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Abstract

The work described in this proposal outlines a process for exploring interpretabil-

ity of deep neural network architectures designed for a specific domain application

within time series classification. Work presented here is the continuation of an en-

deavor to explore pre-symptomatic pathogen exposure detection given multimodal

time series physiology data. Previously, no studies have been conducted assessing in-

terpretability of the algorithms being developed for this purpose. There is a necessity

for this work to be done, as exploring interpretability is ultimately the driving force

of trustworthiness between end users and the artificial intelligence platforms they

will operate. The topic of pre-symptomatic pathogen exposure detection is within

the broader domain of time series classification, and challenges within this domain

are outlined. Various contending methods for addressing these challenges are also

discussed. This report primarily details an adaptation of LIME (Local Interpretable

Model-agnostic Explanations) to time series classification called LIMESegment and

its implementation in the task of pre-symptomatic pathogen exposure detection.
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Chapter 1

Introduction

1.1 Wearable Devices

The miniaturization of electronic components has initiated a wave of innovation

in the field of wearable sensing, specifically for health informatics. In addition to

this, more processing power than ever has been available to consumers so they may

gain useful inferencing from collected data. This increasing access to wearables

technology was another driver of the motivational backing for the commencement of

this pilot study. While current practices for pathogen exposure detection often rely

on the direct observation of symptoms, a system designed for pathogen exposure

early warning would allow for public health measures reducing transmission to be

implemented at a quicker rate.

1.2 Initial Work

In 2017, the work of [MDP+17] was a pilot study conducted in which a model was

able to detect asymptomatic states while still in the incubation period given several

modalities of physiological data coming from other non-human primate studies.

These were studies of exposure to viruses (Nipah, Lassa, Ebola, Marburg) and

bacteria (Y. pestis) in which data was recorded over a period of time to measure

physiological response. After some processing, this data was passed to a random
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forest binary classification algorithm for supervised learning. Here, the two classes

being predicted were pre-exposure and post-exposure. The logic for this presented in

the work of [MDP+17] follows that the act of “infection” is not a discrete event but

rather a time-dependent process, whereas pre-exposure and post-exposure are more

easily defined. Because every subject was exposed to some viral or bacterial agent,

this analysis had equal balancing between the two prediction classes. Post-exposure

was able to be detected well before the onset of fever in most subjects. In [MDP+17],

researchers identified that features derived from blood pressure, temperature, and

electrocardiography (ECG) were the most indicative of exposure. Researchers in

[MDP+17] limited features to only those that may be recorded from wearable devices

and observed comparable model performance. This ties in to the initial motivation

for the pilot study, the intention of which was to be proof of concept that pre-

symptomatic agent exposure may be predicted from non-invasive physiological data.

1.3 PRESAGED

Now, many years later, the PRESAGED initiative has continued this exploration

of pre-symptomatic exposure detection. Numerous studies provide multimodal time

series data from a variety of wearable devices. The set of devices providing wearable

data include the Oura ring, Garmin watch, and Fitbit watch. While all provide data

pertaining to heart rate and sleep quality, the Oura ring exclusively also provides

data regarding heart rate variability, skin temperature, MET (metabolic equivalent,

often representative of heightened activity levels), and respiratory rate. Similarly,

while the Garmin watch and Fitbit watch both track step count, Garmin addition-

ally provides their own proprietary features they call “stress” and “body battery”.

While there is overlap in the type of information coming from these devices, there
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are also a number of discrepancies. Along with the wearables data, these studies

provide corresponding survey data containing information about the study partic-

ipants. The survey data is comprised of numerous questions regarding different

aspects of the participant, whether that be their demography, medical history, med-

ication they take, symptoms they experience, or diagnostic results. Examples of

questions include those about race or ethnicity, serious previous illness or underly-

ing conditions, and symptom detection among others. This study data must all be

harmonized before it is inserted into a centralized database as there is little to no

communication between the organizations conducting the studies. This harmoniza-

tion process entails the transforming of data from the original format to one that

is compatible with a centralized database and standardized across all studies. For

an example from the wearables data, the Oura ring samples heart rate at 5-minute

intervals while the Garmin watch samples heart rate at 15-second intervals and the

Fitbit watch samples heart rate at 1-minute intervals. This issue persists across all

data modalities from the various wearable devices, and methods such as decimation

or interpolation must be used to reduce or increase the data sampling rate, respec-

tively. This wearables data is used to train random forest and deep neural network

(DNN) models that attempt to classify pathogen exposure or non-exposure in study

participants.

1.4 Black Box Problem

The majority of machine learning algorithms in use today are DNN models and

have driven significant advancements in fields such as computer vision and natural

language processing. DNN models similarly have the potential to capture informa-

tion within time series data, although current implementations lack stability and
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hence have not been widely accepted for practical use [LZ21]. The acceptance of

machine learning algorithms depends on their trustworthiness [Ign20]. Trustwor-

thiness is an inherent problem in deep learning due to the fact that DNN models

classify as black box algorithms, meaning how they operate is not directly human

understandable. This drives the need for development of interpretability methods

designed to assess exactly how these complex learning systems generate predictions.

Explainable artificial intelligence (XAI), a relatively new field within machine learn-

ing research, has gained significance within recent years in response to the increasing

necessity of trustable explanations for deep neural networks and their observed be-

havior. As XAI is still a new field, there is no strict definition for interpretability.

While some studies in XAI have analyzed how well a model is able to determine

cause and effect relationships, others have endeavored to explore both what model

internal mechanisms represent and the overall importance of these mechanisms in

prediction performance. In this work, model interpretability is assessed by identify-

ing salient components of the input data that contribute most during inferencing.
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Chapter 2

Background

2.1 Saliency Methods

Many solutions for evaluating saliency of input data have been explored, and a

number of these broadly classify as gradient-based methods. While many variations

of gradient-based methods exist for differing applications, they typically backprop-

agate relevance scores from the prediction output through the internal mechanisms

of the model until the input is reached. These techniques allow saliency maps to

be generated for an input given both the model and the corresponding prediction

output. A method proposed by [SGK17] known as DeepLIFT first establishes a ref-

erence activation for each neuron in the DNN model. Once an input is passed to the

black box model, a comparison is drawn between the activation of all neurons and

their respective reference activation. Contribution scores are assigned based on the

difference between each activation and its reference activation, and these scores are

then backpropagated across all neurons in the DNN model to each input feature.

Another method known as integrated gradients proposed in the work of [STY17]

begins with the assumption that any DNN model may be represented by a function

F. This method then allows any input to be represented by x and also establishes a

baseline input, denoted by x’. Gradients along all points on the straight-line path

from the baseline x’ to the input x are computed, and then the path integral of these

gradients along this straight-line path define the integrated gradients for the input
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x. This may be more easily understood as an averaging over gradients of the input

space while a specific input to be explained changes, or moves away, from a baseline

that has previously been established as non-informative. Perturbation methods are

another class of interpretability frameworks and involve removing specific sections

of data or entire features from the input. In their evaluation, prediction accuracy

on perturbed inputs is compared to that of the original instances. The logic behind

these methods is that more salient sections of data or features, when perturbed, will

result in a greater accuracy loss than sections of data or features that carry less

meaningful information.

2.2 LIME

One of the most popular techniques in use today for exploring interpretabil-

ity of deep neural networks is a perturbation technique known as Local Inter-

pretable Model-agnostic Explanations (LIME) proposed in the work of [RSG16].

This method attempts to approximate the prediction behavior of a black box model

when given an individual test case with an interpretable model. This interpretable

model is a linear model where each predictor corresponds to an interpretable rep-

resentation within the data and the weight for each predictor corresponds to the

importance of its respective presence or absence. Therefore, this technique allows

for interpretable representations that are important in model prediction for a lo-

cal test case to be identified. In the implementation of this method, a test case

is first split into interpretable representations. Samples are then generated around

this test case where for each sample interpretable representations are randomly per-

turbed from the data. These generated samples are then given to the black box

model to obtain their labels. The generated samples and their labels comprise the
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dataset on which the linear model is trained, with each sample weighted by a dis-

tance metric that determines its relative locality to the original test case. The work

of [RSG16] utilizes the coefficients from the linear model as the explanations for the

original test case.

2.3 Time Series Interpretability

Interpretability methods that generate explanations in the form of feature im-

portance scores often fail to consider the temporal relationships within time series

data. In 2020, a method proposed by [TJC+20] known as FIT determines the relative

importance of observations by comparing their contributions to the distributional

shift of a black box model. FIT is then adapted in the work of [RSL+21] to produce

WinIT, a method that analyzes how groups of observations effect distributional shift

of a black box model. An alternative method CEM, devised in 2020 by [LZC20],

assigns feature attribution scores by identifying the minimal perturbation necessary

to for a black box model to change the classification of a time series. Other frame-

works closest to the one proposed here are LEFTIST, suggested by [GMRT19], and

one proposed by [NFS+21]. These are considered closer in nature of their implemen-

tation due to the reasoning that they both attempt a direct adaptation of LIME to

time series classification.

2.4 Challenges Adapting LIME

While LIME has been well explored in image classification, its adaptation to

time series classification gives rise to several challenges. The first of these challenges

is that no one method exists for meaningfully segmenting time series data into inter-

pretable representations, and the various methods that previously existed have their
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individual drawbacks. These interpretable representations should be identifiable ho-

mogeneous super segments, meaning they correspond to distinguishable temporal

patterns within the data. In any image, these interpretable representations are rec-

ognizable clusters of pixels dubbed ”super pixels”. While super pixels may easily

be visually identified in images, there is no visual homolog to this within time series

data. This lack of visual interpretation is what drives the necessity for meaningful

segmentation techniques. Because pathogenic exposure is assumed to be a process

that occurs on the order of days as opposed to hours in previous work for this study

[MDP+17], an ideal segmentation method will be sensitive to latent changes within

the time series data. In 2017, the work of [GDY+17] devises a method for seg-

mentation which assumes that homogeneous segments are comprised of many short

sub-sequences that all share latent characteristics and vary in similarity. The work

of [ZINK18] alternatively provides a method that searches for “time series chains”.

These may be thought of as a consecutive series of short sub-sequences that are

comparatively higher in similarity than other sub-sequences in the time series.

Another challenge is that no standard methodology for generating realistic back-

ground content of a time series exists. Ideally, any background content generated

to replace perturbed sections of data would be comprised of latent waveform char-

acteristics of the original time series. In image classification, perturbed super pixels

historically were replaced with constant values, injected noise, or blurring. It was

not until recent years that methods, known as inpainters, for producing realistic

background content for an image became popular. The work of [AN20] suggests an

inpainter for replacing perturbed interpretable representations during LIME imple-

mentation and demonstrates that this far out performs methods that do not generate

realistic background content. In the case of physiological data, this background con-

tent would be any segment of data that corresponds to healthy, restful states. It
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is assumed that these states, being minimally influenced by outside stimuli, best

represent the true health state of an individual.

Lastly, it has remained uncertain how distance should be measured between two

time series such that their true locality to each other is accurately reflected in a

time series LIME adaptation. This metric should indicate that two time series are

closer together the more identical they are to each other in the specific context of

the application being studied. Through previous experimentation with LIME in

image classification, it has been determined that the best distance metric for this

interpretability method is dependent on the number of inactivated super pixels in

a given image that are represented in a reference image [GM21]. This would not

hold true applied to time series classification as the binary presence or absence of a

super segment within a time series does not encompass any information pertaining

to its global location within the data. A method for computing distance between

two time series known as Dynamic Time Warping (DTW) was proposed by [BK59]

in 1959 and has proven to be a staple for comparing time series. This method is

able to compare two time series even if they are not temporally aligned. Following

certain guidelines, each index from one sequence is mapped to an index in the other

sequence and vice versa. An optimal match between indices is defined as one that

both satisfies all criteria and minimizes a cost function, typically the sum of absolute

differences.

2.5 Project Goals

The aim of this work is to address these challenges within the specific applica-

tion of pre-symptomatic pathogen exposure detection. A first goal is to identify

meaningful super segments of physiology data that correspond to distinct temporal
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patterns. This will enable end users to analyze these super segments and establish

their distinguishing characteristics. Eventually, this information could be used to

search for common or similar super segments across multiple test cases. If a super

segment is common across multiple test cases and is also determined to be uninfor-

mative or misleading during prediction, testing whether its removal from the data

improves model performance is justified. Another goal of this work is to determine

latent characteristics of physiology data for a given individual across a variety of

multimodal inputs. Akin to reasons for addressing the previous challenge, common

or similar characteristics of background content across test cases for all data chan-

nels may be identified and experimentally perturbed. The knowledge gained from

such analyses could provide the logical reasoning for future data cleaning and pre-

processing strategies. A final goal is to identify specific super segments of physiology

data that are suggestive of either pathogen exposure or non-exposure. This will al-

low end users to examine positive test cases and know exactly which components

of the data were most important in model prediction. Pathogen exposure detection

models ideally would predict positive with minimal time having passed since viral

contraction. This necessitates faster recognition of super segments that are indica-

tive of pathogen exposure. The need for analyzing super segments that correlate to

pathogen non-exposure is driven by a desire for increased confidence that the black

box model is not generating false negative predictions.
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Chapter 3

Methods

3.1 LIMESegment and NNSegment

An implementation from the work of [SF22] called LIMESegment is currently the

best performing adaptation of LIME to time series classification. The segmentation

framework proposed in their report is called Nearest Neighbors Segment (NNSeg-

ment) and addresses the aforementioned challenge of meaningful segmentation. This

framework disputes the assumption that super segments are comprised only of sim-

ilar sub-sequences and instead poses that a time series is better characterized as a

mixture of both super segments similar in shape and anomalous super segments.

This segmentation methodology is designed to classify a larger variety of time se-

ries segments and has shown itself in the LIMESegment paper [SF22] to be more

versatile than other methods proposed in literature.

3.2 RBP

To address the need for realistic background content generation, the work of

[SF22] also proposes a method Realistic Background Perturbations (RBP) as part

of the LIMESegment algorithm. This method first transforms any time series to be

explained into the frequency domain and identifies the frequency bin with highest

representation and lowest variance. It is assumed in the work of [SF22] that this
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frequency bin most closely approximates realistic background content when con-

verted back to time domain. Other methods such as noise injection and adding

constant values have been used in the past to replace perturbed segments, however

the LIMESegment paper [SF22] demonstrates that RBP yields improved results over

these methods.

3.3 DTW

The work of [SF22] finally proposes the use of Dynamic Time Warping (DTW)

as the distance metric for establishing locality to the original instance when gener-

ating LIMESegment explanations. The LIMESegment paper [SF22] makes use of a

computationally optimized DTW implementation known as FastDTW. While the

original DTW implementation has O(n2) complexity, the FastDTW implementa-

tion reduces the complexity to O(n) [SC07]. The LIMESegment paper [SF22] also

demonstrates that this method produces more stable explanations than other time

series distance metrics such as Euclidean distance.

3.4 Code Adaptations

Fortunately for this work, the authors of the LIMESegment paper [SF22] made

their code implementation available on GitHub. While this provided a strong base-

line to start from, many changes were required to adapt their implementation to

this specific application. For example, the provided implementation was built al-

most entirely using a python library known as NumPy. This library is popular for

its ability to balance efficient computation with ease of use. PyTorch, the library

predominantly used to build the PRESAGED models, is also popular but for ease

of machine learning development. As a result, data conversions between the two
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libraries were required. Another reason for change was that while the PRESAGED

data is multi-channel, the provided LIMESegment implementation only supports

single-channel time series data. Because of this, the original code was modified

to support multi-channel inputs. This entailed first the identification of segments

and super segments for each data channel in a time series instance and then the

comparative weighting of all super segments across data channels while generating

explanations.

3.5 Model Frameworks

A prime goal of the PRESAGED program is to develop models that leverage

performance with interpretability. For this reason, the multivariate LIMESegment

adaptation was used to evaluate two model frameworks in addition to the original

best performer before this analysis took place. These two model frameworks were

devised specifically to potentially yield a gain in interpretability over the original

model. The original model framework (CNN-LSTM) is comprised of a convolutional

(CNN) layer series that then passes feature representations of the data to a series

of long short-term memory (LSTM) layers. The reasoning behind this framework is

that the CNN layers will reduce dimensionality along the time axis and allow the

LSTM layers to learn patterns within this learned data representation. The first of

the two new model frameworks to be assessed (LSTM-CNN) switches the order of

the CNN and LSTM layers. Support in literature exists for application of this DNN

model framework to time series classification. In the work of [KMD19], ablation tests

were performed to evaluate the LSTM-CNN framework and its sub-components.

These ablation tests demonstrated that the LSTM and CNN sub-components yield

higher model performance when adjoined in this respective manner. The second of
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the two new model frameworks to be evaluated for interpretability (CNN-TREN)

is akin to the original except that it replaces the LSTM layers with transformer

encoder layers. In 2017, the work of [VSP+17] disrupted machine learning research

with the proposition of the transformer model architecture and demonstrated how

its application across numerous domains yielded improved results over previous best

performers. Transformers make use of the attention mechanism, which is their pro-

posed technique for identifying important contextual components of an input. In

the original transformer model architecture, transformer encoder layers reduce the

input to a compact feature representation. Transformer decoder layers then process

this information to generate output predictions. Today, many state-of-the-art mod-

els working with sequence data utilize transformer encoder layers. The attention

mechanism has also been used to generate attention maps highlighting regions of

the input space that the black box model identified as important. While attention

maps are not generated in this work, the logic behind incorporating transformer

encoder layers into the model framework is that the attention mechanism may help

the black box model accurately identify important segments of data thus aiding in

interpretability.

3.6 Model Hyperparameter Search

A limited hyperparameter search optimizing validation prediction performance

was conducted for each of the three model frameworks to be evaluated. These

hyperparameters define aspects of the neural network configuration, for example

the number of layers and neurons in each layer. Constraints were placed on the

specific configuration of each model framework. While performance is held in high

regard, the specific aim of this work is to address interpretability. It is assumed
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here that the three model frameworks presented are of equal performance quality,

as further tuning would likely result in slightly higher test scores.

Figure 3.1: AUCROC plots for each of the three model frameworks being evaluated.

Figure 3.1 illustrates the respective AUCROC scores for each of the three model

frameworks being evaluated. Ideally, a model is able to correctly classify all positive

cases while minimally producing false positive predictions. AUCROC is a metric

for evaluating the performance of a classification model in this regard. While per-

formance is held in high standards, the specific aim of this work is to address inter-

pretability. While Figure 3.1 demonstrates that the original CNN-LSTM framework

is the best performer, it is assumed here that the three model frameworks presented
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are of equal performance quality. Due to the limited nature of the hyperparameter

search, it is assumed that further tuning would likely result in slightly higher test

scores for the two newly proposed model frameworks.
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Chapter 4

Results

4.1 Issue with Feature Attribution Techniques

Before proceeding with the results of this work, it is important to address

common problems in literature with feature attribution techniques. The work

of [ZBRS22] discusses these problems, first highlighting that no consensus exists

throughout literature for a strict definition of what “attribution” means. The result

of this is the constant production of new feature attribution techniques, most of

which have yet to be systematically evaluated across disciplines. [ZBRS22] then

draws attention to another complication, that being the nonexistence of labels for

ground truth feature attributions. While LIME is among both the most explored

and most successful interpretability frameworks, no ground truth examples of in-

terpretable representations from the data exist for this specific application of pre-

symptomatic pathogen exposure detection. Therefore, nothing may be held in com-

parison with the results of this work to establish its quality. A person may analyze

an input and observe higher than normal heart rate and a decreased step count in

the days leading up to a positive COVID test, but there is no way to single out either

of these and conclude that one was truly more a biproduct of virus contraction than

the other. This brings to light other key inquiries such as the true length of the

most influential super segment and whether all components of the super segment

are of equal importance.
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4.2 Example Explanations

Figure 4.1 illustrates the explanations generated for one example instance of a

positive test case by multivariate LIMESegment applied to each of the three model

frameworks. Red segments denote those regions where LIMESegment believes the

model associated high importance for positive prediction and blue indicates where

LIMESegment claims the black box model interprets the data to yield a negative

prediction. Darker hues of red and blue are indicative of stronger importance for

positive and negative classification, respectively. While the multivariate LIMESeg-

Figure 4.1: Example explanations generated by the multivariate LIMESegment
adaptation across all model frameworks for one specific test case. The colorbar
to the right of each figure denotes saliency.
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ment implementation is able to generate explanations, it is currently unclear how

the highly salient super segments are indicative of positive COVID contraction.

4.3 LIMESegment Weaknesses

While [SF22] has shown LIMESegment to be more successful than other inter-

pretability frameworks proposed in literature, they also highlight its key weaknesses.

A first weakness is dependency of the performance of LIMESegment on the proper

fitting of parameters passed to the framework. The parameters of utmost impor-

tance are the window size and the number of change points, in respective order. The

window size parameter controls the length of segments to be identified within the

time series, and fitting this parameter to a specific dataset is a common problem

in time series data mining. The parameter representing number of change points is

one less than the total number of super segments identified in each time series chan-

nel, and specifying more or less change points controls the granularity with which

explanations are generated. Another weakness of the interpretability framework is

that NNSegment does not consider the frequency coherence assumption. This is the

assumption that neighboring frequency bands similarly influence black box model

behavior. While this is suggestive that better results could be obtained by segment-

ing time series data in the frequency domain, LIMESegment [SF22] presents the

argument that time domain segmentation is the most human-interpretable. It is

for this reason in light of interpretability that they choose to neglect the frequency

coherence assumption in NNSegment. A final drawback of LIMESegment is that

it is still an incomplete framework. In addition to RBP being rather unexplored,

the original LIMESegment implementation was only tested on single-channel time

series data having relatively short length and no missing values. The [SF22] paper
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specifically states that LIMESegment adaptations designed to handle larger length,

multi-channel time series with missing data are left to future work. This directly

describes the work presented in this report as all data in usage comes from wear-

able devices providing long-sequence-length, multimodal inputs where missing is a

common issue.

4.4 Quantitative Metrics for Interpretability

There are a multitude of factors potentially inhibiting performance of inter-

pretability frameworks across domains, and many of them lack a quantitative metric

for meaningfully evaluating the performance of the framework. As a result, many

interpretability techniques use saliency maps to visually evaluate their explanations.

This is not optimal for applications within time series classification as the data if of-

ten not visually interpretable, thus driving a need for quantitative metrics to assess

interpretability frameworks. This then begs the question of what constitutes better

performance of an interpretability framework. Ideally, small anomalous observations

within the data should not have influence on the explanations being generated by the

interpretability framework. The LIMESegment paper [SF22] first proposes a metric

Robustness, which is defined as the robustness of the interpretability framework to

small added noise. For each instance to be explained, a noisy instance is generated

by adding a small amount of Gaussian noise to the raw signal. LIMESegment expla-

nations are generated for both, and the Robustness score increases if the explanation

produced for the noisy instance is the same as that for the original instance. What

the Robustness score measures is the ratio of original instances to be explained in

which the original explanation is equivalent to the noisy explanation. Another ideal

property of an interpretability framework is that it is able to identify highly salient
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super segments within the data. The LIMESegment paper [SF22] proposes a metric

Faithfulness which addresses this concern. Faithfulness is calculated by first identi-

fying the most salient super segment in each instance to explain and then generating

a perturbed instance in which the most salient super segment has been perturbed

from the data. For each instance to explain, the difference in prediction confidence

for the black box model is calculated between the original instance and the copy

instance with the identified most salient super segment perturbed. These differences

are then averaged across all instances to explain. Therefore, the Faithfulness score

measures the mean drop in prediction confidence across all instances to be explained

when their identified most salient super segment has been perturbed.

4.5 LIMESegment Evaluation

Many different combinations of parameters were tried in the application of LIME-

Segment to all model frameworks. Large scale window sizes of 6-hour, 12-hour, and

24-hour periods were tested in conjunction with 1, 2, and 3 change points specified

per data channel. With all input features z-score normalized (remove mean and

divide by standard deviation) before being passed to a black box model for inferenc-

ing, Gaussian noise of mean 0 and standard deviation 0.000001 was added to each

instance in the generation of noisy instances. 1,000 local samples were generated for

each instance to be explained to guarantee explanation stability.

Figure 4.2: Tabular display for initial results of the multivariate LIMESegment
adaptation.
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Table 4.2 displays the resulting Robustness and Faithfulness scores for the mul-

tivariate LIMESegment adaptation applied to each of the three model frameworks,

specifying 1 and 2 change points with a 6-hour window size. It may first be noted

that Robustness scores for all trials were 0.0%, informing that the current multivari-

ate LIMESegment adaptation with the specified parameters is not at all robust to

small observational anomalies within the data. It may also be noted that while the

Faithfulness scores are non-zero, removal of the most salient super segment identified

by the multivariate LIMESegment adaptation either minimally decreases the predic-

tion confidence of the black box model or in some cases even boosts the prediction

confidence. These results indicate that the multivariate LIMESegment adaptation is

currently untrustworthy and will require larger efforts to obtain meaningful results.
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Chapter 5

Discussion

5.1 RBP Exploration

While this method has been shown to produce better realistic background con-

tent than other methods in [SF22], it is still in need of refinement. Although RBP

does show that it is capable of producing near-realistic background content for some

time series in this work, it is not a versatile method to produce realistic background

content for all time series. This requires a series of methodologies that handle real-

istic background content generation for each data channel. Each of these methods

should be independently evaluated for quality with a slightly modified version of

the technique originally used to evaluate RBP in [SF22]. For all input data, split

each input by data channel and create groupings where each group is comprised

of all input sequences for only one data channel. Then, for each grouping of data

channels, utilize the corresponding background content generation method to pro-

duce perturbed instances of every input sequence in the grouping. The number

of segments to replace with realistic background content and the length of each

segment are left to the developer. Once this has been done, create a dataset for

each channel containing all the original input sequences, all the perturbed input

sequences, as well as corresponding binary labels indicating whether each sequence

is “original” or “perturbed”. After this, train an individual DNN classifier on each

dataset to predict whether each sequence is an original input or a perturbed input.
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Higher quality methods for generating realistic background content will result in

poorer prediction performance of these DNN classifiers. This evaluation technique

follows the logic that it will be harder for a DNN classifier to differentiate between

“original” and “perturbed” instances if the background content generation method

is more realistic.

Figure 5.1: Example stress channel with corresponding background content gener-
ated by original RBP implementation. X-axis units are days since positive COVID
test result. Y-axis is unitless, input data was z-score normalized before passed to
black box classifier.

Figure 5.1 shows the realistic background content generated by RBP for the stress

data channel, which is appears to be near-realistic. RBP clearly demonstrates its

ability to identify latent trends within, and characterize the shape of, time series
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of this type. As there are no smooth trends within this data, time series of this

type could be classified as “stochastic” by nature. This drives the necessity of a

“stochastic” method to produce realistic background content for time series data

of this type. While the original RBP implementation may provide this, it must be

evaluated against other methods to determine its quality.

Figure 5.2: Example heart rate channel with corresponding background content
generated by original RBP implementation. X-axis units are days since positive
COVID test result. Y-axis is unitless, input data was z-score normalized before
passed to black box classifier.

Figure 5.2 illustrates how RBP defines realistic background content for the heart

rate channel. It appears to be characterized by rather low heart rates with increased

variance during periods, which is indicative of restful states and therefore not un-
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reasonable. Similar to the stress data channel, the heart rate data channel also

requires a “stochastic” method to produce realistic background content. This raises

the question of whether the same approach may be used to produce realistic back-

ground content for both the stress and heart rate data channels. Whether RBP

provides an optimal solution remains to be determined through evaluation.

Figure 5.3: Example steps channel with corresponding background content gener-
ated by original RBP implementation. X-axis units are days since positive COVID
test result. Y-axis is unitless, input data was z-score normalized before passed to
black box classifier.

Similar to heart rate, it may be deduced by analyzing Figure 5.3 that RBP

identifies realistic background content for the steps channel as low walking activity

with increased variance in steps at certain periods. However, this characterization
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of background content for the steps channel assumes that participants will exhibit

walking behaviors while they sleep. Therefore, this is not realistic and other tech-

niques to produce background content for steps should be developed. Since steps

are considered count data, time series of this nature may require a “count” method

to produce realistic background content. It remains to be determined whether a

method more appropriately developed for count data produces better background

content than the original RBP implementation.

Figure 5.4: Example body battery channel with corresponding background content
generated by original RBP implementation. X-axis units are days since positive
COVID test result. Y-axis is unitless, input data was z-score normalized before
passed to black box classifier.

Figure 5.4 demonstrates the first case where it is visually evident that RBP does
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not produce realistic background content for all time series data. While RBP is

able to characterize the shape of the original time series, the background content

produced here is very stochastic whereas the original data appears to be rather

smooth in nature. The body battery data channel is loosely interpreted as the

energy level of a participant at any given time, and sensibly does not exhibit rapid

spiking behavior. This makes the development of a “smooth” method for producing

realistic background content necessary.

Figure 5.5: Example sleep channel with corresponding background content gener-
ated by original RBP implementation. X-axis units are days since positive COVID
test result. Y-axis is a binary sequence indicating either sleep or awake states.

RBP exhibits the worst performance for this last data channel illustrated in

Figure 5.5, that being the sleep category. This data channel is a binary sequence
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indicating that a participant is in either a sleep state or an awake state. RBP

assumes this channel contains signal data, and the resulting background content

generated is far from realistic. A “binary” method for producing realistic background

content is desired for time series of this type, and may be as simple as changing each

data point within the perturbation region to the alternate state.

It is evident that the current RBP method does not produce high quality back-

ground content for all data channels. The development of a realistic background

generation tool designed specifically for this case is required. Ideally, this tool would

separately implement “stochastic”, “count”, “smooth”, and “binary” methods for

producing realistic background content. RBP is a starting point, and these other

slightly modified techniques should be evaluated against it as a baseline.

5.2 LIMESegment Parameter Optimization

The case-specific sensitivity of LIMESegment performance on appropriate win-

dow size and change point parameters presents difficulty in fitting the interpretabil-

ity framework to an application. This difficulty presents itself as the need for an

extraordinarily exhaustive search over the space of possible parameters to optimize

LIMESegment performance. Constraints placed on the window size parameter are

that it is an integer value greater than zero and less than the length of the time

series instance to be explained. With data sampled at three-minute intervals over a

seven-day period, there are over three thousand possible values for the window size

parameter. Through the exploration of larger window sizes corresponding to 6-hour,

12-hour, and 24-hour periods resulting in poor LIMESegment performance, it may

be inferred that window sizes smaller than 6-hours are likely to be more optimal

for this specific application. Once realistic background generation methods have
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been developed, the ideal next step is to optimize the multivariate LIMESegment

Robustness score by performing an exhaustive search over possible window sizes.

During this initial search, the number of change points per channel should be fixed

at a small number. The idea here is to provide a basic sanity check where it is estab-

lished with certainty that the multivariate LIMESegment adaptation is consistently

generating explanations that are robust to small thresholds of added noise. The

number of change points per data channel may then be experimentally increased to

optimize the Faithfulness metric. Once optimal Robustness and Faithfulness scores

have been reached at this step, it may be explored whether having different window

size and change point parameters for each data channel improves performance of

the multivariate LIMESegment adaptation.

5.3 Other Saliency Methods

If these future works begin to no longer produce positive results, other saliency

methods may provide better solutions. Arguably the first method to try is one known

as Temporal Saliency Rescaling (TSR) from the work of [IGCBF20] in combination

with gradient-based methods. Gradient-based methods work very well in computer

vision, although their application to time series classification often fails to account

for temporal dependencies in the data and therefore perform poorly. However, TSR

is a method for rescaling time series data such that gradient-based methods are

far more able to capture these temporal dependencies and generate quality saliency

maps. With slight modifications made, the Robustness and Faithfulness calcula-

tions may be adapted for consistency of evaluation metrics across interpretability

frameworks.
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Campagner, Luca Ronzio, Federico Cabitza, and Hugo Gamboa. Inter-

pretable heartbeat classification using local model-agnostic explanations

on ecgs. Computers in Biology and Medicine, 133:104393, 2021.

[RSG16] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ” why should

i trust you?” explaining the predictions of any classifier. In Proceed-

32



ings of the 22nd ACM SIGKDD international conference on knowledge

discovery and data mining, pages 1135–1144, 2016.

[RSL+21] Clayton Rooke, Jonathan Smith, Kin Kwan Leung, Maksims Volkovs,

and Saba Zuberi. Temporal dependencies in feature importance for time

series predictions. arXiv preprint arXiv:2107.14317, 2021.

[SC07] Stan Salvador and Philip Chan. Toward accurate dynamic time warping

in linear time and space. Intelligent Data Analysis, 11(5):561–580, 2007.

[SF22] Torty Sivill and Peter Flach. Limesegment: Meaningful, realistic time

series explanations. In International Conference on Artificial Intelli-

gence and Statistics, pages 3418–3433. PMLR, 2022.

[SGK17] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning

important features through propagating activation differences. In In-

ternational conference on machine learning, pages 3145–3153. PMLR,

2017.

[STY17] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribu-

tion for deep networks. In International conference on machine learning,

pages 3319–3328. PMLR, 2017.

[TJC+20] Sana Tonekaboni, Shalmali Joshi, Kieran Campbell, David K Duve-

naud, and Anna Goldenberg. What went wrong and when? instance-

wise feature importance for time-series black-box models. Advances in

Neural Information Processing Systems, 33:799–809, 2020.

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion

Jones, Aidan N Gomez,  Lukasz Kaiser, and Illia Polosukhin. Attention

33



is all you need. Advances in neural information processing systems, 30,

2017.

[ZBRS22] Yilun Zhou, Serena Booth, Marco Tulio Ribeiro, and Julie Shah. Do

feature attribution methods correctly attribute features? In Proceedings

of the AAAI Conference on Artificial Intelligence, volume 36, pages

9623–9633, 2022.

[ZINK18] Yan Zhu, Makoto Imamura, Daniel Nikovski, and Eamonn J Keogh.

Time series chains: A novel tool for time series data mining. In IJCAI,

pages 5414–5418, 2018.

34


	Introduction
	Wearable Devices
	Initial Work
	PRESAGED
	Black Box Problem

	Background
	Saliency Methods
	LIME
	Time Series Interpretability
	Challenges Adapting LIME
	Project Goals

	Methods
	LIMESegment and NNSegment
	RBP
	DTW
	Code Adaptations
	Model Frameworks
	Model Hyperparameter Search

	Results
	Issue with Feature Attribution Techniques
	Example Explanations
	LIMESegment Weaknesses
	Quantitative Metrics for Interpretability
	LIMESegment Evaluation

	Discussion
	RBP Exploration
	LIMESegment Parameter Optimization
	Other Saliency Methods


