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ABSTRACT 

Urban rooftop farming benefits cities through energy conservation, storm water 

management, and increasing urban food security. However, crops grown on urban rooftops are 

exposed to harsher winds than their ground-level counterparts, resulting in reduced crop yield 

and profit for farmers. This project designed and built wind barriers to protect crops on Higher 

Ground Farm, a rooftop farm in Boston, MA. A user manual for the barriers has also been 

created to serve as a resource for other urban rooftop farmers.  

  



iii 

 

ACKNOWLEDGMENTS 

 We would like to thank Dr. Richard Sutton and Dr. James Brandle for participating in 

interviews. They helped us greatly in the design phase of the project with their expertise in wind 

dynamics and wind barriers. We would also like to thank Arlene Throness of Ryerson Urban 

Farm and Tiffany Henkel of Hell’s Kitchen Farm Project for talking with us about their 

experiences with rooftop farming and wind. Additionally, we would like to thank Amanda 

Burton, Hannah Kitchel, Hilary Emmons, and Anna Stabler for participating in the focus group 

about their experiences interning at Higher Ground Farm. We would also like to thank Russ 

Lang for consulting with us about our ivy wall design and suggesting improvements. 

 Many members of the WPI staff and faculty assisted us with the barrier testing performed 

in Worcester. We would like to thank Daniel Sarachick of WPI Environmental Health and 

Safety, who met with us to ensure that our testing followed safety regulations. We would also 

like to thank Chief Martunas and Sgt. Bueno of WPI Police for giving us approval for the barrier 

testing and ensuring we had access to the testing location. Additionally, we would like to thank 

Al Carlsen of WPI Facilities for setting up barricades at the testing location. We would 

especially like to thank Alfredo DiMauro of WPI Facilities. He was incredibly helpful and 

supportive when we were initially trying to get approval for testing, and he put us in contact with 

everyone we needed to consult. 

 Many WPI faculty members assisted us with planning the project and writing this report. 

We would like to thank Laura Robinson of the WPI Gordon Library for helping us find sources. 

We would also like to thank Professor Robert Traver, who helped us get started on the project in 

ID2050. Professor Traver edited numerous drafts of several sections of this paper and helped us 

create a proper foundation for the project. We would especially like to thank Dr. Lisa Stoddard 

and Dr. Aaron Sakulich for advising this project. Stoddard and Sakulich gave us timely feedback 

on our writing throughout the year, and motivated us to output our best work. They went above 

and beyond the normal expectations of advisors by helping us gather and transport supplies, and 

putting us in contact with several people who provided us with supplies and feedback on our 

project. 

 Lastly, we would like to thank John Stoddard of Higher Ground Farm for sponsoring this 

project. Mr. Stoddard was always willing to take time out of his busy schedule to meet with us 

and assist us with our work. 

 

 



iv 

 

TABLE OF CONTENTS 
 

Abstract..........................................................................................................................................ii 

Acknowledgements.......................................................................................................................iii 

Table of Figures..............................................................................................................................v 

Table of Tables..............................................................................................................................vi 

Executive Summary.....................................................................................................................vii 

Contributions and Authorship...................................................................................................xv 

Introduction..................................................................................................................................16 

Literature Review........................................................................................................................18 

Benefits of Rooftop Farms.................................................................................................18 

Challenges of Rooftop Farms............................................................................................20 

Wind Barrier Technology..................................................................................................23 

 Effects on Wind Behavior.......................................................................................23 

 Effects on Downwind Environmental Conditions..................................................24 

 Wall-Type Wind Barriers.......................................................................................25 

 Organic Barriers....................................................................................................26 

 Row Covers............................................................................................................27 

 Greenhouse............................................................................................................27 

Methodology.................................................................................................................................29 

Objective 1.........................................................................................................................29 

Objective 2.........................................................................................................................31 

Objective 3.........................................................................................................................32 

Results...........................................................................................................................................34 

 Results: Objective 1...........................................................................................................34 

 Results: Objective 2...........................................................................................................41 

  Initial Barrier Designs...........................................................................................41 

  Grass Barrier Design.............................................................................................44 

  Row Cover Design.................................................................................................46 

  Ivy Wall Design......................................................................................................47 

 Results: Objective 3...........................................................................................................50 

  Ivy Wall Testing.....................................................................................................50 

  Row Cover Testing.................................................................................................55 

Recommendations........................................................................................................................58 

 Recommendations for Higher Ground Farm.....................................................................58 

 Recommendations for Other Rooftop Farms.....................................................................60 

Conclusion....................................................................................................................................62 

References.....................................................................................................................................64 

Appendix A: Interview with Urban Agriculture Entrepreneur..............................................68 

Appendix B: Focus Group of Higher Ground Farm Volunteers............................................70 

Appendix C: Interview with Wind Barrier Expert..................................................................72 

Appendix D: Interview with Russ Lang Guide Sheet...............................................................75 

Appendix E: Prototype Wind Barrier Costs.............................................................................77 

Appendix F: Wind Measurement Raw Data.............................................................................78 

Appendix G: Rejected Wind Barrier Designs...........................................................................80 



v 

 

TABLE OF FIGURES 

 

Figure 1: Plant Cover vs. Impervious Cover.............................................................................19 

Figure 2: Rooftop Temperature Comparison...........................................................................20 

Figure 3: Wind Damage to Spinach Leaves..............................................................................22 

Figure 4: Wind Barrier Quiet and Wake Regions ...................................................................24 

Figure 5: Measurement Locations..............................................................................................30 

Figure 6: Milk Crate Planter Rows............................................................................................35 

Figure 7: Higher Ground Farm Archway.................................................................................35 

Figure 8: Wind Measurements...................................................................................................35 

Figure 9: On Site Wind Measurement Graphic.......................................................................39 

Figure 10: Initial Grass Barrier Design.....................................................................................42 

Figure 11: Initial Row Cover Design..........................................................................................43 

Figure 12: Initial Ivy Wall Design..............................................................................................44 

Figure 13: Updated Grass Barrier Design.................................................................................45 

Figure 14: Updated Ivy Wall Design..........................................................................................48 

Figure 15: Average Ivy Wall Testing Wind Speeds..................................................................51 

Figure 16: Wind Speed Reduction Testing................................................................................54 

Figure 17: Stability Testing.........................................................................................................54 

Figure 18: Row Cover Testing (Closed).....................................................................................57 

Figure 19: Fabric Testing............................................................................................................57 

Figure 20: Row Cover Testing (Open).......................................................................................57  



vi 

 

TABLE OF TABLES 

 

Table 1: Original NOAA Quality Controlled Climatological Data.........................................37 

Table 2: On Site Wind Measurement Average Speeds............................................................39 

Table 3: Ivy Wall Wind Speed Reduction Percentage ............................................................52 

Table 4: Worcester Regional Airport Wind Speed Data ........................................................53 

Table 5: Cost of Four Ivy Wall Barriers.................................................................................77 

Table 6: Cost of Row Covers for 4.3’ of Planter Row..............................................................77 

Table 7: On Site Wind Measurement Data...............................................................................78 

Table 8: Ivy Wall Wind Speed Measurements..........................................................................79 

 



vii 

 

EXECUTIVE SUMMARY 

 Rooftop farming is a growing industry that provides cities with local produce and 

environmental benefits, such as reduced energy costs and improved storm water management. 

However, rooftop farms also face several challenges that hinder their profitability. One of these 

challenges is wind damage to crops. Wind damages crops through cell abrasion by bursting 

epidermal cells and by damaging the plant’s outer protective wax layer. This damage impacts the 

plant’s ability to control water loss, which leads to windburn, reduced crop size, and smaller 

harvests (Brandle, 2012).  

This project is sponsored by John Stoddard of Higher Ground Farm, who has struggled 

with wind-related crop damage and associated financial losses since his first growing season in 

2014. Specifically, tomato plants at the farm have had stalks broken by wind, and smaller plants 

such as arugula and green beans have experienced windburn on their leaves. Drawing on 

interviews conducted with other rooftop farmers, wind barrier experts, as well as an analysis of 

relevant published literature, we found that there is not a wind barrier protection system designed 

for the unique needs of rooftop farms. Meeting these needs requires wind barriers that are 

compact, durable, easy to assemble and deconstruct, and reduce wind speeds without creating 

turbulence.  

In this project, we designed, built, tested, and supplied Stoddard with a system of wind 

barriers that will protect all of the crops on his farm. There is a lack of published information 

about dealing with wind damage on rooftop farms. Because of this, we also developed a guide on 

how to build, use, and maintain different types of wind barriers for rooftop farmers. This guide 

provides rooftop farmers with an accessible and simple resource to help them compare several 
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barrier designs, select designs based on the conditions at their farm, and assemble the chosen 

barriers. 

I. PROJECT GOAL, OBJECTIVES, AND METHODOLOGY 

 The goal of this project was to design wind barriers that provide effective protection for 

crops at Higher Ground Farm and other urban rooftop farms. In order to attain this goal, we 

developed three objectives: 1) understand the unique conditions on rooftop farms that impact 

wind behavior and wind damage; 2) analyze existing ground-level wind barrier technology and 

modify it to meet the needs of our sponsor’s farm; and 3) further improve the wind barrier 

designs by creating and testing wind barrier prototypes.   

Objective 1 Methodology: Understand Unique Conditions on Rooftop Farms That Impact Wind 

Behavior and Wind Damage 

 To meet the first objective, we went to our sponsor’s farm to engage in participant 

observation, collect wind data measurements, and to interview him. The goal of these activities 

was to gain an understanding of the farm layout and daily activities on the farm, and to 

understand our sponsor’s concerns about how wind was affecting his farm. The purpose of 

collecting wind data was to understand the unique environmental conditions at Higher Ground 

Farm. Wind velocity and direction measurements were taken with an anemometer to determine 

general wind patterns on the roof. These measurements also helped to determine the locations on 

the farm that are most affected by wind, as well as the differences between the roof’s 

microclimate and the outside environment.  

We also conducted semi-structured interviews with other urban rooftop farmers, and we 

conducted a focus group with past Higher Ground Farm interns. The purpose of these activities 
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was to gain additional perspectives on wind damage to crops, space constraints, and other unique 

problems present on rooftop farms, such as planting and harvesting in windy conditions.  

Objective 2 Methodology: Analyze Existing Ground-Level Wind Barrier Technology and Modify 

it to Meet the Needs of our Sponsor’s Farm 

 To meet the second objective, we analyzed secondary data, conducted semi-structured 

interviews with urban rooftop farmers and wind barrier experts, and conducted a focus group 

with past Higher Ground Farm interns. 

 Secondary data provided information about effective ground-level wind barriers. We then 

modified these wind barrier designs and their properties to enable them to be effective on 

rooftops based on the information gathered for the first objective. This modification resulted in 

three barrier designs: 1) ivy walls to protect tall crops, consisting of a wooden lattice and 

supported frame with ivy grown on the face, 2) row covers with a securing mechanism to protect 

short crops, and 3) tall grass barriers. The goal of the interviews with other rooftop farmers was 

to learn how wind uniquely impacts their individual farms, and what measures each farm has 

taken to protect their crops from wind damage. This information allowed our barrier designs to 

be tailored not only for Higher Ground Farm, but for future application on other rooftop farms. 

The goal of the interviews with wind barrier experts was to receive feedback on our barrier 

designs and our plans for prototype testing. Their feedback improved the designs by pointing out 

flaws and suggesting solutions to those flaws.  

Objective 3 Methodology: Further Improve the Wind Barrier Designs by Creating and Testing 

Wind Barrier Prototypes 

 To meet the third objective, we created wind barrier prototypes and conducted testing to 

evaluate barrier durability and effectiveness, and to reveal design flaws that were not previously 



x 

 

considered. We collected data through qualitative observations and quantitative wind 

measurements using an anemometer. This testing was performed on the top level of the six-story 

tall WPI-owned Gateway parking garage. The testing of the ivy wall barriers focused on the 

durability of the structures under heavy wind conditions, and their effectiveness at reducing wind 

speeds. The testing for the row cover design was focused on the functionality of the mechanism 

that secured the covers to the raised crop bed to ensure that it was functional for farmers planting 

and harvesting crops in windy conditions.  

II. RESULTS 

Objective 1 Results: Understand Unique Conditions on Rooftop Farms That Impact Wind 

Behavior and Wind Damage 

 Wind speed and directions measurements revealed that wind speeds in the microclimate 

of the farm space are reduced compared to wind speeds outside the rooftop. This is due to the 

parapet wall that surrounds the farm. However, wind direction on the rooftop was shown to be 

unpredictable. To the left is a diagram 

showing the wind speeds and directions 

measured on the farm. Wind speed is 

indicated by the arrow lengths. From this, we 

learned that the wind barriers would have to 

protect crops from all angles. Interviews with 

other urban rooftop farmers revealed that 

another farm in Toronto has experienced 

wind damage to their tomato plants in the 

past. This showed that the wind problem at 
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Higher Ground Farm is not unique.  

Objective 2 Results: Analyze Existing Ground-Level Wind Barrier Technology and Modify it to 

Meet the needs of our Sponsor’s Farm 

 Initial barrier designs were based on information gathered on barriers designed for 

ground-level farms. This information revealed that porous barriers were effective because they 

reduce wind speeds without creating areas of turbulence downwind. Organic barriers, or barriers 

made from plant material, are also effective because plants have a large surface area, porosity, 

and flexibility that allow them to absorb a lot of energy from wind. Based on this, the three 

previously introduced initial barrier designs were conceived. These designs were then discussed 

with wind barrier experts in interviews, and with a focus group of past interns at Higher Ground 

Farm. Based on their feedback, the barrier designs were improved. The ivy walls were changed 

to be more structurally sound, and made to be easily disassembled. The testing plan for row 

covers was modified to ensure that the securing mechanism made the covers easy to use in windy 

conditions. The species of tall grass for the grass barrier was changed from rush wheatgrass to 

little bluestem grass to improve the barrier’s durability and reduce the risk of the grass seeding 

itself in planter rows.  
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Objective 3 Results: Further Improve the Wind Barrier Designs by Creating and Testing Wind 

Barrier Prototypes 

 Barrier prototype testing verified the effectiveness of our designs. Wind speed 

measurements taken both inside and outside an ivy wall enclosure revealed that the ivy wall 

reduces wind speeds by 55% on average. Below is a graph showing the average wind speeds 

inside and outside the ivy wall enclosure on each testing day. A four-day trial with a reduced-

porosity ivy wall left in the testing 

environment showed that the 

design is structurally sound, and 

that the barrier is not at risk of 

tipping over in strong winds 

provided that there is at least 200 

pounds of soil on the baseplate. 

This weight in soil would fill the three milk crates intended to hold the ivy plant. Testing of the 

row cover securing mechanism showed that it is effective at stopping the row covers from 

flapping in wind. This will prevent the covers from impeding farm work.  

III. RECOMMENDATIONS 

 A. Recommendations for Higher Ground Farm 

Our barriers were designed to address the unique conditions present at Higher Ground 

Farm. Among all of the crops at Higher Ground Farm, tomato plants are experiencing the most 

severe wind damage. To address this, we recommend constructing ivy walls and placing them 

around the tomato planter rows. Ivy walls have the height needed to fully protect tall tomato 

plants, and the stability to stay upright in strong wind conditions. The barriers should surround 
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the planter rows on all sides to adequately protect the tomato plants, given the unpredictable and 

multi-directional wind conditions at the farm. Based on the dimension of all planter row sections, 

10 ivy wall barriers would be the maximum number needed for a growing season. The cost of 

constructing 10 ivy wall barriers would be $896.86. 

We recommend that John Stoddard use row covers to protect the remaining planter rows. 

These rows all contain plants that grow close to the soil, and row covers are a cheap solution that 

provide complete coverage and take up minimal space. The cost of constructing row covers for 

these planter rows would be $1240.32. 

B. Recommendations for Other Rooftop Farms 

 We recommend that rooftop farmers who are experiencing wind damage to their crops 

consider constructing some of the barriers developed in this project, depending on their specific 

needs and conditions on their farms. Ivy walls should be used to protect tall crops like tomato 

plants. They have been designed to make tight corners when placed next to each other so that 

they can be used to completely enclose a group of crops. For crops that are low to the ground, we 

recommend using row covers or tall grass barriers, depending on the features of the rooftop. For 

rooftop farms that lack excess space or have cramped pathways between crop rows, we 

recommend row covers because they fit directly on top of crop rows and don’t take up any extra 

space. Tall grass barriers are also a viable option to protect low-growing crops. Farmers may 

prefer to use tall grass barriers if they have a small number of workers available to set up the 

barriers, as they are less cumbersome and time consuming to set up than row covers. Before 

constructing grass barriers, farmers should take measurements to ensure that they will not take 

up too much space and obstruct walking paths.  
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IV. CONCLUSION 

 Through this project, we have created a resource for urban rooftop farmers who 

experience wind-related crop damage. By doing so, we are filling a gap in the literature on 1) 

how wind behaves and damages crops on urban rooftop farms, and 2) wind barriers suitable for 

the unique conditions of urban rooftop farms. Using our barrier designs to mitigate wind damage 

will make Higher Ground Farm and other urban rooftop farms more profitable by protecting their 

crops from wind damage and associated financial losses. Increasing profits for urban rooftop 

farmers will help to ensure that they can continue to provide cities with the energy conservation, 

storm water management, and food security benefits that come from rooftop farms.  
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INTRODUCTION 

Urban rooftop farming is a growing industry that supplies cities with produce by 

cultivating crops on previously unused city rooftops. Rooftop farms benefit buildings in several 

ways. These benefits include reducing energy consumption, improving storm water management, 

improving city air quality, and reducing carbon emissions. There are many advantages that 

rooftop farms can bring to a city, but they also face challenges.  

Water consumption, unique pests, soil transportation, rooftop weight and space 

constraints, and wind can all hinder a rooftop farm’s development. Wind specifically can damage 

crops at a cellular level, cause soil erosion, and reduce produce marketability. Our sponsor, John 

Stoddard, operates Higher Ground Farm, a rooftop farm in Boston, MA. Higher Ground Farm 

regularly struggles with wind damage to crops, resulting in crop damage and reduced profits. 

Current literature and research on wind dynamics, associated crop damage, and wind barriers 

focuses on ground-level farms in rural areas. However, there is a lack of published information 

about rooftop wind dynamics or wind barriers for urban rooftop farms. The goal of this project 

was to design wind barriers that provide effective protection for crops at Higher Ground Farm 

and other urban rooftop farms.  

This goal was accomplished by satisfying three objectives. The first objective was to 

understand the unique conditions on urban rooftop farms that impact wind behavior and wind 

damage. The second objective was to analyze existing ground-level wind barrier technology and 

modify it to meet the needs of our sponsor’s farm and other rooftop farms. The third objective 

was to improve the wind barrier designs by creating and testing wind barrier prototypes. 

 This report is divided into several sections. First, the literature review describes the 

benefits and challenges of rooftop farms, the effects of wind damage, as well as wind dynamics 
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and wind barriers. After the literature review, the methodology describes how we gathered the 

information needed to meet each objective, including semi-structured interviews, focus groups, 

secondary data collection, design iterations, and prototype testing. The results section then 

explains the results of the interviews, data collection, and tests performed, and explains how each 

result affected relevant barrier designs. The recommendation section then provides a thorough 

recommendation for John Stoddard to protect his crops from wind damage. This section also 

provides more general recommendations for other rooftop farms. To conclude, the implications 

of this work on rooftop farms as a whole are explained. 
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LITERATURE REVIEW 

 This project developed a system to reduce wind damage on rooftop farms. This section 

starts by discussing the benefits of rooftop farming. Next, the challenges of rooftop farming are 

addressed, with a focus on wind damage. Third, wind barrier technology is discussed.  

I. BENEFITS OF ROOFTOP FARMS 

Urban rooftop farms increase local food security and access to fresh, nutritious produce. 

Urban rooftop farms can also benefit cities through storm water management, energy 

conservation, and the reduction of carbon emissions. 

City storm water management is important to reduce pollution and flooding. When 

precipitation reaches impervious surfaces such as concrete, asphalt, or thermoset membranes on 

the ground or on a rooftop, it flows over the surface and picks up debris and pollutants. This is 

known as runoff. Common pollutants from rooftop runoff include heavy metals, polycyclic 

aromatic hydrocarbons, pesticides, and microbes from bird and insect feces (Freshwater, 2013). 

Runoff can become a problem for cities like Boston with combined sewage overflow systems 

during periods of heavy precipitation (“Combined Sewer Overflow”, 2016). Combined sewage 

overflow is a form of wastewater management in which sewage and rainwater are carried 

through the same pipe, rather than staying separated. During periods of heavy precipitation, these 

systems can be filled beyond their capacity, in which case wastewater flow is diverted into local 

bodies of water. When this happens, pollutants from runoff are dumped into these bodies of 

water (“Green Roof Benefits”, n.d.). Rooftop farms help cities manage runoff by absorbing and 

filtering precipitation. By absorbing precipitation, rooftop farms reduce the total volume of 

rainwater that will reach impervious surfaces. This in turn reduces the amount of pollutants that 

rain will carry to storm drains and sewers. Figure 1 illustrates how plants affect runoff.  
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Figure 1: Plant Cover vs Impervious Cover (City, 2012) 

 

Soil filters out existing pollutants in rainwater, as heavy metals will bind to soil particles 

(Freshwater). Rooftop farms also return water to the atmosphere through evapotranspiration. 

This water has been filtered by the soil and through the plant, so this has the effect of 

reintroducing cleaner water to the atmosphere.  

Rooftop farms also conserve a significant amount of energy. Urban areas with high 

population and structure density create environments with increased temperature. This 

phenomenon is known as the urban heat island effect (“Urban Heat Island”, n.d.). This is caused 

by dark-colored rooftops absorbing the sun’s radiation. Rooftop plants and soil absorb heat and 

lower roof surface temperatures in warm months, and act like insulators to stop heat from 

escaping during winter (“Green Roof Benefits”, n.d.). Internal building temperatures can be 3-

4°C (5-7°F) cooler than buildings with empty rooftops in the summer, reducing energy costs and 

related emissions (Thomaier, 2015). Figure 2 contains a graph with data comparing temperatures 

on a normal roof to temperatures on a green roof.  
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Figure 2: Rooftop Temperature Comparison (“Center for Green”, 2005) 

Keeping buildings cooler in the summer and warmer in the winter results in reduced 

usage of air conditioners and heating systems. This effect is strong enough that annual city-wide 

energy consumption could be reduced by 15% if rooftop agriculture becomes widespread 

(Thomaier, 2015). 

Additionally, rooftop farms help to reduce carbon emissions. Crop photosynthesis 

reduces the level of carbon dioxide in the air by converting it into oxygen. The reduced travel 

distance for farm produce also significantly decreases the carbon emissions normally caused by 

transport vehicles travelling long distances to deliver food in most cases (“Green Roof Benefits”, 

n.d.).  

 II. CHALLENGES OF ROOFTOP FARMING 

 Rooftop farms face several challenges. Some of these challenges are experienced by all 

farms, but rooftop farms face additional unique challenges. These challenges include water 

consumption, predators, transporting soil to the roof, rooftop weight constraints, and wind. In 

this section, we summarize these issues and their impacts on rooftop farms, with a focus on wind 

damage.  
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Despite being partially irrigated by rainwater, all farms use a lot of water, and rooftop 

farms are not an exception. Water is more expensive in cities than in rural areas (Sanyé-

Mengual, 2015). This cost affects farm revenue. As such, water consumption hinders urban 

agriculture. Predators and pests can also hinder crop growth and yield. Pests can eat the plants, 

which stunts crop growth, and they can eat the produce itself. These pests include maggots, 

aphids, other insects, and birds (Novak, 2016). Higher Ground Farm specifically has had 

problems with seagulls, a pest unique to the farm’s coastal location and to urban rooftop farms. 

By reducing crop yield, pests reduce the revenue of rooftop farms, which makes maintaining a 

successful rooftop farm more difficult. Rooftop farms also require a large amount of soil. While 

it may seem trivial, transporting soil to a rooftop can be quite challenging. A crane is often 

required, which is an additional expense that hinders the farm’s overall profit (Levenston, 2010). 

The structural integrity of the roof itself also presents challenges. The weight capacity of 

rooftops limits the amount of soil that can be used, thus limiting the number of crops. 

Additionally, useful tools such as pallet jacks and tractors are too heavy to be used on rooftops, 

meaning that rooftop farm work is limited to manual labor by farm workers. 

Wind is another challenge experienced by both rooftop farms and farms on the ground. 

While there is research and literature that analyze wind dynamics, damage, and barriers for crops 

on the ground, there is a lack of literature that focuses on the unique wind conditions and 

potential barriers for rooftop farms. This project focuses on wind damage, an issue that has 

affected our sponsor’s crops and is one of his primary concerns. This section discusses research 

on wind dynamics and damage for farms on the ground. Our research aims to build on and add to 

this literature by analyzing wind on roof top farms.  
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Wind damages crops through cell abrasion, soil erosion, and reduced produce 

marketability. An experiment performed in a 3.5 m/s wind tunnel showed that exposure to wind 

damages crops at a cellular level. Burst epidermal cells, cracking, and redistribution of the 

protective wax layer that coats the outside of the plants was observed. This damage primarily 

impacts the plant’s ability to control water loss, which can lower crop yields and reduce both the 

size and volume of harvests (Brandle, 2012). For example, in one case, wind damage caused 

blemishes and bruises on a commercial kiwifruit farm. This damage left 58% of the harvested 

fruits unmarketable, causing significant revenue losses (McAneney, 1984). Figure 3 shows wind 

damage to spinach leaves at Higher Ground Farm.  

 
Figure 3: Wind Damage to Spinach Leaves 

Exposure to wind also causes soil erosion. Erosion can damage plants by reducing the 

anchorage provided by roots, reducing the nutrients collected by roots, and increasing the 

number of particulates in the air (Brandle, 2012). Wind erosion is generally present when the 

crops, soil, and land are under specific conditions that allow erosion to occur. Loose, granulated 
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soil without vegetation cover causes soil to erode more easily. A large, flat farming area with 

moderate exposure to wind will also be more affected by erosion (Brandle, 2012). Soil erosion 

requires regular maintenance, and new soil must be added. This increases the workload and 

financial investment of farmers. Rooftop farmers are likely to be particularly vulnerable to this 

issue, as they typically work on large, flat surfaces with moderate exposure to wind. In order to 

support urban rooftop agriculture, a solution that protects crops from wind is necessary.  

III. WIND BARRIER TECHNOLOGY 

 Current wind barrier technologies are diverse, and variations in physical design properties 

alter how wind barriers manage and mitigate the effects wind has on crops. In this section, 

several types of wind barriers, their properties, and their impact on crops are discussed. This 

collection of research was focused on non-rooftop farms in rural areas, as there is a lack of data 

on wind barriers for rooftop farms in urban environments. Therefore, further investigation is 

needed in this area.  

A. Effects on Wind Behavior 

Two distinct regions are created behind a wind barrier in an open environment where 

wind flow is generally perpendicular to the barrier (Brandle, 2012). The first region is 

characterized by reduced wind speed, turbulence and eddy size. In stable conditions, this “quiet” 

region is defined as the space below the line that connects the top of the barrier to a point on the 

ground 8h away from the barrier’s base, with h representing the height of the barrier. In unstable 

conditions, this imaginary line may be reduced to less than 5h away from the base of the barrier 

(Brandle, 2012). The quiet region represents the protected region of a wind barrier; therefore, 

understanding this is important when designing wall-type barriers. Figure 4 is a diagram that 

depicts this quiet region.  
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Figure 4: Wind Barrier Quiet and Wake Regions (Brandle, 2012) 

 

The second region, or “wake” region, is characterized by increased turbulence and wind 

speed; wind speed in this region is still reduced from speeds in front of the barrier. This region is 

also depicted in Figure 3, shown in the area above the dotted line. When low-moisture air is 

present, the evaporation rate of water inside crops (transpiration rate) can be affected. Plants in 

the quiet region experience reduced transpiration rates, while plants in the wake region 

experience increased transpiration rates (Brandle, 2012; Heisler, 1988). Wall-type barriers must 

be designed with care to prevent turbulence and increased transpiration from damaging crops. 

B. Effects on Downwind Environmental Conditions 

Research also examines the effects that wind barriers have on temperature, CO2 

concentration, humidity, and water evaporation downwind from the barrier. Wind barriers of 

multiple types, materials, and sizes have been shown to increase surface and air temperatures 

within the quiet region, in comparison to the wake region. This warmer area was generally found 

to be 2°C to 3°C warmer than areas further downwind (Brandle, 2012). Slightly increased 

temperature behind wind barriers could help crops survive in the early spring and late fall.  
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Data related to CO2 concentrations was largely inconclusive, but two trends were 

identified. The magnitude of changes in CO2 concentration behind wind barriers seems to be 

inversely related to wind speed. Multiple studies showed that CO2 concentration varied by 

around 10 ppm (parts per million) based on wind speed (Brandle, 2012). This variation is not 

large enough to significantly affect the growth cycle of the plants.  

Humidity levels behind the barrier are directly related to water evaporation levels. During 

high-speed or turbulent wind conditions, data revealed that the barrier has little to no effect on 

water evaporation. In calm conditions, evaporation rates and humidity are slightly increased in 

the quiet region, due to heat and evaporated groundwater that is trapped in the layers of air close 

to the ground (Brandle, 2012). Because the effects on downwind conditions are minor, wind 

barriers can provide wind protection without inhibiting crop health or growth. 

C. Wall-Type Wind Barriers 

Research has also been conducted on the effect that variations in material properties such 

as porosity, resistance, and drag had on wind behavior. The data shows that a low-porosity 

material is more effective at reducing wind speeds than a material with near-zero porosity 

(Brandle, 2012). This is due to a reduced difference in pressure between the quiet region and 

wake region, lowering the likelihood of recirculating airflow above the barrier. This means that a 

slightly porous wall-type wind barrier is preferable to a solid wall-type barrier, as solid barriers 

cause turbulence. Resistance is a term used to describe the difference in air pressure between the 

front and back of the barrier, and is a function of porosity (Brandle, 2012). As such, it was 

concluded that a lower resistance is generally preferred. The optimal resistance for a barrier 

becomes more difficult to determine when dealing with high wind speeds. To sufficiently protect 

the crops, the minimum acceptable resistance is greater than it would be in less extreme wind 
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conditions (Brandle, 2012). Optimal drag is also difficult to determine. Drag measures how much 

air momentum is reduced by the material, compared to the maximum possible reduction of 

momentum. A higher drag coefficient will significantly slow wind speeds, but can lead to more 

turbulence and eddies behind the barrier (Brandle, 2012). The effectiveness of wall-type wind 

barriers is determined by their physical properties. These properties can be modified to mitigate 

their potential flaws. 

D. Organic Barriers 

It is generally accepted that large natural barriers, like trees, are currently the most 

effective type of barrier (Brandle, 2012). This is due to their large surface area and variable 

porosity and flexibility. These properties allow trees to absorb a large amount of energy from 

wind (Brandle, 2012; Heisler, 1988). This solution, however, is not feasible for rooftop farms. 

Trees have large root systems that require more volume than any rooftop farm could spare. It is 

also doubtful that a rooftop would have the structural integrity to support the weight of several 

trees and the soil required to support them.  

The effectiveness of smaller natural barriers is also discussed in “Windbreak 

Technology”. A study of tall wheatgrass (Agropyron elongatum) showed that grass barriers 

protected downwind crops from both erosion and excess water loss. The wheatgrass was planted 

in single and double rows at intervals of roughly 15 meters. At 0.3 meters above the ground 

downwind of the wheatgrass, wind speed was reduced by an average 45%. Crops downwind of 

the wheatgrass experienced only 6.6% of the wind damage that similar crops in an unprotected 

environment experienced (Brandle, 2012). Throughout the spring and summer growing season, it 

was observed that the wheatgrass barriers increased soil temperatures in spring, decreased soil 

temperatures during the summer, and slowed the evaporation of rainwater from the soil up to a 
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depth of 10 centimeters (Brandle, 2012). Small natural barriers may provide a solution for urban 

farmers who need substantial protection without a high cost or laborious construction.  

E. Row Covers 

The row cover is another form of wind barrier that has been used to protect crops. Row 

covers consist of light-permeable plastic sheets or fabrics that completely enclose crops. Thin 

polyethylene row covers are cheap and widely used, but are not helpful in addressing wind 

damage, as they are prone to tearing in strong wind. These thinner covers must be replaced every 

season and are generally used to combat pests (Kunicki et al., 1996; Good, 2012). Some other 

variants of row covers are constructed with thicker polypropylene plastic. Polypropylene covers 

do not easily tear, and stay grounded when anchored with sandbags or a dirt covering (Good, 

2012). These covers will block wind effectively without being torn, and protect crops from harsh 

weather and pests. Polypropylene row covers are more expensive, but they have a service life of 

about four years (Kunicki, 1996; Good, 2012).  

F. Greenhouses 

Greenhouses are structures made with glass or polymer walls that completely enclose 

crops. As such, greenhouses completely protect crops from wind damage. This means that 

greenhouses are among the most effective wind barriers. However, greenhouses have 

disadvantages. Studies show that open-air rooftop farms are more efficient than rooftop 

greenhouses for crop production. The cost of tomato production in open-air rooftop gardens in 

Barcelona was shown to be 3.5 times less than in rooftop greenhouses (Sanyé-Mengual, 2015). 

However, greenhouses are not only more expensive to operate, they are also more expensive to 

construct than wind barriers, and require a significant amount of time to build. Greenhouse 

structures usually cost $25 per square foot, and establishing a greenhouse on a rooftop can cost 
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upwards of $1,000,000 (Rifkin, 2011; Learn, n.d.). As such, greenhouses are not a viable 

solution, despite completely mitigating wind damage.  

 The research gathered in this literature review provides a foundation of information about 

effective wind barriers for ground-level rural farms. However, there is little to no published 

information about wind barriers for urban rooftop farms. More information is needed about 

rooftop wind dynamics and wind barriers designed for rooftop farms to develop an evidence-

based recommendation to John Stoddard and other rooftop farmers. 
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METHODOLOGY 

The goal of this project was to design wind barriers that provide effective protection for 

crops at Higher Ground Farm and other urban rooftop farms. To accomplish our goal, we have 

three objectives. Our first objective was to understand the unique conditions on rooftop farms 

that impact wind behavior and wind damage. Our second objective was to analyze existing 

ground-level wind barrier technology and modify it to meet the needs of our sponsor’s farm and 

other rooftop farms. Our third objective is to further improve the wind barrier designs by creating 

and testing wind barrier prototypes. In order to meet our objectives, we conducted semi-

structured interviews, a focus group, quantitative measurements, and qualitative observation. We 

used purposive and snowball sampling to identify interview participants. This project was 

granted WPI Institutional Review Board approval to conduct the interviews and focus group. All 

participants were informed of their right to anonymity.  

I. UNDERSTAND UNIQUE CONDITIONS ON ROOFTOP FARMS THAT IMPACT WIND BEHAVIOR 

AND WIND DAMAGE 

To meet the first objective, we met with our sponsor at his farm, collected wind data 

measurements at our sponsor’s farm, conducted semi-structured interviews with urban rooftop 

farmers, and conducted a focus group with past Higher Ground Farm interns. The goal of the 

meeting with our sponsor was to gain an understanding of the layout of the farm, and to hear his 

thoughts and concerns about how wind was affecting his farm. The purpose of collecting wind 

data was to understand the unique environmental conditions on an urban rooftop farm. Wind 

velocity and direction measurements were taken with an anemometer to determine general wind 

patterns on the roof. These measurements also helped to determine the locations on the farm that 

are most affected by wind, as well as the differences between the roof’s microclimate and the 
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outside environment. This was accomplished by comparing local area wind data to the 

measurements collected at the farm.  

Measurements were taken at six locations around the farm. The locations were chosen to 

provide a diverse sample of wind behavior data from all areas of the farm. Figure 5 shows an 

overhead view of the farm layout with the six locations labelled. Locations 1 and 2 were placed 

in close proximity to the archway because John had theorized that the archway was funneling 

wind into the farm. Locations 3 and 4 were chosen to observe wind behavior near the parapet 

walls on the north and south ends of the farm. Locations 5 and 6 were chosen to observe wind 

behavior at the east end of the farm, farthest away from the archway. Measurements at all six 

locations on the Design Center roof were taken the same way: the anemometer was placed on top 

of the planter row, and wind speed measurements were recorded in a notebook at 30 second 

intervals for 15 minutes. Wind direction measurements were also recorded at 30 second intervals 

along with the speed measurements. The direction was determined with a homemade windsock 

fashioned from a trash bag, a reshaped coat 

hanger, and tape. Using a smartphone 

compass, long metal pipes were placed on 

the ground to indicate the cardinal 

directions. These markers were visually 

compared to the windsock to determine the 

current wind direction for every speed 

measurement.  

Figure 5: Measurement Locations 
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Semi-structured interviews with other urban rooftop farmers and a focus group of farm 

interns were conducted to gain additional perspectives on wind damage to crops and space 

constraints on rooftop farms. Appendices A, B, and C contain the guide sheets that were used for 

the interviews and focus group.  

II. ANALYZE EXISTING GROUND-LEVEL WIND BARRIER TECHNOLOGY AND MODIFY IT TO 

MEET THE NEEDS OF OUR SPONSOR’S FARM AND OTHER ROOFTOP FARMS 

 To meet the second objective, we analyzed secondary data, conducted semi-structured 

interviews with urban rooftop farmers and wind barrier experts, and conducted a focus group 

with past Higher Ground Farm interns. Secondary data found in the literature review of this 

report provided information about effective ground-level wind barriers. These barrier designs 

and their properties were modified to be effective on rooftops based on the information gathered 

for the first objective. The goal of the interviews with other rooftop farmers was to learn how 

wind impacts their farms, and what measures each farm has taken to protect their crops from 

wind damage. This information allowed our barrier designs to be tailored not only for Higher 

Ground Farm, but for future application on other rooftop farms. It also ensured that no effective 

barrier designs that have been successfully employed were overlooked. The goal of the 

interviews with wind barrier experts was to receive feedback on the barrier designs and our plans 

for prototype testing. Their feedback improved the designs by pointing out flaws and suggesting 

solutions to those flaws. Their feedback also ensured that there weren’t any barrier designs or 

barrier technologies that were overlooked. Appendices A and B contain the guide sheets that 

were used for these interviews. Perspectives about the barrier designs were also gathered from a 

focus group of Higher Ground Farm volunteers. The purpose of the focus group was to gain an 

understanding of how each barrier may impact work flow on the farm. At the conclusion of the 
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focus group, our goal was to have an understanding of which barriers would impede farm work 

the most, and have suggestions on how to improve them. Appendix C contains the guideline 

sheet that was used for the focus group.  

III. FURTHER IMPROVE THE WIND BARRIER DESIGNS BY CREATING AND TESTING WIND 

BARRIER PROTOTYPES 

To meet the third objective, we created wind barrier prototypes and gathered quantitative 

wind measurements and qualitative observations. Testing was performed to evaluate barrier 

durability and effectiveness, and to reveal design flaws that were not previously considered. This 

testing was performed on the top level of the six-story tall WPI-owned Gateway parking garage. 

Prototype barriers were created and tested for two designs, ivy walls and row covers. We did not 

test the grass barriers because we did not have time to grow the grass for them, and we 

eventually removed them from our recommendations to John Stoddard due to space constraints 

on his farm. 

The testing of the ivy wall barriers was focused on the durability of the structures under 

heavy wind conditions, and their effectiveness as wind barriers. First, normal conditions were 

simulated. Fake ivy was attached to the lattices of four prototype ivy wall structures. These 

structures were arranged in a square surrounding an anemometer, and a second anemometer was 

placed outside the barrier enclosure. Wind speeds were measured inside and outside the barrier 

enclosure every 30 seconds. These measurements were taken for fifteen minutes each day over 

four days. The measurement values were then compared to show that the design adequately 

reduces wind speed. We also performed a “worst case scenario” test. This test involved covering 

the entire lattice of the ivy wall with a plastic sheet to minimize the porosity, which maximized 
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the force applied to the face of the lattice structure. This test ensured that the design remains 

standing and structurally sound during harsh conditions.  

The testing for the row cover design was focused more on the functionality of the 

securing mechanism than on their effectiveness. Row covers completely surround crops with 

plastic, so crops are fully protected from wind. However, the durability and stability of the row 

covers needed to be tested. A hook system was developed using carabiners to secure the row 

covers from strong winds while simultaneously allowing workers to easily access covered crops. 

Both facets of the hook system required testing. The row cover prototype was assembled at the 

testing location, and three distinct tests were performed. The first test involved securing the row 

covers over milk crates using the hook system and leaving them there for several hours. During 

this period, the covers were inspected for damage, and observed to monitor how they responded 

to wind gusts. After this period, the second test was performed. This involved opening the row 

covers in windy conditions to evaluate how quickly and easily the covers could be transitioned 

from “closed” to “open”. The purpose of this test was to simulate farmers opening the covers to 

work on crops, and to find out how disruptive this process was. The third test involved leaving 

the row covers secured “open” for several hours. During this time period, the covers were 

observed to evaluate whether the securing mechanism kept the covers from flapping too 

violently in the wind. All three of these tests addressed the concerns of wind barrier experts and 

Higher Ground Farm volunteers.  
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RESULTS 

 This section contains all the information that was gathered to meet the project objectives. 

This information is organized into three sections, with each section containing all the results that 

were collected to satisfy a project objective. The summation of the data reported in this section is 

used as the basis for the design recommendations to John Stoddard.  

I. RESULTS: UNDERSTAND UNIQUE CONDITIONS ON ROOFTOP FARMS THAT IMPACT WIND 

BEHAVIOR AND WIND DAMAGE 

This section contains the results of all research conducted to meet the first project 

objective. The data included was obtained from wind speed measurements taken on Higher 

Ground Farm, as well as interviews with other rooftop farmers about their experiences with wind 

damage. 

We visited Higher Ground Farm for the first time on October 15th, 2016. This visit 

allowed us to see the farm’s layout in person. We kept the size and orientation of the farm layout 

in mind when designing barriers so that they would not disrupt farm work. We also observed the 

planter setup at Higher Ground Farm for the first time. Higher Ground Farm uses rows of milk 

crates filled with soil as planters (Figure 6). We also discussed details of the project with 

Stoddard, and he provided us with information about the wind situation. Stoddard hypothesized 

that the large archway next to the crops was likely funneling wind into the center of the farm area 

(Figure 7). Additionally, Stoddard stated that his tomato plants were experiencing the most 

damage due to their height.  
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Figure 6: Milk Crate Planter Rows 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: HGF Archway                                  Figure 8: Wind Measurements 

 

We also interviewed two urban rooftop farmers. We interviewed Arlene Throness of 

Ryerson Urban Farm on January 20th, 2017. Ryerson Urban Farm is located at Ryerson 

University in Ontario, Canada. Arlene informed us that during the 2016 growing season, their 

tomato plants had experienced some mild wind damage. Wind caused increased rigidity in the 

tomato plants stalks, and this lead to many of the stalks snapping. This was the first instance of 
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wind damage that Ryerson Urban Farm had experienced, and so at the time we talked to Arlene, 

the farm had not implemented any type of wind shielding (A. Throness, Phone interview, 2017). 

This information was evidence that farms besides Higher Ground Farm experience crop damage 

caused by wind. We then interviewed Tiffany Henkel of Hell’s Kitchen Farm Project (HKFP) on 

February 23rd, 2017. HKFP is located on the roof of the Metro Baptist Church building. The 

church is five stories tall, and the west side of the rooftop is exposed to winds from the Hudson 

River. The farm plants their crops in four-foot diameter kiddie pools filled with dirt. Henkel 

stated that wind is a nuisance on the farm, and that loose items like chairs have to be secured 

down. However, she said that wind hadn’t been enough of an issue to warrant using wind 

barriers. According to Henkel, the four-foot concrete parapet wall that surrounds the roof 

provides adequate protection (T. Henkel, Phone interview, 2017). She mentioned that there is a 

two-foot metal railing attached to the top the parapet wall. This railing likely reduces turbulent 

winds on the farm by disrupting wind shear off the top of the parapet. Despite the fact that the 

crops at HKFP have not experienced wind damage, wind has still caused other problems on the 

farm, and wind might be a larger issue if their parapet wall did not have a metal railing to break 

up wind shear.  

 Wind speed measurements were taken on Higher Ground Farm to gain a better 

understanding of the conditions at the farm (Figure 8). The team travelled to the Boston Design 

Center on January 22nd, 2017. Measurements were taken at six locations between 14:00 and 

16:00. A LaCrosse Technology 327-1414W Color Wireless Wind Speed Weather Station was 

used to take these measurements. Local wind data during this period was found on the National 

Oceanic and Atmospheric Administration’s online Quality-Controlled Climatological Database. 

According to their measurements taken at Logan Airport (roughly 2 miles from Higher Ground 
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Farm), the average wind speed between 14:00 and 16:00 was 17 mph, with wind blowing from 

NE to SW. This data can be seen in its original form in Table 1.  

Table 1: Original NOAA Quality Controlled Climatological Data (“QUALITY”, 2017) 

 

 After transferring the collected data to a spreadsheet (Appendix F, Table 7), it was used to 

create a graphic, seen in Figure 5. The graphic shows an arrow at each of the six measurement 

locations, with each arrow showing the average speed and wind direction of the measurements 

for that location. The wind direction measurements were averaged using a representative 

coordinate system. North and South were represented by the positive and negative y-axis, 

respectively; East and West were represented by the positive and negative x-axis, respectively. 

The quantity of each four direction measurements were tallied up, and then these four totals were 
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treated as vectors. In the case of diagonal measurements (NE, NW, SE, SW), they were treated 

as a 45°-45°-90° triangle with hypotenuse length 1. The side lengths of this triangle (0.71) were 

then added to their respective cardinal direction totals. For example, a NW measurement would 

contribute 0.71 to the North total, and 0.71 to the West total. After the four cardinal totals were 

compiled, they were refined into a vertical (N/S) and horizontal (E/W) vector by adding the 

positive and negative totals for each axis of the coordinate system. For example, if there were 

three North measurements and one South measurement, the resulting average direction would be 

2 North. The resulting horizontal and vertical vectors were then summed using vector addition to 

arrive at a final wind direction vector.  

 The numbers displayed by each arrow in Figure 5 represent the location number. Blue 

arrows represent wind behavior within the microclimate of the rooftop. The red arrow represents 

wind behavior in the greater region outside the farm. The shapes outlined in black represent the 

rows of planters, as well as other miscellaneous structures on the roof. Google Maps was 

referenced while creating the graphic to ensure that the shape and size of these structures, as well 

as the distances between them and the borders of the roof, are to scale. Arrow length in Figure 9 

indicates average wind speed, meaning that the longer the arrow, the higher the average wind 

speed at that location. Included below Figure 9 is a chart (Table 2) showing the numerical 

average wind speed values at each location.  



39 

 

 
Figure 9: On Site Wind Measurement Graphic 

 

Location: 1 2 3 4 5 6 

Average Speed (mph): 6.5 4.9 4.9 5.7 5.2 4.7 

Table 2: On Site Wind Measurement Average Speeds 

Interpretations about general wind patterns on the farm can be made from this data. The 

wind data we collected is not statistically significant. Therefore, the interpretations can be 

understood as informed estimates based on our data-driven knowledge of how physical objects 

alter wind behavior.  
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 Locations 1 and 2 were closest to the archway. The average wind directions at these 

locations were pointed away from the archway. This indicates one of two things. External wind 

is being funneled through the archway opening onto the rooftop, or external wind passing over 

the parapet wall is deflecting off the archway wall and back onto the rooftop. Both of these 

possibilities indicate that wind near the archway will typically flow away from the archway. 

Locations 4 and 5 on the north side of the farm had average directions that were similar to the 

direction at location 2. This shows that wind on the north side of the farm generally continued to 

travel outward from the archway without changing direction.  

The south side of the farm did not experience the same trend. The average wind 

directions at locations 3 and 6 were not continuous with location 1. They are generally oriented 

towards the archway, not away from it. This difference in direction trends between the north and 

south sides of the farm may be attributable to the parapet wall. Given that external wind was 

moving southwest, the north side of the farm was within the protected region of the parapet wall. 

This prevented external wind from influencing the direction of wind flow in this region or from 

causing excessive turbulence. Conversely, the south side of the farm was outside of the protected 

region. In this area, turbulence caused by wind shear off the top of the parapet wall interacts with 

the wind flow from the archway. This explains the lack of a wind direction trend in the southern 

half of the farm. This also explains why the directions at locations 4 and 5 are angled slightly 

northward, towards the parapet wall. The protected region created by the wall will have a lower 

air pressure than other areas. This low pressure region will draw air flow towards the parapet 

wall.  

 The result of these interpretations is that in most cases, one half of the farm will 

experience winds moving in a somewhat uniform direction, whereas the other half will 
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experience turbulent winds with no uniform direction. This indicates that wind barriers must 

provide complete 360-degree coverage to be effective. The regions of the farm experiencing 

turbulent wind will change constantly depending on the prevailing direction of external winds. 

 

II. RESULTS: ANALYZE EXISTING GROUND-LEVEL WIND BARRIER TECHNOLOGY AND 

MODIFY IT TO MEET THE NEEDS OF OUR SPONSOR’S FARM AND OTHER ROOFTOP FARMS 

This section contains all research conducted to meet the second project objective. Initial 

barrier designs were informed by research from the literature review. After developing initial 

designs, the designs and testing plans were modified based on feedback from former Higher 

Ground Farm workers, other rooftop farmers, and wind barrier experts. These modifications 

focused on increasing the effectiveness and durability of the designs, and avoiding negative 

impacts to farm work.  

A. Initial Barrier Designs 

Research from the literature review showed that porous wind barriers are more effective, 

as they significantly reduce downwind turbulence. Organic barriers are especially effective due 

to their large surface area, variable porosity, and flexibility compared to wall-type barriers. Non-

porous wall-type barriers were eliminated early in the design process because of their tendency 

to create large regions of downwind turbulence.  

Three initial barrier designs were developed. The first design was a wheatgrass barrier. 

This organic barrier design was inspired by the study of tall wheatgrass found in Brandle’s 2012 

book “Windbreak Technology”. The first iteration of this design consisted of a large constructed 

wooden planter box, filled with soil and seeded with Rush wheatgrass (Thinopyrum 

intermedium). Figure 10 contains a drawing of this design.  
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Figure 10: Initial Grass Barrier Design (David Frederick) 

Rush wheatgrass is a tall grass, introduced to the United States in 1962. It has been 

successfully cultivated throughout the Midwest and Northwest United States, and is adapted to 

cool, wet climates (Rush, 2013). Rush wheatgrass was chosen for the barrier because of its seed 

vigor (germination performance), height (three to four feet), fast emergence, and strong growth 

throughout spring, summer, and fall (Rush, 2013).  

The second initial design was a modified row cover design. We chose this design because 

of its simplicity and low cost. Additionally, this design provided complete coverage for crops 

from all wind directions. The design consisted of metal hoops placed along planter rows to hold 

up the row cover plastic. In this design, each row cover had five hoops, and each end of the 

hoops was placed one-foot deep into the soil. The row cover fabric was cut to size, draped over 

the hoops, and secured on one side of the rows by tucking a foot of the fabric end under the milk 

crate rows. The other side of the fabric was secured to the crates with carabiners attached to the 

fabric end. This was designed to give farm workers easy access to the rows by detaching the 

carabiners from the crates and pulling the row cover back. Six carabiners were used for each 

row, and each hole in the row cover fabric was protected with grommets. Figure 11 shows a 

simple drawing of row covers on the planter rows, not to scale.  
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Figure 11: Initial Row Cover Design (D. Frederick) 

The third initial design was a lattice wall covered with ivy. This design combined the 

positive effects of porous wall-type barriers and organic barriers. It was designed specifically to 

protect the tomato plants on Stoddard’s farm, since they were too tall to protect with grass 

barriers or row covers.  

The initial ivy wall design consisted of a wooden lattice attached to the front of a wooden 

frame. The vertical sides of the frame extended down to form legs that were attached to 

triangular supports. These supports were attached to a wooden base designed to hold three milk 

crates. These milk crates would be filled with dirt and a Boston ivy plant would be seeded in the 

center milk crate. As the ivy grew, it would attach to and climb up the lattice, providing flexible 

leaves to block wind coming through the lattice. Boston ivy was chosen over other ivy varieties 

for several reasons. It is a very fast-growing and tough plant, and has been shown to grow well in 

a wide variety of urban conditions such as heat, drought, restricted root zones, and heavy pruning 

(Rhodus, n.d.). Boston ivy also has a unique mechanism for attaching itself to structures. Unlike 

other ivies that burrow their shoots into the surface of the structure, Boston ivy tendrils have 

sticky discs that latch onto surfaces (Boston, n.d.). This means that Boston ivy does not 

physically damage the structures that it climbs. Figure 12 shows a drawing of the initial ivy wall 

design without ivy.  
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Figure 12: Initial Ivy Wall Design (D. Frederick)  

B. Grass Barrier Design 

 Prior to the focus group and barrier expert interviews, the grass barrier design was 

modified. The container for the grass design was changed from a constructed wooden box to a 

milk crate. This had multiple benefits. The barrier cost was reduced, and the container no longer 

required assembly. The individual units of the new design also weighed significantly less, 

increasing maneuverability. Additionally, since the crops at Higher Ground Farm are planted in 

milk crates, the grass would be at an optimal height to block wind. A drawing of this updated 

design is shown in Figure 13. 
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Figure 13: Updated Grass Barrier (D. Frederick) 

 

Dr. James Brandle is a professor at the University of Nebraska-Lincoln and the primary 

author of the 2012 book “Windbreak Technology”, which is referenced extensively in the 

literature review. Dr. Brandle’s areas of focus are windbreaks and ecology. Brandle has also 

done work with shelterbelts, forestry, and sustainable agriculture. He thought that the grass 

barrier would be effective. He noted that wheatgrass wind barriers are common in the wheat 

production industry in Wyoming and Montana (J. Brandle, Phone interview, 2017). There are 

also locations in the Canadian Prairies that use wheatgrass as a wind barrier. The fact that an 

industry already employs tall grasses as wind barriers strongly indicates that it is an effective 

solution. Tiffany Henkel, an executive director and pastor at Metro Baptist Church in Hell’s 

Kitchen, NY, has visited two other rooftop farms in Brooklyn, NY. She noticed that both of these 

farms had a perimeter of shrubs around their roofs, even though these locations were less 

exposed than the roof of the Metro Baptist Church. Both of these locations had parapet walls, but 

the shrubs at both farms grew higher than the walls. These shrubs were likely planted as wind 

barriers, given their placement and the lack of other non-food producing plants at these farms. 

This also supports the effectiveness of the grass barrier.  
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Dr. Richard Sutton, another professor at the University of Nebraska-Lincoln who 

specializes in ecology and green roofs, also thought the grass barriers would be effective. He 

mentioned that they would be better suited for protecting shorter plants, and that the ivy walls are 

best suited to protect the tomato plants (R. Sutton, Phone interview, 2017). This observation was 

in line with our plan to use the ivy walls only to protect the tomato plants.  

The focus group, consisting of four former Higher Ground Farm interns, was generally 

positive about the grass barriers. Their primary concern with this barrier design was seed 

production. Several participants were worried that seeds from the grass would spread to the 

planter rows and become a weed that competed with crops for space and nutrients. This concern 

was addressed after the interview with Dr. Sutton, when he suggested using little bluestem 

instead of rush wheatgrass. Little bluestem is a grass native to the Northeast United States that 

grows to roughly the same height as Rush wheatgrass, but has increased stalk durability and 

reduced seed vigor compared to Rush (Little, 2002; Rush, 2013). This means that it does not 

germinate well when there is competition for nutrients from other plants. Thus, if little bluestem 

seeds were to migrate to planter rows, they would not likely sprout given the nutrient 

competition from established crops.  

C. Row Cover Design 

 The interviews and focus group showed that the row cover design has several strengths. 

In his interview, Dr. Brandle stated that the row covers would likely provide the greatest level of 

wind reduction (Brandle, Phone interview, 2017). Additionally, the focus group was positive 

about how little space the row covers would take up compared to the other barrier designs. They 

also mentioned that the row covers could be useful for pest management. Tiffany Henkel said 

that the HKFP team has considered using row covers in the past, but they’ve refrained because 
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they don’t have a reliable method to secure them down (T. Henkel, Phone interview, 2017). This 

implies that Henkel would consider implementing our row cover design since it addresses this 

concern. 

The focus group was more concerned about row covers compared to the other designs. In 

the past, the farm used row covers made from a gauze-like material for germinating seeds. These 

row covers were held down with clasps, and when they were opened to access the rows, the 

covers would frequently flap in the wind. The group agreed that the flapping row covers were a 

hindrance to their work. Testing of the hook system for securing the polypropylene row covers 

was added to the prototype testing plan to account for this observation. This ensured that the 

recommended row cover implementation would not have a flapping problem. Row cover testing 

plans were also altered to include measurements of the temperature difference inside and outside 

the row covers.  

Dr. Sutton warned us that if wind gets under any stray piece of row cover fabric, it will start 

flapping around violently and be difficult to control (Sutton, Phone interview, 2017). To mitigate 

this risk, he suggested making sure that both ends of the row covers are held down with plenty of 

weight. He mentioned the Venturi Principle, and how it will apply to the row covers given the 

difference in air pressure between the inside and outside of the covers.  

D. Ivy Wall Design 

 Russ Lang, a materials and structures lab manager at Worcester Polytechnic Institute with 

15 years of manufacturing engineering experience, evaluated the ivy wall design early in the 

project. When we expressed that we wanted the design to be cheaper and easier to assemble, 

Lang suggested a couple of improvements. First, he suggested using wingnuts to attach the 

triangular supports and base plate to the lattice frame. This would make it simple and easy to 
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disassemble the barrier into two parts. Lang also suggested that the base plate and triangular 

supports should be wider, to give the design stronger support and allow for more milk crates on 

the other side of the lattice if more weight was needed. A drawing of this updated design can be 

seen in Figure 14.  

 
Figure 14: Updated Ivy Wall Design 

Brandle stated that the ivy wall design was most similar to a traditional windbreak. In 

general, traditional porous windbreaks have a narrow protected zone, usually no more than ten 

times the height of the barrier. Interestingly, the size of the protected zone can be manipulated by 

altering the density of the ivy in this design. Overall, Brandle thought that the ivy wall design 

was very intriguing due to the potential for dynamic density of organic material. He also thought 

that this design would effectively avoid causing turbulence compared to solid wall-type barriers, 

and that this barrier would allow for a more optimized density and porosity compared to 

wheatgrass barriers.  
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When discussing ivy walls, the focus group consensus was that they were not large 

enough to physically impede work. After viewing an animation of a SolidWorks model of the ivy 

wall, the participants also stated that they would not have difficulty assembling a barrier if given 

the parts to do so. They suggested creating an infographic or guide for assembling the ivy walls. 

In response to this, a user manual was created and included in our recommendations.  

Dr. Sutton had several thoughts and concerns about the ivy wall structure that lead to 

modifications. He expressed concern about the load that wind would place on the ivy walls. He 

also suggested testing the barrier in high-speed wind conditions to ensure that it could withstand 

the conditions on the roof. This concern was addressed in our testing protocol by testing the ivy 

wall prototype on the roof of Gateway Garage. He also cautioned us to make sure that the ivy 

walls could be disassembled, so that they could be deconstructed and set aside in the winter to 

avoid undue stress from winter storms. Disassembly of the ivy wall design is simple, only 

requiring removal of the wing nuts that attach the diagonal supports to the frame. Dr. Sutton also 

stated that while Boston Ivy is a tough plant, the maturity of the ivy plant when it is placed in the 

barrier will affect its growth rate. He stated that a gallon-sized, established ivy plant will likely 

be unaffected by the harsher conditions on the rooftop, whereas planting seeds or a young plant 

in a harsh environment may stunt its growth. As such, we included this in our recommendation.  
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III. RESULTS: FURTHER IMPROVE THE WIND BARRIER DESIGNS BY CREATING AND TESTING 

WIND BARRIER PROTOTYPES 

 This section contains all the data that was collected to meet the third project objective. 

This information was obtained from wind speed measurements taken at the top of the Gateway 

parking garage, as well as from qualitative observations of wind barrier prototypes.  

A. Ivy Wall Testing 

 Effectiveness testing and stability testing were conducted with prototype ivy wall 

barriers, as described in the methodology (Figure 16). Wind speed measurements for the 

effectiveness testing were taken on four separate days between April 10th and April 15th, 2017. 

Two anemometers were used, both of the same make and model as the anemometer used for the 

wind measurements at Higher Ground Farm. One anemometer was placed on top of a milk crate 

inside an enclosure of four ivy wall prototypes, and the second anemometer was placed on a milk 

crate roughly 190 feet away at the other end of the parking garage. Ideally, the second 

anemometer would have been placed right outside the barrier enclosure, but we discovered that 

both digital displays would pick up the same signal from one anemometer if they were placed 

any closer together. The “current wind speed” measurement displayed by the anemometers is 

actually an average of the most recent 30 seconds of measurements taken by the device. It was 

not possible for us to know if this 30 second window was synced between the two anemometers; 

if it was not, then the current speed measurements would be averages from slightly different time 

intervals. This fact, combined with the distance between the anemometers which allowed the 

wind behavior to change slightly, means that individual measurements from the anemometers 

taken at the same time cannot be compared to each other. However, when taking measurements 

over a longer period of time, these inaccuracies do not significantly impact the average results. 
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Thus, we can compare the average wind speed inside and outside the barrier enclosure on each 

day of testing to get an estimation of how much the ivy wall barriers reduce wind speed. A table 

of the individual measurements gathered during this testing can be found in Table X in Appendix 

X. Figure 15 contains a bar graph comparing the average wind speeds inside and outside the 

barriers for each day of testing. The numbers above each bar indicate the numerical average wind 

speed for that data set.  

 
Figure 15: Average Ivy Wall Testing Wind Speeds 
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To interpret this data, we calculated the average amount that the ivy walls reduced wind speed as 

a percentage. First, the percent reduction for each day of testing was calculated by applying the 

formula  

  

where r is the percent reduction, si is the average wind speed inside the barriers, and so is the 

average wind speed outside the barrier. The percent reductions from the four days of testing were 

then averaged together to find the average wind speed reduction percentage caused by the ivy 

walls. The results of these calculations can be found in Table 3 below.  

 Monday Tuesday Wednesday Saturday Average 

% Reduction 43.63% 46.24% 76.55% 54.52% 55.23% 

Table 3: Ivy Wall Wind Speed Reduction Percentage 

The major conclusion of this testing was that the ivy walls reduced wind speeds by an average of 

55%. This proved that the ivy walls would effectively protect crops from harsh winds.  

The ivy wall stability test was conducted over four days (April 24th to April 27th, 2017) by 

leaving an ivy wall at the testing site with a plastic sheet attached to the lattice face for four days 

(Figure 17). The barrier was held down by 200 lbs of sandbags placed on the baseplate. This 

weight in soil would fill the three milk crates intended to hold the ivy plant. Throughout the four-

day testing period, we checked on the barrier once per day to inspect it for physical damage or 

deformation. During periods of observation, the barrier was stable and remained grounded, and 

after the testing period, the barrier had not sustained any physical damage. This was confirmed 

by disassembling the barrier so that each part could be felt for weakness or damage that was not 

visibly apparent. Online wind speed measurements from the four-day testing period were 
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consulted to understand the conditions that the barrier was tested in. Data from Worcester 

Regional Airport (~ 4 miles from Gateway garage), found at wunderground.com, revealed that 

the largest wind speed recorded during the testing period was 29 mph (“Weather History”, n.d.). 

A chart with the average wind speeds, maximum wind speeds, and maximum gust speeds from 

the four testing days can be found below in Table 4.  

 April 24 April 25 April 26 April 27 

Average Wind Speed 8 mph 12 mph 9 mph 5 mph 

Maximum Wind Speed 18 mph 17 mph 16 mph 14 mph 

Maximum Gust Speed 22 mph 29 mph 23 mph 19 mph 

Table 4: Worcester Regional Airport Wind Speed Data 

The average wind speeds on all days except April 27th were higher than the largest average wind 

speed that we measured at Higher Ground Farm (6.5 mph), and the maximum speeds and 

maximum gusts from all four days far exceeded the average wind speeds measured at Higher 

Ground Farm. Based on this, we can conclude that the ivy wall barrier is strong enough to 

withstand the conditions on Higher Ground Farm and other rooftop farms, even if the ivy 

becomes very thick due to infrequent trimming by farmers.  
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Figure 16: Wind Speed Reduction Testing 

 

Figure 17: Stability Testing 
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B. Row Cover Testing 

 Functionality testing of the carabiner attachment mechanism was conducted with a small 

section of row covers, as described in the methodology. Two rows of four milk crates were used 

to simulate a small section of the planter rows at Higher Ground Farm. Four 50 lb sandbags were 

used to weigh down the row covers in place of soil, one in each of the four milk crates at the end 

of the row. The milk crates were then zip-tied together to ensure that they stayed in place. One 

metal hoop was placed at each end of the milk crate row. Polypropylene fabric with 70% light 

permeability, ½” grommets, and 1” carabiners were used when setting up the row covers. A 

grommet tool kit was used to attach the grommets to the row cover fabric.  

The row covers were first tested while in the “closed” position (Figure 18). Observation 

revealed that the carabiner attachment mechanism kept the row cover fabric secure, and allowed 

the covers to be held under slight tension so that the fabric was not loose. We noticed some slight 

fabric tearing around one of the grommets that was attaching the corner of the fabric to the milk 

crates (Figure 19). To address this issue, we altered the row cover design to increase the 

durability of the row covers by employing a heavier fabric. The heavier fabric is less permeable 

to light (60% permeability), but will be more resistant to tearing. We also noticed that the 1” 

carabiners were difficult to attach to some of the milk crates made with thicker walls. To address 

this, we altered our recommendations and user manual to include slightly larger carabiners. This 

will ensure that it is easy to attach the covers to milk crates from any manufacturer. Wind speed 

reduction testing could not be conducted with the row covers because the anemometer was too 

large to fit inside the covers. However, during wind gusts, we qualitatively compared the wind 

speeds inside and outside of the row covers by holding one arm inside the covers. There was a 
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noticeable difference between these wind speeds, and even during strong gusts, the wind inside 

the covers felt only like a light breeze.  

Opening the row covers confirmed that the process is simple and control over the fabric 

is maintained throughout the transition. The process took roughly one minute to complete. Given 

the size of the test setup, we can estimate that it would take a worker at Higher Ground Farm 

roughly four minutes to open or close the row covers on one planter row.  

Observing the row covers while in the “open” position revealed that the carabiner 

attachment mechanism kept the row covers from flapping in the wind (Figure 20). The 

placement of the carabiners in the fabric (at the end of the fabric width and at half the width) 

ensured that the covers did not take up a lot of space behind the row of milk crates while in the 

open position. The covers were left in this position overnight during rainy weather, and they 

were inspected for damage or weakness the next day. This showed that the durability of the row 

covers is not impacted by rain.  

Prototype testing of the ivy wall barriers and row covers confirmed that they effectively 

reduce wind speeds, and are durable in windy conditions. The exercise of constructing the 

barriers allowed us to provide specific, easy to follow instructions in the user manual.  
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Figure 18: Row Cover Testing (Closed) 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 19: Fabric Damage                 Figure 20: Row Cover Testing (Open) 
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RECOMMENDATIONS 

 The goal of this project was to design wind barriers that provide effective protection for 

crops at Higher Ground Farm and other urban rooftop farms. This section contains our 

recommendations for how to accomplish this, for both John Stoddard and other urban rooftop 

farmers.  

I. RECOMMENDATIONS FOR HIGHER GROUND FARM 

 Our barriers were designed to address the unique conditions present at Higher Ground 

Farm. We recommend constructing ivy walls and placing them around the tomato planter rows to 

mitigate the wind damage to the tomato plants. Ivy walls have the height needed to fully protect 

tall tomato plants, and the stability to stay upright in fast wind conditions due to their triangular 

supports, wide base, and the soil-filled milk crates that weight them down. We recommend using 

three soil-filled milk crates, with a mature Boston ivy plant in the middle milk crate. Mature ivy 

will function better than growing the ivy from seeds because the infant ivy’s growth could be 

stunted by the windy conditions on the roof.  

The barriers should surround the planter rows on all sides to adequately protect the 

tomato plants, given the wind conditions present on the farm. Stoddard uses a rotating crop 

system in which the type of plant that is seeded in a section of planter rows changes every year 

on a set rotation. As such, the number of ivy walls needed each year will vary with the 

dimensions of the section of planter rows that will contain tomato plants. Based on the dimension 

of all planter row sections, 10 ivy wall barriers would be the maximum number needed for a 

season. The cost of constructing 10 ivy wall barriers would be $896.86, at an individual cost of 

$89.69 per barrier. Four ivy walls were constructed during this project for testing purposes, and a 

breakdown of the cost for these barriers can be found in Appendix E. Boston ivy plants were not 
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purchased for the prototype testing because we did not have enough time to adequately grow the 

ivy on the lattice. Instead, a price for the ivy plants was found online. This price, as well as the 

prices of the materials we purchased for prototype testing, were used to estimate the individual 

cost of a single ivy wall barrier. The user manual that we created contains detailed instructions 

about how to construct and assemble the ivy wall barriers.  

We recommend that John Stoddard use row covers to protect the remaining planter rows. 

These rows all contain plants that grow close to the soil, and row covers are a cheap solution that 

provides complete coverage and take up minimal space. Row cover hoops should be placed one-

foot deep into the soil of the planter rows every four to five feet. Row cover fabric should be cut 

to size so that one foot of fabric can be tucked underneath the milk crates, and the other end can 

overhang enough so that the carabiner fasteners can be secured to the sides of the milk crates. 

For the planter rows at Higher Ground Farm, this width should be roughly 6’ 8”. The length is 

less important, as the fabric can be placed in pieces and overlapped to cover the entire length of a 

row. Holes for the carabiners, with grommets to protect the fabric, should be placed every four to 

five feet, in line with the placement of the hoops. Holes for attachment to the milk crates should 

be placed an inch in from the overhanging end of the fabric, and holes for attachment to the 

hoops should be placed 2 feet in from the overhanging end. When pulling back the row covers to 

expose the crops, the fabric should be unfastened from the milk crate one carabiner at a time, and 

refastened open to the other side of the milk crate. Each carabiner should be refastened open 

before moving on to unfasten the next carabiner. Using this method will ensure that the most 

control possible is maintained over the plastic’s movement at all times, and prevent the plastic 

from flapping in the wind and disrupting farm work. The cost of placing row covers on all the 

Higher Ground Farm planter rows that don’t contain tomato plants would be $1240.32, at a cost 
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of $25.84 per planter row. This cost was estimated assuming that the hoops and fabric would be 

bought in bulk, and that bulk split rings would be used instead of carabiners, as they are much 

cheaper this way. For the prototype testing, these items were not bought in bulk. 4.3’ of row 

covers were constructed during this project for testing purposes, and a breakdown of the cost for 

these covers can be found in Appendix E. The costs and sources for the bulk materials used in 

calculating the costs listed above are also included in this appendix. The user manual that we 

created contains detailed instructions about how to assemble and use the row covers and the 

attachment mechanism. We are not recommending that John use grass barriers because the 

walking paths between rows on his farm are too small to adequately fit grass barriers.  

II. RECOMMENDATIONS FOR OTHER ROOFTOP FARMS 

 The previous recommendations apply specifically to Higher Ground Farm. However, our 

barrier designs can be used on other rooftop farms. We recommend that any rooftop farm that 

struggles with wind damage consider row covers. This design is inexpensive and simple, and it 

protects crops completely from wind damage. Modifications to the attachment mechanism may 

be required in other situations, as our design relies on the milk crate planters used at Higher 

Ground Farm. For example, on rooftop farms that have dirt covering the entire rooftop, weights 

such as bricks might be used to secure the ends of the fabric instead of carabiners. Covering an 

18’ x 2’ area with row covers would cost roughly $25.84. For any crop that is too tall to be 

effectively covered by row covers, we recommend our ivy wall design. This design is effective at 

protecting larger crops. This design can be applied to areas of any size, as the individual wall 

units attach together easily and can be used to create corners. As such, creating a perimeter of ivy 

walls around appropriate crops is feasible in any situation, provided the perimeter of the intended 

protected area is calculated. The ivy wall barriers are each 8’ wide by 5’ tall, and each individual 



61 

 

barrier costs $89.69. Using this information, the number of individual ivy walls needed can be 

calculated, as well as the total cost. 

  



62 

 

CONCLUSION 

 The goal of this project was to design wind barriers that protect crops at Higher Ground 

Farm and other urban rooftop farms. This goal was accomplished by designing, building, and 

testing a set of wind barriers, and providing a user manual so that these barriers could be used on 

other rooftop farms. The designs provided will reduce wind damage to the crops, increasing crop 

yield and overall profit for Higher Ground Farm and other rooftop farms. 

Prior to the completion of this project, there was a gap in information regarding effective 

wind barriers for rooftop farms. Through our work, we filled this gap by compiling information 

about rooftop wind dynamics, wind damage to crops, and ground-level wind barriers. We also 

refined the properties of these barriers to meet the unique needs of rooftop farms, developed and 

tested these designs, and created a user manual to relay our wind barrier design 

recommendations. By compiling information, we have created a resource for existing and future 

rooftop farmers to learn about unique issues of wind damage on urban rooftop farms and to 

compare existing wind barrier designs.  

There is still more research to be considered in the future. One concern that several 

rooftop farmers and wind barrier experts had was the impact of seed spreading when using 

organic grass barriers. Rush wheatgrass and little bluestem could potentially spread their seeds 

into the soil of the crops themselves. Since these barriers were not included in our 

recommendation to our sponsor, we did not perform testing in response to this concern. As such, 

anybody planning on using organic grass barriers should take this into consideration. 

Another future consideration would be more rigorous wind speed testing over several 

months. Due to time constraints, we were only able to perform one day of wind speed testing at 

Higher Ground Farm. This data allowed us to better understand the wind patterns at the farm. 



63 

 

However, with several months of wind data from Higher Ground Farm, we would be able to 

more accurately characterize wind behavior with statistically-significant data. 

 Rooftop farms and urban agriculture make cities more sustainable. Direct environmental 

benefits of rooftop farms include reducing energy consumption, improving storm water 

management, improving city air quality, and reducing carbon emissions. Cities are also supplied 

with local produce by utilizing urban rooftops, which reduces travel distance of fresh produce, 

increases urban food security, and helps to prevent the over-irrigation of rural areas. By 

designing wind barriers and increasing crop yield at rooftop farms, this project supports the 

growth of urban agriculture and a more sustainable food system. 
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APPENDIX A: INTERVIEW WITH URBAN AGRICULTURE ENTREPRENEUR  

I. INTRODUCTION SCRIPT 

Moderator introduces himself and thanks participant for giving up their time to be 

interviewed. Moderator informs interviewee that this interview should only take about 30 

minutes of their time. “This interview is part of a project to design wind barriers for Higher 

Ground Farm, a rooftop farm located here in Boston. We are currently considering three barrier 

designs: wheatgrass barriers, row covers, and ivy walls. I will be asking you some questions 

about your experiences with wind and wind damage at your farm. I will then ask you about 

solutions to the wind problem. Any input you can give related to designs that you have tried or 

that you have seen implemented, as well as the design’s effectiveness, will be greatly 

appreciated.  In addition, you have the option to retain your anonymity.  If you choose to remain 

anonymous, no personal identifying information such as your name, or the name of your farm, 

will be included in our final report.  If you do not choose to remain anonymous, you will be 

given the opportunity to review any quoted material from this interview before it is published in 

our final report.” 

II. GUIDING QUESTIONS 

● How does wind impact your farm? 

○ How often do wind-related problems occur? 

○ What crops are most/least affected by wind damage? 

○ How does the wind specifically damage crops? 

○ How costly overall is the damage? (financially, supplies, time, crop yield) 

● Have you implemented wind shielding or any other way of addressing wind damage? 

○ If so: 

■ Overview of the design?  
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■ What was the development process like? Were you directly involved in 

the development? 

■ What materials were used? Why? 

■ What was the overall cost? 

■ How effective is the design? 

○ If not: 

■ Why not? 

■ Do you have any way of dealing with wind? Is wind at all an issue to you? 

■ Are you considering implementing some form of wind shielding? 

■ Have you seen other urban farms implement some form of wind 

shielding? 

○ Would you consider implementing any of our current designs on your farm if they 

were shown to be effective? 

● Are there any other weather or natural conditions that pose a significant threat to crop 

health and yield? 

○ Do you have methods to address them? 

■ If so, what are they? 

Thank the interviewee for their time.  
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APPENDIX B: FOCUS GROUP OF HIGHER GROUND FARM VOLUNTEERS 

 

I. INTRODUCTION 

 

Moderator introduces himself and thanks participants for giving up their time to be in the 

focus group. “This focus group is part of a project to design wind barriers for Higher Ground 

Farm in Boston. At this point, we have developed several designs intended to protect crops from 

wind damage. Through this focus group, our goal is to determine how each design could 

potentially disrupt farm work.”   

II. RULES AND GUIDELINES 

 

“We want to create an atmosphere where all participants feel comfortable sharing their 

honest opinions. To accomplish this, I ask that all of you remain courteous and respectful if you 

have an opinion that differs from another participant. Please do not talk over or interrupt other 

participants when they are sharing their thoughts, and make sure that everyone has a chance to 

voice their opinion. Please also keep in mind that all responses will be anonymous, and no 

identifying information such as your names, gender, or ages will be included in our final report.”   

III. QUESTIONS 

 

1. Have you noticed wind damage affecting the crops at Higher Ground Farm? 

a. Show participants images with examples of wind damage. 

“We have developed a set of potential designs and have concept images for each design. Briefly 

explain designs and send reference images. Based on your experiences working at the farm, 

think about how these designs would impact farm work.” 

2. Which design do you think would inhibit farm work the most? 

a. Why? What features of the design do you think would cause the most 

interference? 
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b. Would you change anything about this design to make it less disruptive to work 

around? 

3. Which design do you think would inhibit farm work the least? 

a. Why? What features of the design do you think make it least disruptive? 

b. What would you change about the design to make it even less disruptive? 

4. How would the other designs interfere with routine tasks? 

a. What would you change about them to make them less disruptive? 

5. How difficult do you think it would be for you as a HGF volunteer to assemble any of 

these barriers for John if you were provided with the raw materials, and there was already 

a constructed barrier on the farm for reference? 

a. Do you think any one of the designs would be more difficult than the rest?  Why? 

b. Do you think any of the designs would be easier than the rest?  Why? 

6. Are there any of the designs that you think would not be durable enough to withstand the 

conditions you’ve experienced on the roof? 

a.  What experiences have you had that make you think the design(s) would not hold 

up? 

7. Any other thoughts? 

Thank the participants for their time.  
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APPENDIX C: INTERVIEW WITH WIND BARRIER EXPERT 

I. INTRODUCTION SCRIPT 

Moderator introduces himself and thanks participant for giving up their time to be 

interviewed. Moderator informs interviewee that this interview should only take about 30 

minutes of their time. “This interview is part of a project to design wind barriers for Higher 

Ground Farm, a rooftop farm located in Boston. I will be asking you some questions about your 

experience with wind barriers. I will also be asking for your thoughts on our current designs. 

Any thoughts or critiques you can offer for our designs will be greatly appreciated. For your 

knowledge, you have the option to retain your anonymity.  If you choose to remain anonymous, 

no personal identifying information such as your name, or the name of your organization, will be 

included in our final report.  If you do not choose to remain anonymous, you will be given the 

opportunity to review any quoted material from this interview before it is published in our final 

report. 

Our current designs are row covers, wheatgrass barriers, and ivy walls. I’ll briefly explain 

each one to give you context for the discussion. Row covers are sheets of perforated 

polypropylene that are secured above crops.  Their shape is held with metal hoops placed at 

intervals along the crop rows. Wheatgrass barriers will consist of a milk crate filled with soil and 

seeded with Rush wheatgrass. Ivy walls will consist of a wooden trellis in a wooden frame. 3 

milk crates, filled with soil with one Boston ivy plant in the middle crate, will be placed in a 

holding tray at the bottom of the trellis and the ivy will be allowed to grow and attach itself to the 

trellis.” 
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II. QUESTIONS 

1. Are there any barrier designs that you’ve seen successfully implemented for the purpose 

of protecting crops that would be viable for a rooftop farm? 

a. How successful were these designs at reducing wind speed? 

2. We understand that trees and shrubs are usually the best option for a wind barrier due to 

the large surface area provided by the leaves, and their ability to break up wind without 

causing turbulence. Obviously, trees are not a viable solution on a rooftop. What wind 

barrier designs are you familiar with that emulate these qualities? 

a. Have you encountered any lightweight and affordable ways to implement these 

design(s)? 

b. How effective were these design(s) at reducing wind speed? 

c. Are there any other barrier designs that you have encountered that you think 

would be viable in our situation? If so, how effective were they? 

3. Which of our designs do you think will be the most effective at reducing wind speeds in 

the protected region? 

a. Why? 

b. Can you think of any improvements we could make that would make this design 

even more effective? 

4. Which of our designs do you think will be the least effective at reducing wind speeds? 

a. Why? 

b. Can you think of any improvements you would make to this design to increase its 

effectiveness? 
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5. We recently took wind speed and direction measurements on the rooftop farm. While the 

results of these measurements are not statistically significant, they have given us a basic 

understanding of the minimum wind strength that our barriers must be able to operate in. 

The strongest wind we measured that day was 9.9 mph. Based on your experience, do 

you think any of our designs will not be durable enough to withstand long-term exposure 

to wind on the roof? 

a. If so, what would you change about those designs to make them more durable? 

Thank the interviewee for their time.  
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APPENDIX D: INTERVIEW WITH RUSS LANG GUIDE SHEET 

I. INTRODUCTION 

 Moderator introduces himself and thanks participant for giving up their time to be 

interviewed. Moderator informs interviewee that this interview should only take about 30 

minutes of their time. “We are conducting this informal interview to get your input on the 

structural integrity of our barrier designs, as well as any advice you can give us in the building 

and testing stages of our project. If you choose to remain anonymous, no personal identifying 

information such as your name will be included in our final report.” 

II. GUIDING QUESTIONS 

● Do you think our designs will remain standing over long periods of time in high winds on 

a Boston rooftop? 

○ Possible sub-topics: 

■ Which barriers do you think are better and for what reasons? 

■ Are there certain features of each design that are beneficial? 

■ Are our choices of hardware appropriate? 

■ What edits can we make to our designs to make them more structurally 

sound? 

■ Are our choices of building materials appropriate? 

■ Do you think we should use a paint-primer, or use pressure treated 

lumber? 

● In the testing stage, we were considering using fake ivy to simulate real ivy, will fake ivy 

simulate the aerodynamic properties of real ivy? 

○ Possible sub topics 
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■ Are there any other ways of testing the designs effectiveness? 

● Do you have any other questions or input on our project? 

Thank the interviewee for their time.  
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APPENDIX E: PROTOTYPE WIND BARRIER COSTS 

Item Quantity Source of Item Total Cost 

Wooden lattice 4 Home Depot $52.82 

⅜” Washer 32 “     ” $4.80 

⅜”x4.5” Carriage Bolt 24 “     ” $20.92 

⅜” Wing Nut 32 “     ” $20.80 

⅜”x6” Carriage Bolt 8 “     ” $8.56 

⅝” Screw 1 Jar “     ” $8.99 

4”x8”x0.5” Plywood Sheet 2 “     ” $51.10 

2”x4”x8’ Pine Plank 24 “     ” $71.76 

Boston Ivy Plant (mature) 4 NatureHills.com $119.00 

Table 5: Cost of Four Ivy Wall Barriers 

Item Quantity Source of Item Total Cost 

Row Cover Fabric (“Garden 

Quilt Cover”) 

6’ x 20’ Gardener’s Supply Company $12.95 

Row Cover Fabric (“Garden 

Quilt Cover”) 

6’ x 50’ “      ” $23.95 

Row Cover Hoops (“Super 

Hoops”) 

6 “      ” $22.95 

“Standard” Row Cover Hoops  100 Arbico Organics $106.00 

½” Grommets 12 Home Depot $3.44 

1” Carabiners 10 “      ” $8.95 

1” Metal Split Rings 100 Amazon.com $5.60 

Table 6: Cost of Row Covers for 4.3’ of Planter Row 
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APPENDIX F: WIND MEASUREMENT RAW DATA 

Table 7: On Site Wind Measurement Data 
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Table 8: Ivy Wall Wind Speed Measurements 
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APPENDIX G: REJECTED WIND BARRIER DESIGNS 

 This appendix describes designs from earlier stages of the project. These designs were 

eventually modified or rejected due to flaws or deficiencies. This section will discuss each 

design and our thought process when designing it, and the reason(s) that we decided to not 

include that design in our recommendation. 

I. INEXPENSIVE IVY WALL 

 The inexpensive ivy wall design was the initial iteration of our ivy wall design. This 

design was intended to be inexpensive, and to rely on the weight of soil in milk crates to support 

the lattice. A sketch of this design is shown below. However, Russ Lang questioned the stability 

of this design in our interview. He suggested that we add gussets, as the lattices are flimsy and 

would need support during harsher weather conditions. We then modified this design, and these 

modifications resulted in the final ivy wall design that was tested and ultimately recommended to 

John Stoddard. 
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II. BRACKET MOUNTED BARRIERS 

 The bracket mounted barrier was one of our initial designs that we developed during 

ID2050. This design was created before we had visited Higher Ground Farm, so we had limited 

knowledge of the farm’s layout. This design was developed because it is maneuverable, 

lightweight, durable, and easy to assembly. It also did not require any space on the ground, so it 

would be usable regardless of the space available at Higher Ground Farm. We knew that there 

were concrete parapet walls surrounding the perimeter of the roof. As such, we developed a basic 

wall-type wind barrier that would attach to the parapet walls with brackets. As shown below, the 

walls would be attached to stakes, which would slide easily into the brackets on the parapet wall. 

However, we learned that solid wall-type wind barriers create turbulence that can cause more 

wind damage to crops. As such, we did not include this design in our recommendation. 
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III. ROW SIZED GREENHOUSES 

 The row sized greenhouse design was developed after some initial research into 

conventional wind barriers. We learned that greenhouses are one of the most effective wind 

barrier, as they completely protect all enclosed crops from wind damage. However, building a 

large greenhouse at Higher Ground Farm was not feasible, as it would be well over John 

Stoddard’s budget. As such, we developed our own row sized greenhouse design. The goal of 

this design was to be affordable while fully protecting crops. As shown below, this design 

simulates the conditions inside a greenhouse by completely surrounding the crops. However, this 

design was still much more expensive than row covers. In addition, this design would require 

much more construction time. As such, we did not include this design in our recommendation. 

 

 


