewing emerges as a vital technique aimed at rectifying the skewness or non-alignment within

images. We use the term “deskewing” to refer to the act of rotating an image so that a maximum number

of lines are horizontal or vertical. Skewed images can impede precise text recognition or line detection,

affecting the performance of subsequent processing algorithms. Rectifying skewness significantly enhances

the accuracy and reliability of analyzing textual or line-based content within images, ensuring more precise

and effective interpretation.

We utilized a Python library known as “deskew” to perform deskewing of our images. See 2 for an

example.

3 APPROVED FOR PUBLIC RELEASE

2.1 Image Processing 2 BACKGROUND

Figure 2: An example datasheet before and after being deskewed. The original image is on the left. The
deskewed image is on the right.

2.1.4 Grayscaling

Grayscaling, transforming colored images into gray representations, is a foundational technique in

image processing. By eliminating color information and encoding pixel intensity through shades of gray

(ranging from 0 for black to 255 for white), this reduces the amount of information needed for every image.

Grayscaling provides a way to standardize input images for streamlined analysis. This simplification reduces

computational complexity by focusing solely on luminance values and mitigating color-related variations. By

rendering images in grayscale, it becomes easier to perform additional processing or analysis across diverse

image datasets [Lehn et al., 2023].

There are two main methods to grayscale images. The first method takes an average of the red,

green, and blue values for the grayscaling value. If we specify r to be red intensity value, b to be the blue

intensity value, and g to be the green intensity value, the grayscaling, or intensity, value will be:

I =
r + b + g

3
(1)

This method seems flawless at first glance. However, in practice it is not optimal. The human eye

4 APPROVED FOR PUBLIC RELEASE

2.1 Image Processing 2 BACKGROUND

does not react the same to seeing red, green, and blue. While the eye is very sensitive to green light, it is

much less sensitive to blue light. Because of this, a second, more accurate, way of grayscaling was created.

Weighted grayscaling gives each color channel a specific weight which is represented in the following formula:

I = 0.299 · r + 0.587 · g + 0.114 · b (2)

where r, g, b are the color intensities in the range [0, 255] [Gra, 2024]. To see an example of the

method used on a picture, see 3.

2.1.4.1 Grayscaling in OpenCV

In OpenCV, grayscaling is done using the function cvtColor, which takes in an image and a color

type and converts the image to that color type. For the purposes of this project, this function was used to

convert an image using RGB coloring into a grayscale version of the image. In order to do this, the RGB

image and an OpenCV variable called cv2.COLOR BGR2GRAY were passed into cvtColor, and a grayscale

version of the image was returned [OpenCV Developers, 2024a].

Figure 3: An image of a flower before and after grayscaling is applied. The image on the left is the original
image. The image on the right has been grayscaled.

5 APPROVED FOR PUBLIC RELEASE

2.1 Image Processing 2 BACKGROUND

2.1.5 Gaussian Blurring

Image blurring is a procedure that diminishes the sharpness and intricacy of an image. Image

blurring smooths the fine details of the image, resulting in reduced clarity. The primary purpose of applying

image blurring is to eliminate noise [Domke and Aloimonos, 2009].

All images have some amount of intrinsic noise. For example, a photo of a white sheet of paper

will have hundreds of individual pixel values recording how light reflects off the paper and is processed by a

camera sensor in slightly different ways. To reduce some of this noise and improve future image processing,

we utilize Gaussian blurring to smooth local values together [Hummel et al., 1987].

To see an example of Gaussian blurring at work, see 4.

Figure 4: An image of a flower before and after Gaussian blur is applied. The image on the left is the original
image. The image on the right has been blurred.

The Gaussian blurring process works by convoluting an input image with a Gaussian kernel. A

Gaussian kernel is a matrix of values generated from a Gaussian distribution. The values generated are set

by the distance from the center of the kernel and the standard deviation of the distribution, both which

are chosen by the user. To generate the pixel values for the blurred image, the kernel is moved around the

image, with the new pixel values being the sum-product of all pixels in the kernel centered on the pixel being

calculated times their corresponding weight given by the Gaussian kernel. Once this image of new pixel

values is calculated, it is returned as the new ”smoothed” image [Singhal et al., 2017].

Below is the equation used to determine the values of a Gaussian kernel:

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2 (3)

Within the equation, σ represents the standard deviation, set by the user, while x and y represent

6 APPROVED FOR PUBLIC RELEASE

2.1 Image Processing 2 BACKGROUND

the horizontal and vertical distance from the origin of the kernel respectively [Singhal et al., 2017]. These

values allow for the center pixel to be weighted the highest, with the weights decreasing in magnitude the

further you travel from the center. This results in pixels retaining most of their value during the blurring

process, leading to a still recognizable image.

2.1.5.1 Blurring in OpenCV

In OpenCV, blurring is done by using the function GaussianBlur. This function takes in an input

image, a kernel size, and the standard deviation of the kernel in the X and Y directions and returns a blurred

image. [OpenCV Developers, 2024b]

2.1.6 Binarization (Thresholding)

Binarization/image thresholding is an important technique in image processing. It is used for

converting grayscale images into binary images by highlighting regions of interest based on pixel intensity

values. Traditional thresholding methods apply a fixed threshold value to all pixels in an image. One of the

limitations of traditional thresholding is its inability to adapt to local variations in illumination across an

image. Adaptive thresholding algorithms calculate the threshold for each pixel based on a local neighborhood

around it [Ope, 2024].

2.1.6.1 Adaptive Thresholding in OpenCV

Figure 5: An image of a flower before and after adaptiveThreshold is applied. The image on the left is the
original image. The image on the right is the binary result.

In OpenCV, adaptive thresholding is done using the function adaptiveThreshold. This function

takes in an image, and alters all pixel values to either be zero or the maximum pixel intensity, which in our

7 APPROVED FOR PUBLIC RELEASE

2.1 Image Processing 2 BACKGROUND

case is 255, based on if the pixel value is greater than the weighted sum of the pixels in a small neighborhood

containing the pixel in question [Ope, 2024].

The adaptiveThreshold function takes two parameters. The first, adaptiveMethod, is the function

that is used to determine the pixel value threshold that differentiates a pixel from being either black or

white in the binary image. For this project, we used cv2.ADAPTIVE THRESH GAUSSIAN C. This setting

tells adaptiveThreshold to use the weighted sum of the kernel, with the weights being generated from a

Gaussian distribution, minus a constant set by the user. In our project, a kernel size of 5x5 was used and the

constant that was subtracted off each weighted sum was two, which are represented by the blockSize and C

parameters respectively. The second parameter, thresholdType, determines what value the pixel should be

set to. We used cv2.THRESH BINARY INV which setting the pixel value to 0 if it has a higher value then

the calculated threshold for that pixel. Otherwise, the pixel is set to the max value of 255. [Ope, 2024]

Below is the equation used to determine the new value of a given pixel, based on the local threshold

value with src(x, y) representing the value of the pixel being evaluated.

dst(x, y) =


0 if src(x, y) > T (x, y)

maxValue otherwise

(4)

As seen above, if a given pixel is darker than the local threshold, then the pixel is turned to white,

otherwise the pixel is turned black. The local threshold value is determined by the weighted average of

the Gaussian filter being applied to a given pixels and its neighbors, determined by using the following

equation:[OpenCV Developers, 2024c]

T(x,y) =

∑
(x′,y′)∈block src(x′, y′) · weight(x′, y′)∑

(x′,y′)∈block weight(x′, y′)
− C (5)

The constant C is predetermined by the user, while the weights themselves are determined by

the same function used for Gaussian Blur, equation 3 with the sigma in this case being determined by the

following equation: [OpenCV Developers, 2024b][Ope, 2024]

σ = 0.3 ∗ ((blockSize − 1) ∗ 0.5 − 1) + 0.8 (6)

To see an example of the method used on an image, see 5.

8 APPROVED FOR PUBLIC RELEASE

2.1 Image Processing 2 BACKGROUND

2.1.7 Morphological Transformations

Morphological transformations are a type of simple operation on binary images that require two

inputs: the original image and a structuring element (or kernel) that dictates the operation’s nature. Two

fundamental morphological operators are Erosion and Dilation, with additional variants such as opening and

closing being combinations of the fundamental ones [Mor, 2024].

Erosion, like soil erosion, diminishes the boundaries of the foreground object in binary images. As

the kernel slides through the image in a 2D convolution manner, a pixel in the original image becomes 1

only if all of the pixels under the kernel are also 1; otherwise, it is eroded (set to zero). This process discards

pixels near the boundary, reducing the thickness of the foreground object. Erosion is effective for eliminating

noises and detaching connected objects [Mor, 2024]. To see an example of erosion on an image, see 6.

Figure 6: An image of a flower before and after applying erosion with a 3x3 square kernel. The image on
the left is the original image. The image on the right has been eroded.

Dilation is the opposite of erosion. A pixel element becomes 1 if at least one pixel under the kernel

is 1, leading to an increase in the white region. Typically, dilation follows erosion, especially in noise removal

scenarios, as erosion shrinks the object. Dilation helps restore the object’s size without reintroducing the

eliminated noise and is also useful for connecting broken parts of an object [Mor, 2024]. To see an example

of dilation on an image, see 7.

Opening, a combination of erosion and then dilation, is employed to remove noise, as erosion takes

care of noise elimination [Mor, 2024]. This combination of the two returns an overall smoother image, as the

erosion removes the sharper edges of an image, while the dilation returns the image back to about the same

size, however it cannot fully reverse an erosion [Sreedhar and Panlal, 2012]. To see an example of opening

on an image, see 8.

Closing, the reverse of opening, involves dilation and then erosion. This operation is valuable for

9 APPROVED FOR PUBLIC RELEASE

2.1 Image Processing 2 BACKGROUND

Figure 7: An image of a flower before and after applying dilation with a 3x3 square kernel. The image on
the left is the original image. The image on the right has been dilated.

Figure 8: An image of a flower before and after applying an “open” operation with a 3x3 square kernel. The
image on the left is the original image. The image on the right has been “opened”.

10 APPROVED FOR PUBLIC RELEASE

2.1 Image Processing 2 BACKGROUND

closing small holes within foreground objects [Mor, 2024]. Especially since the dilation going first means

that gaps can be connected in the image, so when erosion occurs, there is a higher likelihood that along

the connection point all of the pixels within the kernel are present [Sreedhar and Panlal, 2012]. To see an

example of closing on an image, see 9.

Figure 9: An image of a flower before and after applying a “close” operation with a 3x3 square kernel. The
image on the left is the original image. The image on the right has been “closed”.

2.1.7.1 Morphological Transformations in OpenCV

Within OpenCV, morphologyEx is used to perform two morphological transformations. This func-

tion takes as input an image and a “structuring element” (a small binary matrix). Structuring elements can

be easily generated by making calls to getStructuringElement to generate commonly used kernels.

2.1.8 Perspective Transformation

To introduce the “Perspective Transformation”, we present three perspectives of a post-it note 10.

Figure 10: Three photos of a post-it taken to demonstrate perspective warping. In the first image, the photo
is taken “straight-on” so the post-it note is accurately depicted as a square. In the second image, the photo
is taken from an angle so the post-it note becomes a non-square quadrilateral. The third image takes the
second image and aligns it so the top edge is level (deskewing it) emphasizing that it is truly non-square
from this perspective.

11 APPROVED FOR PUBLIC RELEASE

2.1 Image Processing 2 BACKGROUND

In the first image, the post-it note appears as a square, and this might be considered to be its

intrinsic “shape”. In the second image, the viewpoint is no longer orthogonal to the table on which the

post-it sits. The third image emphasizes this warping effect by aligning the top edge of the post-it note

(from the second image) to be parallel with the top of the photo. In the third image, we can see that the

left and right edges of the post-it are no longer at right angles to the top edge. Worse, the edges are not

parallel to each-other. Each of the images of the post-it note contain important information. It would be

useful to make the second and third images to be identical to the first, as it would be easiest for a computer

or a person to read that information. This process can be done through “homography”, or the perspective

transformation.

The perspective transformation is a projective transformation between two images. Simply, the

transform takes a matrix composed of points in an image and multiplies it by the homography matrix to get

a new matrix, which represents the points of a new, deskewed, matrix [Pesce et al., 2023]. In mathematical

notation, the transform is:

P̂ = HP (7)

Where H represents the following:

H =


h11 h12 h13

h21 h22 h23

h31 h32 1

 (8)

Notice that only one value of the matrix is not a variable. This means that many parts of the

matrix must change to account for the different image matrix P [Pesce et al., 2023]. So then, how do we

calculate these variables? In order to do that, a calibration process is done by picking specific points that

relate to each other though these equations.


xa

ya

za

 = H ∗


x

y

1

 (9)

12 APPROVED FOR PUBLIC RELEASE

2.1 Image Processing 2 BACKGROUND

1

za


xa

ya

za

 =


x̂

ŷ

1

 (10)

Above, x, y are the original picked points, x̂, ŷ are the second picked points, and xa, ya, za are the

chosen points after they are put through the transform. When we combine both of these equations, we get:

H


x

y

1

 = za


x̂

ŷ

1

 (11)

And after distributing them, we get

zax̂ = h11x+ h12y+ h13

zaŷ = h21x+ h22y+ h23

za = h31x+ h32y+ 1

the relationship between one pair of matching points. As the homograph matrix, H, has exactly eight degrees

of freedom, at minimum four corresponding points are needed to solve this matrix [Lee, 2022]. We combine

this relationship between the four points to get the following:



x(1) y(1) 1 0 0 0 −x̂(1)x(1) −x̂(1)y(1)

0 0 0 x(1) y(1) 1 −ŷ(1)x(1) −ŷ(1)y(1)

. . .

x(i) y(i) 1 0 0 0 −x̂(i)x(i) −x̂(i)y(i)

0 0 0 x(i) y(i) 1 −ŷ(i)x(i) −ŷ(i)y(i)

. . .

x(n) y(n) 1 0 0 0 −x̂(n)x(n) −x̂(n)y(n)

0 0 0 x(n) y(n) 1 −ŷ(n)x(n) −ŷ(n)y(n)





h11

h12

h13

h21

h22

h23

h31

h32



=



x̂(1)

ŷ(1)

. . .

x̂(i)

ŷ(i)

. . .

x̂(n)

ŷ(n)



(12)

In this new matrix form, we are now able to solve for all values of the homography matrix [Lee, 2022].

13 APPROVED FOR PUBLIC RELEASE

2.2 Neural Networks 2 BACKGROUND

2.2 Neural Networks

In order to accurately create a program that can detect text, we first need it to understand several

different types of handwriting. As the US military is so large, many different people are involved in parachute

testing, meaning many individuals write up needed information about data that will be processed through

this program. Thus, we have to show the program many different types of handwriting, and have it learn

what specific characters look like. One of the best ways to do this is with neural networks.

A neural network is a type of machine learning algorithm. The specific type of neural network

in machine learning is comprised of many nodes that communicate information to each other. Traditional

(fully connected/feedforward) neural networks come in layers, with a “weight” connecting each neuron in

the previous layer to a neuron in the next layer, and a “bias” upon each neuron itself, where these are all

just real numbers. These weights and biases can be stored in the structures of linear algebra (matrices and

vectors), as they will be linearly related to each other. Specifically, we can store all the weights between two

layers of neurons in a “weight matrix”, and all the biases for a layer (the layer of neurons after the weight

matrix) in a “bias vector”. If an output of a node is above the specific node’s bias, that node is activated

and a signal is passed on to future nodes. If this bias value is not met, no signal will be passed on.

This notation is as follows: Let w ∈ Rm×n be the weight one of the connections in the neural

network. We write wl
jk to represent the weight for the connection from the kth neuron in the (l− 1)th layer

to the jth neuron in the lth layer [Nielsen, 2019]. In this scenario, j is the output neuron and k is the input

neuron. As an example, w3
21 represents the weight for the connection of the 4th neuron in the 2nd to the 1st

neuron in the 3rd layer of a network. In addition, blj will represent the bias of the jth neuron in the lth layer,

while alj will represent the activation of the jth neuron in the lth layer [Nielsen, 2019].

With all these notations, we can say that the activation alj is related to all activations in the (l−1)th

layer with the following equation:

alj = σ(
∑
k

wl
jka

l−1
k + blj) (13)

For clarification, the sum is over all neurons k located in the (l − 1)th layer. We can write this

expression in matrix form by defining wl as the weight matrix for the layer l. Each entry in this matrix wl

are all the weights connected to the lth layer of neurons [Nielsen, 2019]. We say that the entry in the kth

column and the jth row will be wl
jk. For every layer l, a bias vector can be defined, bl, where all of the

components are the values of blj . Similarly, we can define an activation vector al, where the components are

14 APPROVED FOR PUBLIC RELEASE

2.2 Neural Networks 2 BACKGROUND

the activations components alj for each neuron in the lth layer [Nielsen, 2019]. Lastly, we can vectorize σ, in

equation 13, to get the following equation:

al = σ(wlal−1 + bl) (14)

This formulation allows us to understand how activations from one layer relate to the activations

on the most recent previous layer, letting our view become more “global” than before (focusing not on each

neuron separately). This new expression is also useful in practical situations, as matrix libraries allow easy

and quick ways to implement matrix multiplication, vector addition and subtraction, and vectorization which

makes programs run faster.

Before moving on, let us discuss briefly weighted input. We consider zl to be the weighted input of

all the neurons in layer l. The equation for the weighted input is the following:

zl ≡ wlal−1 + bl (15)

2.2.1 Model Based Transfer Learning

One of the primary bottlenecks our project faced was a lack of data as we were only provided with

a few example scanned documents. This poses an issue when training a new model. For example, one type

of model we wished to train is one that could perform OCR on handwritten fractions and mixed numbers.

Since we were not able to discover an existing dataset on the topic, part of our group’s approach was to

create a synthetic dataset of handwritten fractions to help fine-tune a pre-trained model.

Model-based transfer learning allows knowledge to be transferred and stored in a model’s settings.

It works on the idea that both the original and new tasks have some similarities. Instead of storing detailed

information about features, this method focuses on storing broader knowledge about how the model works.

This makes the model more efficient and better at understanding the original data without needing to do

complex operations such as re-sampling or inference [Pan, 2014].

If we have a well-trained source model, we can use its knowledge to help train a new model for a

similar task, even if we do not have notable amounts of labeled data for the new task.

For our project, we decided to use utilize transfer knowledge through shared model components.

This type of transfer learning creates a target model by using components or hyperparameters in the source

model. We took parts of the pre-trained model that were good at recognizing general patterns and used

15 APPROVED FOR PUBLIC RELEASE

2.2 Neural Networks 2 BACKGROUND

them to help our model recognize fractions [Aggarwal, 2014].

The prior, or the prior probability distribution is what one may assume may happen before anything

does. For instance, a coin flip. If one feels it is more likely to land on heads, they will guess heads. It is a

prior belief. Using this prior knowledge can help make better estimates before starting. In real-world tasks,

applying this prior info can help build useful models even if there is not an immense amount of data to work

with [Pan, 2014].

In our model this concept can be applied by taking a pre-existing model and fine-tuning it to

whatever dataset we choose. For example, if we have a model that is trained on basic image recognition, we

can tune the final layers to interpret mixed numbers better. To do this we would supply the model with a

dataset of mixed fractions and use this dataset to do our tuning.

2.2.2 Synthetic Dataset Generation

The need for data access, particularly from publicly funded sources, continues to expand. However,

worries regarding the exposure of respondents’ identities and sensitive information are causing data collectors

to restrict access. Synthetic data sets, designed to mimic crucial aspects of real data while enabling valid

statistical analysis, offer a solution to grant broad access to data while addressing privacy and confidentiality

concerns [Raghunathan, 2021].

Synthetic data itself refers to data generated using a purpose-built mathematical model or algo-

rithm. This is in contrast to real data, which originates from real-world systems such as satellite images or

medical tests [Jordon et al., 2022]. An example of synthetic data is shown below, with a synthetic handwrit-

ten calculus dataset.

Figure 11: Synthetic Handwritten Calculus Data.

16 APPROVED FOR PUBLIC RELEASE

2.2 Neural Networks 2 BACKGROUND

2.2.3 Transformers

Transformers are a neural network architecture proposed by a team of researchers at Google in 2017

[Toews, 2023], in their landmark paper “Attention is All You Need” [Vaswani et al., 2017]. The motivation

for this model was to improve on previous language modeling and machine translation approaches, which

relied on recurrence [Vaswani et al., 2017]. Such recurrent networks are subject to the “vanishing gradient”

problem, in which the signal is lost after passing through a network many times [Zhang, 2023]. The major

introduction by this paper is the “Attention” mechanism, which allows for the better handling of long input or

output sequences. In the diagram of the full architecture, these attention mechanisms drive the “Multi-Head

Attention” and “Masked Multi-Head Attention”. The full architecture can be seen below 12.

The proposed solution, and the central element of the paper is the “Attention” mechanism. In its

most basic form, it is as follows:

Attention(Q,K, V) = softmax

(
QKT

√
dk

)
V (16)

where Q, K, and V are vectors called “Queries”, “Keys”, and “Values”. Specifically, they represent the

output from whichever previous layer(s) that they come from, processed through a linear layer (as found in a

standard feedforward network) corresponding to each of these sets of “queries”, “keys”, and “values”. These

linear transformations upon the previous input are what differentiate and ultimately determine the queries,

keys and values that will be input to the attention mechanism as described in 16. Queries “query” the keys

by means of a dot-product in QKT , as the dot-product is the mechanism for determining the similarity

between vectors. These “similarites” are then scaled down by
√
dk, where dk is the dimension of both the

queries and the keys (these are equal), then normalized with a softmax function, to produce a probability

distribution which, conceptually, represents the keys which were queried for. These are then multiplied by

the “values” (the information store), at which point, the important information of the input sequence has

been returned from the attention mechanism, without using recurrence or convolution. In this way, the

keys and values make a sort of continuous lookup table that is trained within the model, and the queries

extract information from this lookup table. This “attention” mechanism represents the model “attending” to

different parts of the input sequence, which is the crucial development of this paper, as now information can

flow between tokens in a sequence without using a recurrent model. To achieve the “Multi-head Attention”

and “Masked Multi-Head Attention” of the full model architecture, several of these attention mechanism are

17 APPROVED FOR PUBLIC RELEASE

2.2 Neural Networks 2 BACKGROUND

Figure 12: The transformer architecture as presented by “Attention is All You Need” [Vaswani et al., 2017].

18 APPROVED FOR PUBLIC RELEASE

2.2 Neural Networks 2 BACKGROUND

concatenated according to the following:

MultiHead(Q,K, V) = Concat(head1, . . . ,headh)WO (17)

where headi = Attention(QWQ
i ,KWK

i , V WV
i) (18)

The motivation for this concatenation is to allow the model to concurrently understand different parts of the

input. The only difference between the “Multi-Head Attention” and “Masked Multi-Head Attention” that

are seen in the full architecture is a “mask”, which is simply setting “illegal” connections in the relevant

sublayer to be equal to negative infinity. In the right-hand side block (the decoder), this has the effect of

preventing tokens that have not been produced yet from communicating with the existing tokens (those that

have been generated with previous inferences of the model and passed in as the output embedding), meaning

that the model must learn how to predict the next token only using information from the previous tokens,

and not subsequent tokens.

The “Feed Forward” layer is a standard “fully-connected” sub-layer here. Also depicted between

sub-layers are “residual connections”/“skip connections” which combine input to the sub-layer with output

from the sub-layer. This is seen in the diagram as an arrow into the side of the block called “Add & Norm”.

The activations are then normalized (the “Norm” here), according to:

hi = f

(
gi
σi

(ai − µi) + bi

)
(19)

Where µ and σ are the mean and standard deviation of the particular layer’s activations, respectively,

calculated as follows:

µl =
1

H

H∑
i=1

ali (20)

σl =

√√√√ 1

H

H∑
i=1

(ali − µl)2 (21)

The effect of equation 19 is that the the activations ai have been standardized, which in the general case

means that their mean is zero and that their standard deviation is one. The only deviation from that more

common definition here is that, after the normalization, a learnable gain coefficient is multiplied to the

activations, and a learnable bias is added [Ba et al., 2016].

19 APPROVED FOR PUBLIC RELEASE

2.2 Neural Networks 2 BACKGROUND

Globally, the left block is called the “Encoder”, and the right block is called the “Decoder”. The

basic usage of this architecture is to feed the source sentence into the encoder, and the current state of the

target sentence into the decoder (this being however much of the output sequence has been generated thus

far), to sample the next word. It is important to remember that this is not a recurrent model, which is

the advantage over previous methods, because this reduces the complexity of the path that the information

has to flow down when the model is inferenced from O(n) in the recurrent case, to O(1) in this case

[Vaswani et al., 2017].

2.2.4 Pre-Trained Models from HuggingFace

Although models previously may have needed to be created and trained from scratch for specific

use cases, many pre-trained models have become freely available for use through platforms such as Hugging

Face, an online repository for users to share and download existing models. The final application uses two

of these pre-trained Transformer models that were later fine-tuned for the specific tasks.

2.2.4.1 Microsoft TrOCR Architecture

Microsoft’s TrOCR is a Transformer model trained to perform Optical Character Recognition tasks.

The model consists of an image Transformer as an encoder and a text Transformer decoder, allowing the

model to receive an input image and output a string of characters. The Hugging Face Python library

provides two classes needed to run the model, one for the model itself and one for the image processing step

needed beforehand. The image that needs to be passed is first converted into multiple Tensor objects by the

Processor object, which can then be fed into the Model object to return an output of the string of text that

was in the original image [Li et al., 2021, Microsoft, 2022, Face, 2024].

Figure 13 shows the flow of information being passed in through the different stages of the model.

The bottom two images in the diagram show the original image on the bottom right as well as the processed

images on the left. The Processor object converts the original image into smaller 16x16 patches, which are

then flattened into a 1D array. Each of the patches is also labelled with positional information, and each

of this combination of image and position information is then encoded by the first Transformer model. The

second Transformer model then decodes this encoded information and converts this into a series of character

chunks [Li et al., 2021].

On Hugging Face, Microsoft has provided multiple instances of the model trained for different text,

such as handwritten text, printed text, larger sentence text, etc. The ones used for this application were their

20 APPROVED FOR PUBLIC RELEASE

2.2 Neural Networks 2 BACKGROUND

Figure 13: An architectural diagram of the steps the TrOCR model takes to convert an image to text.
Diagram from the original paper by Li et al. [Li et al., 2021].

base printed model to convert regular text, as well as their base handwritten model which was fine-tuned

for fractional data in order to convert the handwritten fractions found throughout the documents.

2.2.4.2 Google ViT Architecture

Google’s ViT model is a Vision Transformer model that has been trained to work well for image

classification tasks. It is an encoder model that takes an image and gives a numerical value for the category

the image falls into. The model is useful for determining categories for similar looking images, and has

numerous user fine-tuned versions on Hugging Face for tasks such as determining the specific species of cat

from an image or determining how healthy a specific species of plant is based on the leaves. Just like the

TrOCR model, Hugging Face’s library provides a Model class and Processor Class, with the Processor class

converting the image into an input for the Model class. The numerical value for the category goes from 0 to

n-1, with n being the total number of categories as defined beforehand by the user. The user also specifies

which category each number corresponds to (ex. 0 being “healthy leaf”, 1 being “slightly infected”, 2 being

“very unhealthy”, etc.) [Google, 2021, Dosovitskiy et al., 2021].

Figure 14 shows the flow of information being passed in through the model. The steps are very

similar to the first half of the TrOCR model. First the processor turns the original image into 16x16 pixel

patches. These patches are flattened into a 1D array and given positional information. This combination is

fed into the encoder and provides the numerical category value [Dosovitskiy et al., 2021].

On Hugging Face, Google provides a base version of their model as well as instructions on how to

21 APPROVED FOR PUBLIC RELEASE

2.2 Neural Networks 2 BACKGROUND

Figure 14: An architectural diagram of the steps the ViT model takes to convert an image to a numerical
classification. Diagram from the original paper by Dosovitskiy et al. [Dosovitskiy et al., 2021].

fine-tune it for a specific use case. For the application, this model was used to classify each image into 4

categories: Handwritten, Printed, Fraction, and Blank. This was because the various models worked better

for certain text types, so classifying the image beforehand allows our pipeline to use the model that would

work best with the image.

2.2.4.3 Seq2Seq Trainer

The Hugging Face model guide provides quickstart links and tutorial notebooks that contain code

and parameters that were found to work well with fine-tuning these models. The main class used in these

quickstart guides is Seq2SeqTrainer, a class that automates the process of backpropagation and gradient

descent. This class is based on Hugging Face’s generic Trainer class but has been modified to work well for

translation and classification tasks. These Trainer classes do various tasks, such as automatic distribution

over multiple GPUs, saving intermediate models after a certain number of steps, saving the model with the

lowest loss, etc. These are tasks that can also be done with base PyTorch but this class makes it easier to

do so. In combination with the TrainerArguments class to pass in the necessary arguments, the Seq2Seq

Trainer class allows us to immediately start finetuning once we have a dataset we want to use for training.

[Face, 2023]

22 APPROVED FOR PUBLIC RELEASE

3 METHODS

Figure 15: The flow of information using Seq2Seq. Using the parameters from the quickstart guides for each
specific model we can pass these into the arguments class. Once the arguments have been created, we can
pass to Seq2SeqTrainer these arguments, the pretrained model, and the dataset we want to finetune the
model on. From there, Seq2SeqTrainer will run and output the training results as well as the final finetuned
model.

3 Methods

3.1 Overview of Methods

In the following sections we will describe the various steps we undertook to complete this project.

This included fine-tuning multiple pre-trained models and building a pipeline to transform a PDF of scanned

datasheets into a folder of Excel files. What follows is a brief description of the steps that occur in this

pipeline.

Our program a PDF file of scanned datasheets and converts each page into a separate PNG file. In

order to improve future steps, we start by pre-processing each page. This involves a deskew to de-rotate the

page followed by a perspective transformation to fix any perspective deformation. After the document has

been straightened, we locate the edges of each cell in the image to be processed individually. Within each

cell, we try to circle each chunk of text or writing and pass it through a classifier to determine if the group is

blank, handwritten text, typed text, or handwritten numbers. After the group has been classified, it is then

passed to the respective OCR model to be translated. Lastly, the text representation of the group is placed

into the correct cell on a generated Excel sheet. Figure 16 depicts this process visually as a flowchart.

23 APPROVED FOR PUBLIC RELEASE

3.2 Splitting PDF Into Images 3 METHODS

Figure 16: A high-level flowchart of the steps a file takes passing through our code pipeline. Gray is the
endpoints of the pipeline, blue is image preprocessing, orange is for excel sheet generation, green is synthetic
data generation, and yellow is OCR models.

3.2 Splitting PDF Into Images

Implemented in SplitPDFsIntoImages.py

Since images (2D arrays of RGB values) are much easier to manipulate then PDFs, our first step is

to transform each page of an input PDF into a PNG. We do this using a python package called pdf2image,

which makes the process very straightforward.

3.3 Image Preprocessing

Implemented in PreprocessImages.py

Because many datasheets were scanned in at an angle, our first image pre-processing step is to

try to rotate each image until a maximum number of straight lines are horizontal. That is, the image is as

level as it can be. We do this by using a Python package called “deskew” which library calculates the angle

by which the image should be rotated to achieve this effect. An example image 17 before and after being

deskewed is show below.

In addition to deskewing images, we also resize the image in order to have the largest dimension

be four thousand pixels. This makes the images more uniform reducing problems that might occur if each

image was set at a drastically different pixel scale. This process of resizing is the same as described in 2.1.2.

24 APPROVED FOR PUBLIC RELEASE

3.4 Perspective Transformation 3 METHODS

Figure 17: An example of deskewing done, the image on the left is skewed while the image on the right has
been straightened.

3.4 Perspective Transformation

Implemented in DewarpPerspective.py

Not only were the documents rotated, we also found that they had been warped. This is likely from

them being scanned using a phone instead of a flatbed scanner. Instead of the datasheets being perfectly

rectangular, they were non-parallel quadrilaterals. This was discussed in 2.1.8.

The datasheets needed to be unwarped in order for our text box detector to be able to accurately

and consistently detect every text box within a given datasheet. The process of dewarping an image has

several steps. We first convert the page to a binary image that contains only the cell edges. Next we try

to find the largest quadrilateral on the page (which we assume to be the border of a table). Lastly we do

transformation that maps the corners of this quadrilateral into a rectangle thus dewarping the image. See

18 for an example datasheet.

25 APPROVED FOR PUBLIC RELEASE

3.4 Perspective Transformation 3 METHODS

Figure 18: An image of a datasheet before and after applying a perspective transform. The image on the top
is the original image. The image on the bottom right has been transformed. The light blue on the bottom
of the transformed image is an arbitrary color to fill in newly generated pixels.

26 APPROVED FOR PUBLIC RELEASE

3.4 Perspective Transformation 3 METHODS

3.4.1 Binary Edge Image Creation

To generate the binary image with only vertical and horizontal cell edges highlighted, we start by

converting the image to binary. This is done in a three step process: first the image is converted from color to

grayscale as described in 2.1.4.1, secondly that image has Gaussian blur applied to it as described in 2.1.5.1,

and finally the smooth gray image is converted into a binary image as described in 2.1.6.1. Lastly, we utilize

several morphological transformations described in 2.1.7.1 with carefully selected kernels to strategically

extract the horizontal and vertical lines. See 19 for an example.

Figure 19: An image of a datasheet that has been converted to binary and and had the cell edges extracted.

3.4.2 Largest Quadrilateral Detection

In order to reorient a datasheet, we start by finding the largest quadrilateral which hope is the

border of a table of cells. Once we have the largest quadrilateral, we can then perform a perspective

transformation to convert the quadrilateral into a rectangle. To find the largest quadrilateral, we take the

previously generated binary image of edges and iterate through all of the possible closed contours in the

image from largest to smallest by area. We try to approximate each contour using a subset of its initial

points. If we are able to approximate the contour well using a subset set of four points, we have located

27 APPROVED FOR PUBLIC RELEASE

3.4 Perspective Transformation 3 METHODS

a quadrilateral. Next, we check to make sure the top and bottom sides of the quadrilateral are roughly

parallel. In all of the warped images we have seen, the top and bottom are roughly parallel. If the top and

bottom sides are not roughly parallel, we have likely encountered an error and should keep looking for the

next largest quadrilateral. Lastly, we have included a minimum area parameter in order to ensure confidence

that the image can be properly dewarped. If there is no quadrilateral found that is large enough, then the

image is not dewarped and the original image is returned. See 20 showing the largest quadrilateral overlaid

on the original image.

Figure 20: An image of a datasheet with an overlay of the largest detected quadrilateral on image (in red).

3.4.3 Four Point Transformation

To perform the perspective transformation, we take in the points denoting the corners of the largest

quadrilateral we found in the last step and use them to calculate a set of target points. We can then use

OpenCV’s getPerspectiveTransform and warpPerspective functions in order to get the transformation matrix

required to transform the original quadrilateral into the target quadrilateral. Assuming the whole image is

warped in the same manner as the largest quadrilateral (which it has been in all our observed data), the rest

of the image will also be dewarped correctly.

28 APPROVED FOR PUBLIC RELEASE

3.5 Making a Mixed Fraction OCR Model 3 METHODS

3.5 Making a Mixed Fraction OCR Model

The biggest problem the Natick Army Lab found with already existing software was the lack of

support for fractional datasets. Already existing and pretrained OCR models that we could easily evaluate

did not function on any fractions we gave them. Finetuning these models using readily available math

datasets also did not work well on the document fractions as they often overfitted to a specific format of

text. To properly create a fraction model, we needed to create a synthetic dataset of fractions that would

look similar to examples found in the parachute documents. This synthetic dataset allowed us to finetune

an existing OCR model in order to work well on the documents.

3.5.1 Initial Fine-tuning using Existing Datasets

The first initial attempts to train a model involved using existing datasets that were publicly

available for use. This dataset needed to be a) Handwritten, b) Labelled, and c) Involved Fractions, which

limited the amount of viable ones that could be used. The most promising one that fit these criteria was

a synthetic handwritten calculus dataset specifically made for OCR tasks. This dataset contained 100,000

synthetically generated images spread evenly across 10 batches, with each of these batches containing a

JSON file with the correct labeling for each image in LaTeX form.[Pearson, 2023]

Figure 21: An example of one of the images from the synthetic calculus dataset. [Pearson, 2023].

For initial testing one batch of 10,000 images was used to fine-tune the TrOCR model (details

regarding how fine-tuning works can be found later on in section 3.6.2). However, validating this fine-tuned

model with the parachute data resulted in incorrect answers as the model was trained in a calculus dataset

with limits, resulting in every output from the model also being a limit.

Even though these calculus datasets did contain fractions, they would overfit in training leading to

the model always outputting a limit. From this attempt, we concluded we would not be able to finetune

a model on any dataset that contained fractions, but instead on a dataset containing only fractions, which

limited the amount of datasets even further. No public dataset was found that fit this criteria, meaning that

29 APPROVED FOR PUBLIC RELEASE

3.5 Making a Mixed Fraction OCR Model 3 METHODS

Figure 22: The image on the left is one of the handwritten fractions found in the parachute data. The image
on the right is the output produced by the model that was fine-tuned on the calculus dataset when acting
on the left image.

fine-tuning the model would first require generating a dataset of our own.

3.5.2 Synthetic Mixed Number Dataset Generation

Implemented in GenerateSyntheticMixedNumberData.py

Figure 23: An example image of a generated synthetic fraction.

In order to fine-tune our model, we created a synthetic dataset of handwritten mixed numbers

and fractions because we were unable to locate such a dataset on the web. This dataset was created by

concatenating together different digits from the MNIST dataset in order to create any whole number, proper

fraction, or mixed fraction. The images we created are modeled after the numbers we found in the cells

on the datasheets. Because there are multiple layouts we found in cells, we have multiple layouts in our

synthetic numbers. They are:

1. A whole number above a horizontally arranged fraction

2. A whole number above a vertically arranged fraction

3. A whole number next to a horizontally arranged fraction

4. A whole number next to a vertically arranged fraction

5. Only a whole number

6. Only a horizontally arranged fraction

7. Only a vertically arranged fraction

30 APPROVED FOR PUBLIC RELEASE

3.5 Making a Mixed Fraction OCR Model 3 METHODS

Figure 24: Example images of synthetic fractions. From left to right: a whole number above a horizontally
arranged fraction, a whole number above a vertically arranged fraction, a whole number next to a horizontally
arranged fraction, a whole number next to a vertically arranged fraction, only a whole number, only a
horizontally arranged fraction, only a vertically arranged fraction.

To create the fraction slashes, we would randomly select a “1” from the MNIST dataset and would

use it as is when creating a fraction in the horizontal orientation. When the fraction is of vertical orientation,

we would first rotate the “1” ninety degrees to make a horizontal fraction slash. Once an image is created,

we add anywhere from zero to four straight lines near the borders of the image to mimic if there is some

overlap between a written number and the cell it goes into. We initially randomly selected a “1” from any

of the ones provided by MNIST, however since someones had flags we instead made a small group of ones

to select from that were relatively straight lines rotated by different amounts.

After looking through the handwritten mixed numbers, fractions, and whole numbers provided from

the datasheets received from the Natick Labs, we were able to create a list of assumptions about what future

handwritten numbers would look like. These assumptions were: the leading digit of the whole number will

not be zero, all denominators are powers of two with the largest denominator value being sixteen, and all

fractions are proper so the numerator must be odd and less than the denominator. These assumptions were

then reflected in the dataset we generated. This process of tailoring the training dataset to match expected

testing data is known as data snooping.

After images could successfully be generated, the Python script was then altered to create a user-

specified amount of random images into one folder as well as a master JSON file that contained info regarding

each image. This information was the file’s name, the correct labeling of the image, and the type of frac-

tion/number, although the latter was only used for debugging and not needed for training. The file’s name

and label were what was needed to create a dataset that could be used to fine-tune a model.

3.5.3 Fine-tuning Mixed Fraction Model

Implemented in TrainMixedNumberTrOCR.py

After the dataset was created, we could now begin fine-tuning our model to work well with reading

fractional data. The process of fine-tuning involved three main steps to successfully create a model to be

31 APPROVED FOR PUBLIC RELEASE

3.5 Making a Mixed Fraction OCR Model 3 METHODS

used for our application. The first was converting our dataset into a format that could be used for the

fine-tuning process. The second was the process of fine-tuning itself using built-in Hugging Face functions

as well as parameters recommended for the TrOCR model. At the very end we would evaluate the model

against examples from the parachute dataset to verify the model would work properly.

3.5.3.1 Creating a Torch Dataset

The first step is turning our dataset of images in labels into a format that could be used by Python

and other trainer libraries for fine-tuning. The format, in this case, is a Torch Dataset, which is an abstract

class with generic functions such as “ getitem ” that can be called by existing trainer functions. The

information from the JSON file was brought into our Dataset class by first converting the file into a Pandas

Dataframe. This Dataframe is what our Dataset class iterated through to create Tensors for the image and

the label [PyTorch, 2023].

Figure 25: After the synthetic dataset is created and parsed into Python, it then needs to be converted into
a format that can be used for training. The TrOCR model on Hugging Face provides a processor that allows
these labels and images to be turned into tensors, which can then be used for our training dataset.

This Dataset class is called twice, once to create a training dataset and evaluation dataset. The

training dataset is the larger dataset and is used for giving the model an image and performing backpropaga-

tion and gradient descent by comparing the model’s output to the correct label. The evaluation is a smaller

dataset of values where the model is given an image and the output is compared to the correct label but no

gradient descent is performed. This is to test for any potential over-fitting from the training dataset and to

verify the model can give correct output for images it was not trained on.

32 APPROVED FOR PUBLIC RELEASE

3.5 Making a Mixed Fraction OCR Model 3 METHODS

3.5.3.2 Fine-tuning using Seq2Seq Trainer

Once the two datasets have been created, they can now be used to start fine-tuning our model. As

explained in section 2.2.4.3, this process would involve using Seq2SeqTrainer and passing in our datasets as

well as other training parameters that have already been found to be best for this model. In total, 40,000

images (evenly split over the 7 image categories), were used for the dataset, with 32,000 for training and

8,000 reserved only for validation.

Figure 26: The following table was generated by the Seq2SeqTrainer. An evaluation was done every 200
steps against a set of data the model was not trained on to verify the model was not overfitting on the test
data. Training loss is the loss from the train dataset, validation loss is from the evaluation dataset, and Cer
is the character error rate from validation.

3.5.3.3 Evaluation Against Parachute Data

Once the model was trained on the synthetic dataset, we needed to verify that it still worked on

the actual parachute dataset. Although our synthetic dataset was made to mirror the types of fractions we

would see in the parachute documents as much as possible, saw previously how overfitting on the data led to

incorrect results so still needed to evaluate the model on the real-world examples to truly know if the model

was ready. We tested a wide variety of different types of fractions, including some typed fractions alongside

the handwritten types, to verify the model was outputting correct fractions.

The results of the validation were satisfactory as we were getting correct results from passing in

33 APPROVED FOR PUBLIC RELEASE

3.6 Making a Cell Classifier Model 3 METHODS

Figure 27: The pictures here are examples of fractions from the parachute data that were then passed into
the model. The top row is all images that come from the parachute document, and the bottom row is all
the outputs that the model predicted the text was based on the input image.

these images. This allowed us to conclude that this fine-tuned model was ready to be used in our program.

3.6 Making a Cell Classifier Model

As we saw from the fraction model training, the OCR models are very susceptible to overfitting on

their trained datasets, leading to our fraction models to convert every text into a fraction, our regular OCR

models to miss fractions completely, etc. This was a problem as the documents often contained a mixture

of different types of text, including written and handwritten text. Because of this mixing of text types, we

needed to instead create models that were good for individual tasks and then delegate them to translate

the texts they were trained for. This meant we also needed to create a way to classify the types of text

beforehand to know which model it should be passed onto. We solved this by using Google’s ViT model to

classify every text type beforehand so our program could then delegate images to the appropriate model.

3.6.1 Cell Classifier Dataset Generation

With the goal of using specifically tuned OCR models for the different types of cells, we needed a

way to train a classifier on the four types of data that can be within a given text box: typed text, handwritten

text, handwritten numbers, and blank cells. We generated a synthetic dataset to help train a classifier that

would detect the different types of text. The aforementioned synthetic mixed number generator was used to

generate the handwritten numbers for this dataset. To generate the handwritten text, we selected images

from the IAM Handwriting Database, which is an online database of images of handwritten words that were

written by 657 different people [Marti and Bunke., 2002]. To generate the typed text, we used a Python

library called TextRecognitionDataGenerator to generate words picked from a list of the 1000 most common

words in English. Finally, the blank spaces were created by using OpenCV to generate a blank image. The

34 APPROVED FOR PUBLIC RELEASE

3.7 Converting Processed Images Into XLSX Files 3 METHODS

labels for the dataset are: typed, printed, number, and blank.

3.6.2 Fine-tuning Cell Classifier Model

Similar to the TrOCR model, the training used Seq2SeqTrainer with specific parameters from the

guides that were best suited for the specific model. The dataset was made in the same way as the one for

TrOCR using the four different image types, with 40,000 images (evenly split between the 4 categories),

being split in an 8:2 ratio for training and evaluating. Once the model was done, it was then integrated into

the program to evaluate the results using the actual parachute data. We then made sure that each of the

cells was being passed into the correct model and translated properly by all of our models.

3.7 Converting Processed Images Into XLSX Files

Implemented in ConvertImagesToXLSX.py

Generating XLSX files from our newly cleaned up images (resized, deskewed, dewarped) is a non-

trivial multi-step process. To better determine all of the content on a given datasheet, we determined that

it would be best to process each cell separately. This allows us to focus on processing many smaller/simpler

images with higher accuracy, rather than attempting to perform OCR on the full sheet. This also allows us

to more easily represent the datasheet as an Excel file, since we already have all of the content broken up

by cell.

The first step in the process is to locate the boundary of each cell in the image using various image

processing techniques. Next, we verify the image is in the correct orientation and rotate it 90 degrees if

needed. We then process each cell in the image one by one. Within each cell, we find groups of text and

process each group separately. Each text group is classified as one of “blank”, “printed”, “handwritten”,

or “fraction” and the text group is passed to the appropriate OCR model. Once each text group within a

cell has been processed, the resulting strings are stitched back together to produce the full contents of the

cell. Once we have performed OCR on each cell within an image, we generate an Excel file containing the

extracted data.

3.7.1 Finding All Cells on a Page

To begin the process of locating cells on a page, we first simplify the image by converting it into

binary. This step requires three sub-steps: generating a grayscale image, blurring the image to reduce noise,

35 APPROVED FOR PUBLIC RELEASE

3.7 Converting Processed Images Into XLSX Files 3 METHODS

and lastly using an adaptive threshold function to generate the binary image. With the binary image in

hand, our next goal is to produce a reduced binary image containing only the edges of cells. We utilize a few

simple morphological transformations to extract both horizontal and vertical lines then combine the results

to produce the target image. See an example image here 28.

Figure 28: An image of a datasheet that has been converted to binary and and had the cell edges extracted.

With our new binary image of cell edges, the next step is to find the boundary of all individual

cells. This is done using OpenCV’s ”findContours” function, which returns a list of all contours in the image

as well as a hierarchy containing topological information about the contours. The list from ”findContours”

includes all contours, not just the ones we want. So, we need to filter this list to keep only the contours

around cells. We can do this by only keeping those that have a parent contour but no grandparent contour.

That is, contours that were one level down from the outermost level and none that were two levels down or

lower. This eliminated all contours but except the contours around cells.

3.7.2 Final Preprocessing and Datasheet Check

After finding all of our cell contours, we can now do a few final checks to make sure the page is

ready to be processed. Even after our image pre-processing, a few of the datasheets were still rotated by

exactly 90 degrees out of the correct orientation. We can determine whether or not an image is rotated on

its side by evaluating the average aspect ratio of all contour bounding boxes. By manual inspection of our

training data we were able to determine that on average a text box is going to be about five times wider

than it is tall. If the average aspect ratio falls far enough below this value we conclude the image must be

rotated. If we conclude the image is rotated, we undo this by rotating it by 90 degrees.

36 APPROVED FOR PUBLIC RELEASE

3.7 Converting Processed Images Into XLSX Files 3 METHODS

One last step is to ensure that the document we are processing is actually capable of being converted

into an Excel sheet. Because there are multiple types of documents that may be scanned but our model can

only process spreadsheets, some documents need to be excluded. For example, we saw some documents with

a series of bar-codes related to the parachute that is being tested. We check if a minimum of twenty cell

contours, a somewhat arbitrary number, are detected on a page. If there isn’t at least twenty contours then

we determine that the page was not suitable for our model. If this step is passed, we continue onto Excel

sheet generation.

3.7.3 Breaking up Cell Contents for OCR

There are cases where there is two or more different types of text within a cell. One example can

be seen in figure 29. This makes it difficult to do OCR on the whole cell, so instead we opted to break each

cell into clusters of words to process separately. This was done by converting the cell into a binary image,

removing the cell borders, and then drawing contours around all clusters of words in the remaining image.

Figure 29: An image of a cell containing both printed text and handwritten numbers.

3.7.4 Creating Images for Debugging Purposes

In order to visually verify that our contour detection methods are working well, we generate a debug

image with all of the cell and word contours overlaid on the original image. We can then manually inspect

the result to verify that all text boxes have been identified and also that the cell contents have been broken

up. See 30 for an example.

3.7.5 Performing OCR

We separately classify each word contour found in a cell to determine what type of text it is. The

possible options are “printed”, “handwritten”, “fraction”, or “empty”. Once we have determined what type

of text is within the word contour, we select the appropriate fine-tuned model to use for OCR. For each

cell, we iterate through each word contour found and append their OCR outputs into a single string. To

ensure that the different word contours appear in the same order in the excel sheet as they do in the original

37 APPROVED FOR PUBLIC RELEASE

3.7 Converting Processed Images Into XLSX Files 3 METHODS

Figure 30: An image of a datasheet with overlays of cell edge contours (green) and word contours (red).

38 APPROVED FOR PUBLIC RELEASE

3.8 Making a GUI and Generating an Executable 3 METHODS

document, all of the word contours are sorted based on their location.

3.7.6 Excel Sheet Generation

Once we have performed OCR on each word group within the document, the last step is to generate

an Excel sheet using the gathered data. By keeping track of the pixel coordinates of each cell contour we

can figure out the correct row and column to place each cell. We can also determine if cells are merged or

not. Merged cells will take up more then one column and/or row. In addition, we also determine the correct

background color of each cell. Finally, we iterate through all of our previously gathered data to generate the

Excel sheet.

3.8 Making a GUI and Generating an Executable

3.8.1 Making a GUI

In order to facilitate ease and enjoyment of use, we have designed a graphical user interface (GUI)

for the project using tkinter, a part of the Python standard library. This is intended to facilitate the easy

uploading of files as well as provide a way of monitoring the progress of the running program. The following

are screenshots showing standard usage of the GUI 31 32.

Figure 31: An image of the graphical user interface beginning the processing of a large folder.

39 APPROVED FOR PUBLIC RELEASE

3.8 Making a GUI and Generating an Executable 3 METHODS

Figure 32: An example usage of the GUI on a small sample, to show a complete output.

3.8.2 Generating an Executable

To create an executable, we used a python library called “PyInstaller”. This application makes

a Python program into an executable file that can be run on whichever operating system PyInstaller is

being run on [PyI, 2024]. By gathering all of the dependencies of the target application into one folder, the

application can more easily be run on different machines.

Figure 33: The result of running PyInstaller. The folder “ internal” holds the dependencies of the executable
file, and must be in the same folder as the executable file when it is run.

40 APPROVED FOR PUBLIC RELEASE

4 RESULTS

4 Results

4.1 Pipeline Summary

First, each page of the input document image was split into its own image file. The images were

resized and deskewed. Each image was dewarped as described in 3.4. A binary image representing the cell

edges was generated using a process very similar to the one described in 3.4.1. We next used OpenCV to

identify contours in the binarized image. These contours represent the boundaries of cells within the image.

Contours were filtered based on their size and topological location to keep only those that were likely cells

in a table.

Because some pages of our input PDFs were rotated by 90 degrees, an aspect ratio analysis was

conducted on the filtered contours to determine whether the image required rotation or not. A mean aspect

ratio was calculated, and if it fell below a certain threshold, the image was rotated 90 degrees clockwise as

described in 3.7.2.

Each cell was split into groups of words which were converted to text separately. Each word group

was fed into our classifier model to be categorized as one of handwritten numbers, typed text, handwritten

text, or a blank group. An appropriately fine-tuned ORC model would then be applied to the word group.

Once all cells have had OCR performed on them, a final output Excel sheet is generated with the

same format as the scanned datasheet.

4.2 Quality of Produced XLSX Files

While our initial goal for this project was to completely automate the process of digitizing parachute

datasheets, as we experimented and learned more, the many challenges associated with this goal became

evident. See 4.4 for specific details.

On most documents, we can accurately capture most of the table layout (how cells are are laid out

and merged), most of the printed text, and much of the handwritten text. We also color cells to (roughly)

match their colors in the datasheets. Below 34 is a standard example showing an input datasheet and the

resulting Excel output. A brief visual inspection shows that the digitized document captures most (but not

all) of the information in the original datasheet.

41 APPROVED FOR PUBLIC RELEASE

4.2 Quality of Produced XLSX Files 4 RESULTS

Figure 34: An example datasheet (top) and the resultant XLSX output file (bottom).

42 APPROVED FOR PUBLIC RELEASE

4.3 Comparison of Different Models Used 4 RESULTS

As it seems that we cannot achieve perfectly faithful digitizations of these parachute datasheets,

our new goal for our system is to provide a good starting point for a human to touch up minor mistakes by

hand. It is our opinion that the formatting and the coloring of each of the cells alone is a major time saving

step in such a digitization workflow.

4.3 Comparison of Different Models Used

At the start of this project we wanted to first see if we could use one OCR model in order to

translate all of our different types of text (typed text, handwritten text, handwritten numbers, and blank

cells). So we tried using a pre-trained TrOCR model from Hugging Face. A sample output can be seen in

figure 35. It can be seen that while a majority of the printed text is translated correctly, the model struggled

with a lot of the handwritten text. The model would also “hallucinate” random text when presented with

blank cells.

43 APPROVED FOR PUBLIC RELEASE

4.3 Comparison of Different Models Used 4 RESULTS

Figure 35: An example datasheet (top) along with the excel sheet output (bottom) using a pre-trained
TrOCR model.

44 APPROVED FOR PUBLIC RELEASE

4.3 Comparison of Different Models Used 4 RESULTS

Another model we initial tried using was an off the shelf model called Tesseract (via PyTesseract)

which is often touted for its ability to perform OCR on handwritten text. As seen in figure 36, the PyTesseract

model was capable of performing OCR on cells where there was just printed text, however once handwriting

was introduced the model failed. One example was the ”DoM” cell, which contained a mixture of printed

text and handwritten numbers. PyTesseract was able to interpret DoM, however it interpreted the date as

a series of random symbols.

Figure 36: Output of our model using PyTesseract for OCR on a random datasheet.

Our final model used a combination of three models, a Google ViT model to classify the cell contents,

an off the shelf TrOCR model to read most printed text, and a TrOCR model fine-tuned for handwritten

numbers and fractions. The output of this combination of models was previously shown in 4.2. The final

model does a much better job at performing OCR on all different text types, not sacrificing its the ability to

interpret printed text in order to perform better on interpreting handwritten numbers. With the inclusion

of the cell type classifier model, blank cells are left blank so no longer is there random strings of text or

symbols where there should be blank space.

45 APPROVED FOR PUBLIC RELEASE

4.4 Failure Modes of Program and Problems in Spreadsheets 4 RESULTS

4.4 Failure Modes of Program and Problems in Spreadsheets

In this section we will try to enumerate most of the areas in which our program fails to produce

a completely correct results. We believe it is possible to correct these errors in multiple ways. The most

obvious is that more work could be done on this pipeline to improve it’s performance. The second, is that

the initial spreadsheets could be improved so they are easier to process.

4.4.1 Largest Problem: Accurate Handwriting Translation

The single greatest problem we encountered is that despite our best efforts, we are still unable to

recognize some handwritten text. While we are often able to recognize clear writing that stays within cell

boundaries, not all of the text on these datasheets conforms to these descriptions. Below are some examples

of text we struggle to translate correctly 37. This is representative of the more general fact that handwriting

recognition is not yet a completely solved problem. Some of the text is also so garbled that most humans

would struggle to decipher it. This leaves little hope for most OCR models.

Figure 37: Example images of handwriting that is difficult to process.

4.4.2 Other Common Problems

Some other problems we noted when testing our model on the provided datasheets are described

in the below sections.

4.4.2.1 Missing Lines in Tables Where Printed Text Overflows a Cell

On some tables the text contained within a cell is too large for the cell to accommodate it. This

causes the cell line on the right side of the cell to be removed. When the cell line is removed, our program

no longer detects the cell properly.

46 APPROVED FOR PUBLIC RELEASE

4.4 Failure Modes of Program and Problems in Spreadsheets 4 RESULTS

Figure 38: Example datasheet with a missing cell line in the upper right hand corner. The offending cell
contains the text “Bottom Right”.

4.4.2.2 Large Vertical Handwritten “1” Treated as Cell Line

Occasionally, vertical handwritten text that spans nearly the full height of the cell will get misin-

terpreted as as a cell line. Often this occurs when someone writes a date and includes a large nearly vertical

“/” between parts of the date. Below is an example 38. Below is an example of such an occurrence 39.

Figure 39: Example cell containing handwritten text that gets detected as a cell line. The first slash after
the “9” is the offending character.

4.4.2.3 Handwritten Text Overflowing Cells

Occasionally, handwritten text will overflow the cell it is indented to be contained within. This

leads to problems as our program only processes text within the boundary of cells. This happens to a

minor extent in many places, but is often not significant enough to cause problems. Below are some more

problematic examples 40.

Figure 40: Examples of cells with handwriting that extends past the boundary of the cell.

47 APPROVED FOR PUBLIC RELEASE

5 CONCLUSION

4.4.3 Rare Problems

While most of the common problems have been enumerated in the previous section, we have noticed

a handful of rare (sometimes one-off) problems that our program is unable to properly deal with. Some are

depicted in the figure below 41.

Figure 41: Examples of rare problems that can occur. In order they are: cells containing rotated printed
text; cells with a diagonal slash to accommodate two fractions; arrows indicating entries should be swapped;
big text written over the table; cells with crossed out handwriting.

5 Conclusion

This research endeavor has successfully addressed the extensive challenge of digitizing parachute

data recorded in these physical fact sheets. By generating multiple synthetic datasets encompassing diverse

fraction formats, we were able to fine-tune pre-existing OCR models to work for this specific problem set.

Furthermore, using sophisticated image processing techniques, we could identify text cells within any imper-

fectly scanned parachute document. This allowed us not only to feed information into our different models

that were specialized for specific text tasks, but also to use these identified cells to reproduce precise digital

copies of the original pages in the form of Excel spreadsheets. The culmination of this effort is an automated

executable program capable of transforming scanned PDFs into structured, analyzable spreadsheet data. By

digitizing this large amount of information, analysts at the Natick Army Lab will be able to gain a more

48 APPROVED FOR PUBLIC RELEASE

5 CONCLUSION

refined understanding of parachute life cycles. This will facilitate enhanced decision-making for important

questions, such as “How long can a parachute be used safely before having to be discarded?” This approach

ensures that critical insights can be extracted efficiently, ultimately bolstering the integrity and effectiveness

of military parachute operations.

Despite all the work done here, there are still some tasks left to be completed to further help the

Army Lab with their work. One would be to tackle the edge cases and other common problems, such as

misplaced text, text that overflows from the cell, etc. Another would be to try to automatically organize

the Excel documents based on parachutes ahead of time, making an analyst’s job even easier as they would

not need to do the extra step of organizing all of the information based on parachute number beforehand.

Including confidence values and a log file for how accurate the model believes it was could also be helpful as

it could allow a human to then check the least confident values so they could manually verify and edit any

incorrect values. Finally, turning these physical sheets into digital forms that field operatives could use on

tablets/laptops could help with future analysis as it would not require the extra steps of converting scanned

pages into digital files.

49 APPROVED FOR PUBLIC RELEASE

A HOW TO RUN OUR EXECUTABLE

Appendices

A How to Run Our Executable

The project code is hosted at: https://github.com/Handwriting-MQP/Parachute-Converter

Step 1: Select PDF Document to Scan

The user selects the document(s) that they want to be converted from the parachute data.

Step 2: Image Preprocessing : Deskew and PDF to PNG

The selected document(s) pass through the image preprocessing steps.

First deskewing the PDF and then converting it to an image (PNG)

Step 3: Text Box Detection

The newly converted PNG’s text boxes are detected.

Step 4: Text Detection

Within these newly detected text boxes, physical text is identified.

Step 5: Generate XLSX

Utilizing the detected text and text boxes, the program is able to read this information and output a file in

XLSX format.

50 APPROVED FOR PUBLIC RELEASE

https://github.com/Handwriting-MQP/Parachute-Converter

B PROCRUSTES PROBLEMS

B Procrustes Problems

Procrustes is a robber in Greek legend. In his story, Procrustes would kidnap people and shackle

them to an iron bed. If a person was too short for the bed, meaning their feet did not reach the end of the

bed, he would stretch their body with hammers, until they fit. If a person was too large for the bed, he

would cut parts of their legs off until they fit. In both cases, the victim would die. When we want to skew

an image, we do something similar, we shrink or stretch it until the output image is desired. Let’s try to

mathematical define what Procrustes is doing to implement it into images.

There are three different parts to the Procrustes story, the traveler that is being tortured, the iron

bed, and the “treatment” being given by Procrustes. Let’s label the travel as a matrix X1, the thing we

want to stretch or shrink, the bed as a matrix X2, the marker for which we will stretch X1, and T , the

matrix that fits X1 to X2. For each matrix, X1 has dimensions N×P1,X2 has dimensions N×P2, and T has

dimensions P1 × P2 [Gower and Dijksterhuis, 2004]. In the simplest form, all forms of Procrustes problems

attempt to find a matrix T that fulfills the following statement:

min||X1T −X2||F (22)

For the rest of our discussion in this section, ∥ · ∥ is the Frobenius norm. As an example, let’s

discuss some forms of Procrustes problems that are simpler than the ones done for image transformations.

Let’s begin with Two-set Procrustes problems, which are the most basic terms of these problems. Here are

some assumptions and criteria that are common in all two-set Procrustes problems.

The most common criterion is called the least squared criterion. This defines the best matrix T

such that the following is minimized:

S = ||X1T −X2||F (23)

In this instance and unless otherwise stated, T has no constraint. As in equation 23, X1 is matched

to X2, it is common to treat both matrices symmetrically. There are two different ways to do this. The

first way is called the two-sided variant, which creates two different transform matrices T1 and T2 with R

columns such that the following is minimized:

51 APPROVED FOR PUBLIC RELEASE

B PROCRUSTES PROBLEMS

S = ||X1T1 −X2T2||F (24)

Figure 42: A simplified example of generalized Procrustes analysis modified from Zelditch et al., 2012. After
landmarks are selected for each specimen, landmark configurations are then centered, scaled, and rotated
such that the Procrustes distance between the configurations is minimized.

As a quick note, if no constraints are put on either T1 or T2, then equation 24 results in the trivial

null solutions. [Gower and Dijksterhuis, 2004]. To avoid this, we can express a symmetric relation between

X1 and X2 is with the following equation:

1

4
S = ||X1T −G||F = ||X2T −G||F (25)

In this case G = 1
2 (X1T +X2T). This method avoids the issues above, that the only solution given

was the trivial null solution, where the solution is the zero vector [Gower and Dijksterhuis, 2004].

The least squared method is the main criterion in all Procrustes problems. Here are a few other

criteria that may be picked that are more common. The first one of these is called the RV coefficient. This

coefficient has two main forms, but the one we will focus on takes the following form:

r2V =
(trace(X ′

2X1T))2

trace((X1T1)′(X1T1))trace((X2T2)′(X2T2))
(26)

In this example, each matrix is assumed to be ”strung out” by each column to form a single vector,

which is called an uncentered correlation. [Gower and Dijksterhuis, 2004]. In equation 26, if ||X1|| = ||X1T ||,

the denominator becomes independent from T . This leads to another criteria, called the inner-product

criteria, which for the equation above will be:

trace(X ′
2X1T) (27)

52 APPROVED FOR PUBLIC RELEASE

B PROCRUSTES PROBLEMS

This criterion is normally used in the two-sided variant, specifically when T1 and T2 are orthogonal

[Gower and Dijksterhuis, 2004]. This is because this is the only case where the correlation interpretation

is available. Criteria 26 is different from other product-moment correlations in that no correlation for the

mean is specified. This will be resolved later.

In many circumstances, translating either X1 or X2 can help make the morphing from X1 to X2

better. This is doable, as the shapes of either matrix or image will not be affected if their centers are at

the origin or not [Gower and Dijksterhuis, 2004]. In the section, we will say that a translation of X1 can be

called X1 − 1a′1, and a translation of X2 is X2 − 1a′2. The details for this translation usually depend on the

fit criterion used and on the Procrustean model. If we want to translate X1 and X2, we get the following:

minT ||X1T − a′ −X2||F (28)

where a′ = a′1T − a′2. Translation can be represented with a single variable a as the only op-

erational significance occurs when an image is move into a relative position from the origin. Due to

this, we can just minimize Equation 28 over T and a. For Equation 28, a is considered a P2 vector

[Gower and Dijksterhuis, 2004]. This means that the term 1a′ is a translation of the rows of X1T −

X2. The term ||A − 1a′|| is minimized when a′ is the mean of all the columns of A, which is 1′A/N

[Gower and Dijksterhuis, 2004]. A great way to put this translation on X1T −X2 is to remove the column

means from both X1 and X2 apart. This process is known as centering, which involves evaluating:

A− 1a′ = A− 11′A/G = A(1 − 11′/G) = GA (29)

In the expression above, G is a centering matrix. This means that the results of this matrix

multiplication is the same whenever we center X or XT , or (GX)T = G(XT) [Gower and Dijksterhuis, 2004].

In most cases, as it is usually easier to do, X is centered.

For equation 27, it may be necessary to for X1 and X2 to have two different translations. In this

case, we can edit Equation 27 to be:

trace(X2 − 1a2)′(X1T − a′1) (30)

We will now try and show that similar to above, we will want to show translations to either variable

can be taken out through centering. A quick way of doing this would be selecting specific values for X1 and

53 APPROVED FOR PUBLIC RELEASE

B PROCRUSTES PROBLEMS

X2 that are both very large and negative [Gower and Dijksterhuis, 2004]. For a more formal method, we

start by expanding Equation 26 with the equations above to get:

r2V =
(trace(X2 − 1a′2)′(X1T − a′1))2

trace((X1T1 − 1a′)′(X1T1 − 1a′))trace((X2 − 1a′2)′(X2 − 1a′2))
(31)

for easier calculations, we will be setting up three variables, A, B, and C, such that:

r2V =
C2

AB
(32)

If we differentiate concerning a1, we get the following equation:

2ABC
∂C

∂a1
= C2B

∂A

∂a1
(33)

After simplification, we get:

A(1′X2 −Na′2) = −C(1′X1T −Na′2) (34)

Now, we differentiate concerning a2. When we do this we get:

C(1′X2 −Na′2) = −B(1′X1T −Na′2) (35)

Now, we shall combine both of the equations to get:

C2 = AB (36)

This implies that r2V = 1, or 1′X2 − Na′2 = 1′X1T − Na′2 = 0 [Gower and Dijksterhuis, 2004].

Through this process, we are left with two solutions. The first result is that X1T − 1a′1 is proportional to

X2 − 1a′2. However, this is not true all of the time and is very rare, so we will ignore this. The second

solution sets X1T − 1a′1 = NX1T and X2 − 1a′2 = NX2 [Gower and Dijksterhuis, 2004]. This leads to both

a1 and a2, the translation terms, are eliminated, which means that translations do not affect this process.

54 APPROVED FOR PUBLIC RELEASE

B.1 Orthogonal Procrustes Problems B PROCRUSTES PROBLEMS

B.1 Orthogonal Procrustes Problems

For the upcoming discussion, we will be constraining T to be a square orthogonal matrix. As a

reminder, a matrix A is considered to be orthogonal if the following condition is fulfilled:

AT = A−1 (37)

We are focusing on Procrustes problems where T is orthogonal, as it represents a rotation of

an image, an act that is important for prepossessing images in our data, as many images were flipped

in different directions. Orthogonal Procrustes analysis finds the rotation that gives the biggest average

configuration among all rotations. As the norm in Procrustes problems, we aim to minimize equation 22

[Gower and Dijksterhuis, 2004]. As T is now orthogonal, we get the following equation:

||X1T −X2||F = trace(X ′
1X1 + X ′

2X2) − 2 ∗ trace(X ′
2X1T) (38)

Notice above that the first term on the right does not depend on what T is. This means that

as we change what T is, that term will not change, meaning we will treat that as a constant. Thus,

minimizing the equation will involve maximizing trace(X ′
2X1T) [Gower and Dijksterhuis, 2004]. This way,

we can make sure that Equation 26, the inner product criteria, is the same as 22, the least squared criteria

[Gower and Dijksterhuis, 2004].

Recount that any orthogonal transformation does not change the size of the matrix. Due to this

two things are true. First, the interpretation of the correlation of the inner-product criterion is valid. In

addition, the following statement is true:

||X1T ||F = ||X1||F (39)

Now let’s consider the following expression ||X1T1 − X2T2||, where T1 and T2 are different or-

thogonal matrices. Minimizing ||X1T1 − X2T2|| is identical to minimizing Equation 22, if T = T1T
′
2

[Gower and Dijksterhuis, 2004]. This implies that rotating X1 by T1 and X2 by T2 is the same as rotating

X1 by T1T
′
2, which implies two-sided Procrustes problems can be written as one-sided orthogonal Procrustes

problems [Gower and Dijksterhuis, 2004].

Now let’s find the solutions to these types of problems, which means finding the values T such that

55 APPROVED FOR PUBLIC RELEASE

B.1 Orthogonal Procrustes Problems B PROCRUSTES PROBLEMS

Equation 38 is minimized. First, let’s make the following substitution :

X ′
2X1 = UΣV ′. (40)

This is called the single value composition of X ′
2X1 and will be very useful in finding the solution.

Using this expression, we can simplify the trace to be:

trace(X ′
2X1T) = trace(UΣV ′T) (41)

Now, we will rearrange the matrices to be:

trace(ΣV ′T) = trace(ΣV ′TU) (42)

Now we shall make another substitution , H = V ′TU to get the following:

trace(ΣV ′TU) = trace(ΣH) (43)

V ′, T , and U are all considered orthogonal matrices. Thus, H by definition is a product of orthog-

onal matrices, which then means:

trace(ΣH) =

P∑
i=1

hiiσi (44)

As σj must all be greater than 0, the sum is at its max when hii = 1. Due to this, the trace is at

its max when H = I [Gower and Dijksterhuis, 2004]. When putting this into the equation above, we get:

V ′TU = I (45)

Finally, after some rearranging, we get:

T = V ′U (46)

Thus, we say that T = V ′U is the solution of Orthogonal Procrustes problems.

56 APPROVED FOR PUBLIC RELEASE

B.1 Orthogonal Procrustes Problems B PROCRUSTES PROBLEMS

Before we move on, we will discuss a special case, where X1 = I. In this case, the orthogonal

matrix T will be accurate if it is X2 [Gower and Dijksterhuis, 2004]. In addition, V ′ and U are both singular

vectors of X ′
2.

57 APPROVED FOR PUBLIC RELEASE

C BACK PROPAGATION

C Back Propagation

Each neural network has a corresponding cost function. The derivative of the function due to the

weight of a node is a crucial part of the machine-learning process. This specific derivative shows us the speed

at which the specific cost of our network changes as the weight changes. However calculating this derivative

is very computationally heavy if we use the multi-variable chain rule, as the number of terms that would

need to be calculated in a chain rule is exponential to the number of layers in the neural networks. So,

calculating this derivative with a neural network with over 1000 layers becomes impossible. Thus, we need

an algorithm to calculate this for us, which propagation gives us.

Backpropagation is an algorithm to obtain the partial derivatives in terms of weight w and bias b of

the cost function C in the network, both ∂C
∂b and ∂C

∂w [Nielsen, 2019]. There are many different cost functions,

but for our purposes, we will be focusing on the quadratic cost function. The quadratic cost function is the

following:

C =
1

2n

∑
x

||y(x) − aL(x)||2 (47)

In this example, n is the number of training examples, the sum is over each training example,

denoted as x; y(x) is the desired output for the specific training example x, L is the number of layers in the

network, and aL is the activations output vector from the network [Li, 2023]. For backpropagation to work,

two assumptions need to be made about the cost function. The first assumption is that the cost function

is the average C = 1
n

∑
x Cx over cost functions Cx for x, or individual training examples. We need this

assumption as backpropagation lets us compute both partial derivatives, ∂C
∂b and ∂C

∂w , for a single training

example [Nielsen, 2019]. Only after do we recover ∂C
∂b and ∂C

∂w by averaging over the training examples. We

can suppose the training examples are fixed, and write Cx as C. The second assumption, which is more of

a fact, is that the cost function can be written as a function of the neural network’s output [Nielsen, 2019].

Backpropagation is about understanding how changing certain weights of connections and biases

of neurons affects the cost function [Nielsen, 2019]. This leads to computing the partial derivatives ∂C
∂blj

and ∂C
∂wl

jk

. To do that, we must first introduce δlj , the error in the jth neuron in the lth layer [Li, 2023].

Backpropagation gives a process to compute this error and then relates it to both partial derivatives. The

equation for the error is defined as:

58 APPROVED FOR PUBLIC RELEASE

C BACK PROPAGATION

δlj ≡
∂C

∂zlj
(48)

Backpropagation revolves around four equations, which allow us to compute both the error and the

gradient of the cost function. The first equation is one for the error in the output layer, δL. The component

of this error is given by the following:

δL =
∂C

∂aLj
σ′(zLj) (49)

In this equation, ∂C
∂aL

j
measures how fast the cost is changing as a function of the jth output activation

[Li, 2023]. For example, if C only lightly depends on an output neuron, j, then we know δLj will be small.

σ′(zLj) measures the speed at which the activation function σ is changing at zLj [Nielsen, 2019]. Equation

6 is considered easily computable, as zLj can be computated while computing the behavior of the network

[Li, 2023]. In addition, computing σ′(zLj) requires little overhead. This is due to ∂C
∂aL

j
being used to compute

many cost functions. This equation is a componentwise expression for δL. To get it into a matrix-based

form, we rewrite it as the following:

δL = ∆aC ⊙ σ′(zL) (50)

In the equation above, ∆aC is a vector whose components are the partial derivatives ∂C
∂aL

j
[Nielsen, 2019].

It could be thought of as the rate of change of C with respect to the output activations [Nielsen, 2019]. ⊙

is the symbol for the Hadamard product. In particular, if we have two vectors with the same dimensions, s

and t. Then (s⊙ t)j = sjtj . Here’s a quick example of a Hadamard product.

 1

2

⊙

 4

3

 =

 4

6


Derivation: To begin, remember the definition of δlj which is present is Equation 59. By using the

chain rule, we can re-express the partial derivative in terms of partial derivatives with respect to the output

activations:

δLj =
∑
k

∂C

∂aLk

∂aLk
∂zLj

(51)

59 APPROVED FOR PUBLIC RELEASE

C BACK PROPAGATION

Above, the sum is over all neurons k in the output layer. We know that the output activation aLk

depends on the weighted input zLj for the jth neuron, when k = j [Li, 2023]. In addition, when k ̸= j,
∂aL

k

∂zL
j

will become 0. This means we can simplify the following:

δLj =
∂C

∂aLj

∂aLj
∂zLj

(52)

Lastly, as aLj = σ(zLj),
∂aL

k

∂zL
j

= σ′(zLj) [Li, 2023]. The final equation then becomes:

δLj =
∂C

∂aLj
σ′(zLj) (53)

This is equation 49 in component form, so the derivation is finished.

The second equation of backpropagation is the equation for δl, the error, in terms of δl+1, the error

on the next layer [Nielsen, 2019]. The equation is the following:

δl = ((wl+1)T δl+1) ⊙ σ′(zl) (54)

For reference, (wl+1)T is the transpose of the weight matrix for the (l + 1)th layer [Nielsen, 2019].

Derivation: To do this derivation, we need to get an equation for δl in terms of the error in the

next layer, δl+1. To start, we will rewrite δlj = ∂C
∂zl

j

in terms of δl+1
k = ∂C

∂zl+1
k

[Li, 2023]. Using the chain rule,

we get the following:

δlj =
∂C

∂zlj
(55)

=
∑
k

∂C

∂zl+1
k

∂zl+1
k

∂zlj
(56)

Now substituting the definition of δl+1
k , we get:

=
∑
k

∂zl+1
k

∂z1j
δl+1
k (57)

60 APPROVED FOR PUBLIC RELEASE

C BACK PROPAGATION

For the next step, we must know the following:

zl+1
k =

∑
j

wl+1
kj alj + bl+1

k =
∑
j

wl+1
kj σ(zlj) + bl+1

k (58)

If we differentiate the following, we get:

∂zl+1
k

∂z1j
= wl+1

jk σ′(zlj) (59)

Substituting this back into our original equation, we get:

δlj =
∑
k

wl+1
jk σ′(zlj)δ

l+1
k (60)

This is just the component form of the original equations, equation 54, thus the derivation is

complete [Li, 2023].

If we combine both the first two equations of Backpropagation, we can then compute δl for every

layer in a network [Nielsen, 2019]. To do this, we begin by using Equation 6 in order to calculate δL for

a specific layer of the network. Then, we use Equation 12 to compute δL−1, δL−2, and so on until all the

errors for the layers all computed [Nielsen, 2019].

The third equation of backpropagation is for the rate of change of the cost with respect to any bias

in the network, which is the following:

∂C

∂blj
= δlj (61)

This equation, in simple terms, shows that the error is equal to the rate of change of the cost

function [Li, 2023]. As the first two equations of backpropagation can find the error on any layer, this third

equation gives us the derivative of the cost function on any layer.

Derivation:

To begin the derivation, first remember the following:

zlj =
∑
k

wl
jka

l−1
k + blj (62)

61 APPROVED FOR PUBLIC RELEASE

C BACK PROPAGATION

If we take the derivative of zlj in terms of the bias, or blJ , we get:

∂zlj
∂blj

= 1 (63)

Next,we will multiply each side by
∂zl

j

∂blj
, we will get the following equation:

δlj =
∂C

∂zlj

∂zlj
∂blj

=
∂C

∂blj
(64)

This is the original equation thus the derivation is complete [Li, 2023].

The final equation is the rate of change of the cost with respect to any weight in the network, which

is the following derivative: [Li, 2023].

∂C

∂wl
jk

= al−1
k δlj (65)

The equation is very useful as we can calculate both al−1 and δlj with the other three equations we

have proved.

Derivation:

This is very similar to the derivation for Equation 3. We begin with the definition of zlj :

zlj =
∑
k

wl
jka

l−1
k + blj (66)

Now, we will take the derivative in terms of wl
jk

∂zlj
∂wl

jk

= al−1
k (67)

Now we multiply each side by the error formula and get the following:

δlja
l−1
k =

∂C

∂zlj

∂zlj
∂wl

jk

=
∂C

∂wl
jk

(68)

62 APPROVED FOR PUBLIC RELEASE

C BACK PROPAGATION

This is the original equation, so the derivation is complete [Li, 2023].

Here are some final comments about these equations. First, let’s look at the function σ(zlj). A

popular function σ(zlj) can be is called the sigmoid functions. The sigmoid function has a very important

property, that is z is approximately 0 or 1 [Nielsen, 2019]. This implies that the derivative of the sigmoid

function, σ(zlj), is approximately 0 [Nielsen, 2019]. Thus, the weight of the final layer will slowly learn as

long as the output neuron is either low activation, meaning approximately 0, or high activation, meaning

approximately 1. In this case, we can say the output neuron has become saturated, causing the weight to

stop learning, or the learn very slowly. In addition, this also holds for the biases for the output neuron

[Nielsen, 2019].

We gain something similar in Equation 2. The σ′(zl) implies that the error or δlj will become small

if the neuron is saturated, which means that any input to that neuron will learn slowly [Nielsen, 2019].

One last comment before moving on. All of the equations for backpropagation hold for any activa-

tion function, not just the sigmoid function above. This means that these equations can be used to design

activation functions that have particular desired learning properties. For example, let’s make the activation

function non-sigmoid such that its derivative is always positive and never approaches 0 [Nielsen, 2019]. This

would prevent learning to not slow down, which would usually occur using a sigmoid function.

Now let us go into the backpropagation algorithm. The backpropagation equations will all be used

in order to compute the gradient of the cost function. Here is the full algorithm: [Nielsen, 2019].

Input: Set a1, the activation for the input layer.

Feedforward: For every layer l = 1, 2, 3,, L , compute zl = wlal−1 + bl and al = σ(zl).

Output error: Compute the vector δL = ∆aC ⊙ σ′(zL)

Backpropagate the error: For every layer l = L− 1, L− 2,, 2 , compute δl = ((wl+1)T δl+1 +

⊙σ′(zl)

Output: The gradient of the cost function.

63 APPROVED FOR PUBLIC RELEASE

C BACK PROPAGATION

Now let’s analyze this algorithm. This system computes all the error vectors δl backward, where we

end at the final layer. This movement backward is due to the fact that the cost is a function of outputs from

the network. This algorithm is considered fast. However, to understand this, we must go back [Nielsen, 2019].

Initially, in the 1950s and 1960s, when neural network research began, researchers came up with another way

to compute the gradient of the cost function [Nielsen, 2019]. It involved regarding the cost as a function of

the weights C = C(w) alone, without the biases. The weights were numbers w1, w2, ..., and to compute ∂C
∂wj

for any wj , the following approximation was made:

∂C

∂wj
≈ C(w + ϵej)

ϵ
(69)

In this approximation, ϵ > 0 is small and ej is the unit vector in the jth dimension. Using this

method, we can estimate ∂C
∂wj

by just computing C, the cost function, for two wj , and then apply the equation

above [Nielsen, 2019]. This similar idea will let you compute ∂C
∂b This approach had a few positives. First off,

it is easier to understand conceptually, as it avoids much of the complicated math listed above. In addition,

it is very easy to code, as it only takes a few lines to implement [Nielsen, 2019]. However, this approach is

very slow, as for each distinct wj we need to compute C(w+ϵej) to get the specific ∂C
∂wj

This means if we had

a network with ten million weights, we would need to compute the cost function ten million times to get the

gradient, requiring ten million forward passes through the network [Nielsen, 2019]. Backpropagation allows

us to compute all partial derivatives ∂C
∂wj

at once, with only two passes through the network, one forward

and one backward. As the computational cost of a backward pass is approximately the same as a forward

pass, the total cost of backpropagation is two forward passes, much less than the ten million needed above

[Nielsen, 2019].

64 APPROVED FOR PUBLIC RELEASE

D CNN ENCODER/DECODER TO DEWARP IMAGES

D CNN Encoder/Decoder to Dewarp Images

Written by Elliot Trilling

D.1 Introduction

One of the early problems we faced in this project was figuring out how to dewarp images that were

not scanned straight. That is, figuring out how to transform images so that general quadrilaterals would be

converted back into rectangles. See 2.1.8 for more details. We came up with an effective procedure using

image processing techniques using OpenCV as detailed in 3.4. However, I wanted to explore if this procedure

could be done with a neural network.

One common use for autoencoder neural networks is to remove noise from images. This can be

done by training a network on a dataset where the target output is a clean image and the input is that

clean image with some noise added. This way the network learns how to transform images with noise into

images without noise. Below is a simple example of an autoencoder removing noise from MNIST images 43.

It seemed possible that a similar encoder/decoder model might be able to dewarp images.

Figure 43: Denoising Autoencoder Example on MNIST Dataset. The first row contains input images, the
second row contains the input images with added noise, and the third row contains the model’s attempt to
reconstruct the original input image from the noisy image.

65 APPROVED FOR PUBLIC RELEASE

D.2 Everything at Once D CNN ENCODER/DECODER TO DEWARP IMAGES

D.2 Everything at Once

I began by generating some synthetic data that roughly resembled the spreadsheets we worked

with through this project. I then applied random warps using OpenCV’s “getPerspectiveTransform” and

“warpPerspective” to produce a dataset of warped input images and straight output images 44.

Figure 44: An image of a randomly generated synthetic table before and after being randomly warped. The
top image is the original table. The bottom is the warped table.

I trained a simple CNN (Convolutional Neural Network) based encoder/decoder model on this synthetic

dataset. The results of this first test were not very promising. Figure 45 depicts an example result.

66 APPROVED FOR PUBLIC RELEASE

D.3 Simple Toy Problem D CNN ENCODER/DECODER TO DEWARP IMAGES

Figure 45: A warped input image (left) and the model output image (right).

Additionally, the model I came up with required a huge amount of memory (36GB) to process even medium

sized images (1000x1000). It became clear that a more systematic approach with smaller steps would

likely yield better results. In particular, I decided to try using smaller images, simpler transformations, and

spending more time figuring out the details of my selected network architecture.

D.3 Simple Toy Problem

Given the difficulties associated with my first attempt, I decided to attempt to solve a simpler

toy problem. In particular, building an encoder/decoder model that could de-rotate small toy images. I

generated a dataset of binary images with randomly spaced horizontal and vertical lines. I thought these

images would provide enough detail to evaluate if my model was working but be simple enough to evaluate

at a glance. I generated four separate datasets of different sized images (28x28, 56x56, 84x84, and 112x112)

46.

67 APPROVED FOR PUBLIC RELEASE

D.3 Simple Toy Problem D CNN ENCODER/DECODER TO DEWARP IMAGES

Figure 46: Images of random grids of different sizes (28x28, 56x56, 84x84, 112x112).

I wrote a simple CNN encoder/decoder to start experimenting with my datasets. The initial network

architecture can be seen described using PyTroch below 47.

Figure 47: Initial encoder/decoder architecture written in PyTorch.

While the exact details of this architecture are not too important, one salient detail is the shape of

the image embeddings when the model is trained on datasets of images of different sizes. When trained on

images with size 28x28, the image embedding has a shape of [64, 1, 1]. That is, the images get embedded

as 1x1 images with 64 channels of data in each pixel. When trained on images with size 56x56, the image

embedding has a shape of [64, 8, 8]. That is, the images get embedded as 8x8 images with 64 channels of

68 APPROVED FOR PUBLIC RELEASE

D.3 Simple Toy Problem D CNN ENCODER/DECODER TO DEWARP IMAGES

data in each pixel. 84x84 results in a shape of [64, 15, 15], and 112x112 in a shape of [64, 22, 22]. The

relevance of these different sizes will be referenced below.

The results of this initial architecture were mixed. It worked very well on small and medium sized

images (28x28 and 56x56) but not on larger images (84x84 or 112x112) 48. In particular, while it managed

to successfully de-rotate the edges of larger images it struggled to de-rotate the center.

Figure 48: Examples produced by the original model when trained and tested on datasets of different sized
images. From top to bottom, datasets of images of size 28x28, 56x56, 84x84, 112x112. From left to right,
the rotated input image, the model prediction, and the true target image.

69 APPROVED FOR PUBLIC RELEASE

D.3 Simple Toy Problem D CNN ENCODER/DECODER TO DEWARP IMAGES

After much testing I was able to pinpoint the problem occurring in larger images. Because of the

network architecture I had selected, pixels in the output image didn’t always have access to information

about all pixels in the input image. This meant the network sometimes didn’t have enough information to

correctly de-rotate the larger images.

The CNN encoder/decoder architecture I used had two types of layers (not counting layer activa-

tions). It uses nn.Conv2d layers in the encoder to reduce the size of the image and nn.ConvTranspose2d

layers in the decoder to produce an output image from the encoded image. One key feature of both of these

layers is that they only process information locally. That is, they only act on local groups of pixels. This is

depicted in 49. Let us consider the model that was trained and tested on images of shape 112x112. After

passing through the encoder, the original input image, which had a shape of 1x112x112, would have an

output shape of 64x22x22. Note that the “1x” in the input images just means it just had one data channel

(thus a grayscale image).

Figure 49: A convolution (left) and transposed convolution (right) [Dumoulin and Visin, 2018].

A feature/problem of the encoded image is that it still contains some amount of pixel position data.

For example the top left pixel in the encoded image (which in this case has 64 channels of data) would only

contain information from a group of pixels in the top left of the input image. More generally each pixel

in the embedded image is a function of a group of adjacent pixels in the input image. A diagram of this

idea in 1D can be see below 50. Mathematically each embedded pixel, (xem, yem), could be described by

(xem, yem) = g({(xinput, yinput)|∥(x0, y0) − (xinput, yinput)∥ < c}) for some function g, some central input

pixel (x0, y0), and some distance c.

After passing through the encoder, the decoder uses transposed convolutions on the encoded image

70 APPROVED FOR PUBLIC RELEASE

D.3 Simple Toy Problem D CNN ENCODER/DECODER TO DEWARP IMAGES

Figure 50: An 1D CNN feed forward example showing how embedding pixels are a function of a local group
of pixels [M, 2020].

to produce an output image of shape 1x112x112. In a similar manner to the encoder, the top left pixel in the

output image is constructed from a cluster of upper left pixels in the encoded image. As before, a general pixel

in the output image is some function of a group of local pixels in the embedded image. Mathematically each

output pixel, (xout, yout), could be described by (xout, yout) = h({(xem, yem)|∥(x0, y0) − (xem, yem)∥ < d})

for some function h, some central embedded pixel (x0, y0), and some distance d.

The combined effect of the encoder and decoder preserving this sort of structure is that a pixel

in the output image is a function of a group of local pixels in the input image. This can be seen vi-

sually in figure 51. Mathematically each output pixel, (xout, yout), could be described by (xout, yout) =

f({(xinput, yinput)|∥(xout, yout) − (xinput, yinput)∥ < b}) for some function f and some distance b.

The problem is that the middle pixels in the output image don’t know anything about what is

happening at the edges of the input image. It seems like this does not provide the model with a sufficient

amount of data to de-rotate the image.

Figure 51: A diagram showing how one pixel in the output image (far right) is a function of a group of local
pixels on the input image (far left).

71 APPROVED FOR PUBLIC RELEASE

D.3 Simple Toy Problem D CNN ENCODER/DECODER TO DEWARP IMAGES

The reason this didn’t happen with the 1x28x28 images is because they get encoded into 64x1x1

images. That is, the complete image gets encoded in a single pixel (with 64 channels worth of detail). Each

pixel of the output image is a function of this one encoded pixel which in tern is a function of all of the pixels

in the input image. Thus, each pixel in the output image is a function of each pixel in the input image. This

can be seen in figure 52.

Figure 52: A diagram showing how one pixel in the output image (far right) is a function of a group of local
pixels on the input image (far left). Because the image is small, each output pixel is a function of each input
pixel.

In a similar manner, 1x56x56 images get encoded into 64x8x8 images. Because the first layer of

the decoder uses large enough kernels (7x7), we still get an effect where each pixel in the output image is a

function of each pixel in the input image. Results only begin to break down with 1x84x84 images which get

encoded as 64x15x15 images.

There are multiple possible ways to solve this problem. One way is to add a fully connected layer

after the last layer of the encoder. One fully connected layer allows information from each part of the encoded

image to be shared with any other part of the encoded image. This works well, but in my tests it seems to

be somewhat computationally expensive (adding many millions of parameters to the network). Another way

is to simply reduce the height and width of the embedded image so that the kernel in the first layer of the

decoder can capture information from from each part of the embedded image. By using dilated convolutions

53 with large strides I reduced the embedding size of 1x112x112 images down to 500x4x4. Here, 500 channels

are used instead of 64 so as to not introduce a data bottleneck that lowers output quality. Because this

image only has a width and height of 4 (with 500 channels per pixel), the first layer of the decoder is able

to use information from each pixel of the input image.

The results of the updated autoencoder with dilations can be seen here 54.

72 APPROVED FOR PUBLIC RELEASE

D.3 Simple Toy Problem D CNN ENCODER/DECODER TO DEWARP IMAGES

Figure 53: A dilated convolution [Dumoulin and Visin, 2018].

Figure 54: Results of the new encoder/decoder using dilations. Each row is a separate example. The first
column is the input image, the second column is the model output, the third column is the target image.

73 APPROVED FOR PUBLIC RELEASE

D.4 Ideas for Future Testing D CNN ENCODER/DECODER TO DEWARP IMAGES

While even these simple toy results are not perfect, they are good enough that the idea of using

encoder/decoder models to dewarp images may be an interesting topic to pursue further.

D.4 Ideas for Future Testing

In completing the testing described in the previous section D.3, I located some possible areas for

future experimentation. A first step would be to replace the toy images I produced with more realistic ones to

see if these models could still accurately de-rotate them. If they could, a next task would be to replace random

image rotations with more general random transformations under continuous R2 → R2 functions. While this

represents a huge class of transformations, a much more manageable subset to deal with would be functions

of the form f(x, y) = ⟨g(x, y), h(x, y)⟩ where g(x, y) = a22x
2y2 +a21x

2y+a12xy
2 +a11xy+a10x+a01y+a00

and h(x, y) = b22x
2y2 + b21x

2y + b12xy
2 + b11xy + b10x + b01y + b00. It seems likely that many cases of real

world image warping could be well approximated by such a polynomial. Thus, a next reasonable step would

be to see if a network could reconstruct images that were warped under a randomly selected polynomial of

the type described. If image reconstruction proved too difficult, another interesting avenue to explore would

be training a parameter estimation network instead of a full encoder/decoder. The goal of this network

would simply be to estimate the amount an image was rotated or, for the polynomial just discussed, predict

coefficients. If these parameters were known, it could be possible to reconstruct the output image using

other algorithmic techniques.

74 APPROVED FOR PUBLIC RELEASE

REFERENCES REFERENCES

References

[Apa, 2004] (2004). Apache license, version 2.0. https://www.apache.org/licenses/LICENSE-2.0. Accessed:
2024-02-13.

[Gra, 2024] (2024). Gray scaling with the algorithms. https://medium.com/@mjbharmal2002/
gray-scaling-with-the-algorithms-b83f87975885. Accessed: 2024-02-14.

[NSC, 2024] (2024). Natick soldier systems center (nssc). https://installations.militaryonesource.mil/
in-depth-overview/natick-soldier-systems-center-nssc. Accessed: 2024-02-14.

[Ope, 2024] (2024). Opencv : Image thresholding. https://docs.opencv.org/4.x/d7/d4d/tutorial py
thresholding.html. Accessed: 2024-02-14.

[Mor, 2024] (2024). Opencv: Morphological transformations. https://www.educative.io/answers/
what-is-image-blurring. Accessed: 2024-02-14.

[PyI, 2024] (2024). Pyinstaller: Freeze (package) python programs into stand-alone executables. https:
//github.com/pyinstaller/pyinstaller. Accessed: 2024-02-13.

[Aggarwal, 2014] Aggarwal, C. C., editor (2014). Data Classification: Algorithms and Applications. Chap-
man and Hall/CRC, 1st edition.

[Ba et al., 2016] Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer normalization.

[Domke and Aloimonos, 2009] Domke, J. and Aloimonos, Y. (2009). Image transformations and blurring.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(5):1000–9999.

[Dosovitskiy et al., 2021] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N. (2021). An image
is worth 16x16 words: Transformers for image recognition at scale.

[Dumoulin and Visin, 2018] Dumoulin, V. and Visin, F. (2018). A guide to convolution arithmetic for deep
learning.

[Face, 2023] Face, H. (2023). Trainer class documentation. https://huggingface.co/docs/transformers/main
classes/trainer. Accessed: 2023-12.

[Face, 2024] Face, H. (2024). Trocr model documentation. https://huggingface.co/docs/transformers/en/
model doc/trocr. Accessed: 2023-12.

[Google, 2021] Google (2021). Vit-base-patch16-224. https://huggingface.co/google/vit-base-patch16-224.
Accessed: 2023-12.

[Gower and Dijksterhuis, 2004] Gower, J. C. and Dijksterhuis, G. B. (2004). 1Introduction. In Procrustes
Problems. Oxford University Press.

[Hummel et al., 1987] Hummel, R. A., Kimia, B., and Zucker, S. W. (1987). Deblurring gaussian blur.
Computer Vision, Graphics, and Image Processing, 38(1):66–80.

[Jordon et al., 2022] Jordon, J., Szpruch, L., Houssiau, F., Bottarelli, M., Cherubin, G., Maple, C., Cohen,
S. N., and Weller, A. (2022). Synthetic data – what, why and how?

[Lee, 2022] Lee, S. (2022). Understanding homography (a.k.a perspective transformation).

[Lehn et al., 2023] Lehn, K., Gotzes, M., and Klawonn, F. (2023). Greyscale and Colour Representation,
pages 193–210. Springer International Publishing, Cham.

[Li, 2023] Li, H. (2023). Proofs for the four fundamental equations of the backpropagation and algorithms
in feedforward neural networks. Researchgate preprint.

75 APPROVED FOR PUBLIC RELEASE

https://www.apache.org/licenses/LICENSE-2.0
https://medium.com/@mjbharmal2002/gray-scaling-with-the-algorithms-b83f87975885
https://medium.com/@mjbharmal2002/gray-scaling-with-the-algorithms-b83f87975885
https://installations.militaryonesource.mil/in-depth-overview/natick-soldier-systems-center-nssc
https://installations.militaryonesource.mil/in-depth-overview/natick-soldier-systems-center-nssc
https://docs.opencv.org/4.x/d7/d4d/tutorial_py_thresholding.html
https://docs.opencv.org/4.x/d7/d4d/tutorial_py_thresholding.html
https://www.educative.io/answers/what-is-image-blurring
https://www.educative.io/answers/what-is-image-blurring
https://github.com/pyinstaller/pyinstaller
https://github.com/pyinstaller/pyinstaller
https://huggingface.co/docs/transformers/main_classes/trainer
https://huggingface.co/docs/transformers/main_classes/trainer
https://huggingface.co/docs/transformers/en/model_doc/trocr
https://huggingface.co/docs/transformers/en/model_doc/trocr
https://huggingface.co/google/vit-base-patch16-224

REFERENCES REFERENCES

[Li et al., 2021] Li, M., Lv, T., Cui, L., Lu, Y., Florencio, D., Zhang, C., Li, Z., and Wei, F. (2021). Trocr:
Transformer-based optical character recognition with pre-trained models.

[M, 2020] M, V. O. (2020). English: A 3 layer 1D CNN feed-forward diagram with kernel size of 3 and stride
of 1.

[Marti and Bunke., 2002] Marti, U. and Bunke., H. (2002). The iam-database: An english sentence database
for off-line handwriting recognition. Int. Journal on Document Analysis and Recognition, Volume 5.

[Microsoft, 2022] Microsoft (2022). Trocr-base-printed. https://huggingface.co/microsoft/
trocr-base-printed. Accessed: 2023-12.

[Nielsen, 2019] Nielsen, M. (2019). Neural Networks and Deep Learning. Determination Press.

[OpenCV Developers, 2024a] OpenCV Developers (2024a). Color space conversions. https://docs.opencv.
org/4.x/d8/d01/group imgproc color conversions.html. Accessed: 2024-02-14.

[OpenCV Developers, 2024b] OpenCV Developers (2024b). Image filtering. https://docs.opencv.org/4.x/
d4/d86/group imgproc filter.html. Accessed: 2024-02-14.

[OpenCV Developers, 2024c] OpenCV Developers (2024c). Miscellaneous image transformations. https:
//docs.opencv.org/4.x/d7/d1b/group imgproc misc.html. Accessed: 2024-02-14.

[OpenCV Developers, 2024d] OpenCV Developers (2024d). Opencv: Introduction. https://docs.opencv.
org/4.x/d1/dfb/intro.html. Accessed: 2024-02-13.

[Pan, 2014] Pan, S. J. (2014). Transfer learning. Data Classification: Algorithms and Applications, 21:537–
570.

[Pearson, 2023] Pearson, A. (2023). Ocr data. https://www.kaggle.com/datasets/aidapearson/ocr-data.
Accessed: 2023-12.

[Pesce et al., 2023] Pesce, V., Hermosin, P., Rivolta, A., Bhaskaran, S., Silvestrini, S., and Colagrossi, A.
(2023). Chapter nine - navigation. In Pesce, V., Colagrossi, A., and Silvestrini, S., editors, Modern
Spacecraft Guidance, Navigation, and Control, pages 441–542. Elsevier.

[PyTorch, 2023] PyTorch (2023). Pytorch tutorials - learning pytorch with examples. https://pytorch.org/
tutorials/beginner/basics/data tutorial.html. Accessed: 2023-12.

[Raghunathan, 2021] Raghunathan, T. E. (2021). Synthetic data. Annual Review of Statistics and Its
Application, 8(Volume 8, 2021):129–140.

[Singhal et al., 2017] Singhal, P., Verma, A., and Garg, A. (2017). A study in finding effectiveness of gaussian
blur filter over bilateral filter in natural scenes for graph based image segmentation. In 2017 4th interna-
tional conference on advanced computing and communication systems (ICACCS), pages 1–6. IEEE.

[Sreedhar and Panlal, 2012] Sreedhar, K. and Panlal, B. (2012). Enhancement of images using morphological
transformation. arXiv preprint arXiv:1203.2514.

[Toews, 2023] Toews, R. (2023). Transformers revolutionized ai. what will replace them? Forbes.

[U.S. Army Combat Capabilities Development Command, 2023] U.S. Army Combat Capabilities Develop-
ment Command (2023). Devcom home. https://www.army.mil/devcom. Accessed: 2023-09.

[Vaswani et al., 2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,
 L., and Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems,
30.

[Zhang, 2023] Zhang, M. (2023). Neural attention: Enhancing qkv calculation in self-attention mechanism
with neural networks. https://arxiv.org/pdf/2310.11398.pdf. [Accessed 04-04-2024].

76 APPROVED FOR PUBLIC RELEASE

https://huggingface.co/microsoft/trocr-base-printed
https://huggingface.co/microsoft/trocr-base-printed
https://docs.opencv.org/4.x/d8/d01/group__imgproc__color__conversions.html
https://docs.opencv.org/4.x/d8/d01/group__imgproc__color__conversions.html
https://docs.opencv.org/4.x/d4/d86/group__imgproc__filter.html
https://docs.opencv.org/4.x/d4/d86/group__imgproc__filter.html
https://docs.opencv.org/4.x/d7/d1b/group__imgproc__misc.html
https://docs.opencv.org/4.x/d7/d1b/group__imgproc__misc.html
https://docs.opencv.org/4.x/d1/dfb/intro.html
https://docs.opencv.org/4.x/d1/dfb/intro.html
https://www.kaggle.com/datasets/aidapearson/ocr-data
https://pytorch.org/tutorials/beginner/basics/data_tutorial.html
https://pytorch.org/tutorials/beginner/basics/data_tutorial.html
https://www.army.mil/devcom
https://arxiv.org/pdf/2310.11398.pdf

	Introduction
	Background
	Image Processing
	About OpenCV
	Resizing
	Deskewing
	Grayscaling
	Grayscaling in OpenCV

	Gaussian Blurring
	Blurring in OpenCV

	Binarization (Thresholding)
	Adaptive Thresholding in OpenCV

	Morphological Transformations
	Morphological Transformations in OpenCV

	Perspective Transformation

	Neural Networks
	Model Based Transfer Learning
	Synthetic Dataset Generation
	Transformers
	Pre-Trained Models from HuggingFace
	Microsoft TrOCR Architecture
	Google ViT Architecture
	Seq2Seq Trainer

	Methods
	Overview of Methods
	Splitting PDF Into Images
	Image Preprocessing
	Perspective Transformation
	Binary Edge Image Creation
	Largest Quadrilateral Detection
	Four Point Transformation

	Making a Mixed Fraction OCR Model
	Initial Fine-tuning using Existing Datasets
	Synthetic Mixed Number Dataset Generation
	Fine-tuning Mixed Fraction Model
	Creating a Torch Dataset
	Fine-tuning using Seq2Seq Trainer
	Evaluation Against Parachute Data

	Making a Cell Classifier Model
	Cell Classifier Dataset Generation
	Fine-tuning Cell Classifier Model

	Converting Processed Images Into XLSX Files
	Finding All Cells on a Page
	Final Preprocessing and Datasheet Check
	Breaking up Cell Contents for OCR
	Creating Images for Debugging Purposes
	Performing OCR
	Excel Sheet Generation

	Making a GUI and Generating an Executable
	Making a GUI
	Generating an Executable

	Results
	Pipeline Summary
	Quality of Produced XLSX Files
	Comparison of Different Models Used
	Failure Modes of Program and Problems in Spreadsheets
	Largest Problem: Accurate Handwriting Translation
	Other Common Problems
	Missing Lines in Tables Where Printed Text Overflows a Cell
	Large Vertical Handwritten ``1" Treated as Cell Line
	Handwritten Text Overflowing Cells

	Rare Problems

	Conclusion
	Appendices
	How to Run Our Executable
	Procrustes Problems
	Orthogonal Procrustes Problems

	Back Propagation
	CNN Encoder/Decoder to Dewarp Images
	Introduction
	Everything at Once
	Simple Toy Problem
	Ideas for Future Testing

	References

