
Single Function Agents and their

Negotiation Behavior

in Expert Systems

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Master of Science

in

Computer Science

by

Bertram V. Dunskus, August 24, 1994

Approved:

Professor David C. Brown, Major Advisor

Professor Robert E. Kinicki, Department Head

Single Function Agents and their Negotiation Behavior in Expert Systems

ii

Abstract

A Single Function Agent (SiFA) is a software agent, with only one function, one point of

view, and one target object on which to act. For example, an agent might be a critic (func-

tion) of material (target) from the point of view of cost. This research investigates the pos-

sibilities and implications of the SiFA concept, and analyzes the definition language,

negotiation language and negotiation strategies of the agents.

After defining a domain-independent set of agent types we investigated negotiation, ana-

lyzing which pairs/groups of agents have reason to communicate, and what the informa-

tion passed between them should be, as well as what knowledge was needed to support the

negotiation.

A library for the CLIPS expert system shell was built, which allows development of SiFA

based expert systems from domain independent templates. We will present two such sys-

tems, one as implemented for the domain of ceramic component material selection and the

other (in development) for simple sailboat design. The effect of negotiation on the design

process and the results are discussed, as well as directions for future research into SiFAs.

Single Function Agents and their Negotiation Behavior in Expert Systems

iii

This work is dedicated to my parents, who made my graduate studies possible and sup-

ported me all through it, as well as my Volker and Mary Ulbrich, who motivated me to go

to WPI and made my life in the USA easier and more interesting.

Single Function Agents and their Negotiation Behavior in Expert Systems

iv

Acknowledgments

Many people, far too numerous to be named individually, should be mentioned in this sec-

tion. I would like to thank all of them, for their support and inspitaration.

However, my specific gratitude goes to Prof. David Brown, for his continous support and

guidance through my entire studies at WPI; Prof. Lee Becker for inspiration and for read-

ing this work; Digital Equipment Corp. for developing the Alpha and for the research

grant to the AI group that helped me put so much effort into this work; Phil Tomlinson for

his patience and constructive help in the development of SINE; Dan Grecu and Cindy

Heitzmann for their support in starting the research into SiFAs; Pete McCann for keeping

I3D alive and for evaluating SINE; as well as Gary Riley and Brian Donnell, developers

of CLIPS and always online, without whom the platform never would have worked. Spe-

cial thanks also go to the developers of XMosaic for inventing the world’s best procrasti-

nation tool.

On the ‘not so academic side’ my special thanks go to Jonathan Kemble for his creative

support, the user interface, the helpful UNIX hints, and all the fun hours (days, weeks,

months?) we had together; Jenn Greenhalgh for her love and patience; Ilan Berker for

bringing life into our office, and all the people at Masque for making WPI so ‘dramatic’.

Finally, I would like to mention all the faculty and staff in the CS department for their sup-

port; not to forget the systems people who were always at hand, and Prof. Wills for allow-

ing me into the graduate program. These studies were also supported by a small grant

from the Dr. Jost Henkel Stiftung in Germany, which made life much easier.

Single Function Agents and their Negotiation Behavior in Expert Systems

v

Table of Contents

CHAPTER 1 Introduction . 1

1.1 Overview . 1

1.2 Goals of the Thesis . 2

1.2.1 Basic Assumptions . 2

1.2.2 Exploration of the SiFA Paradigm . 3

1.2.3 Building and Using a Prototype System 4

1.3 Motivation . 5

1.3.1 Practical Motivation . 5

1.3.2 Theoretical Motivation . 6

1.4 Negotiation . 7

1.5 Single Function Agents . 9

1.6 Conventions . 11

1.7 Summary . 12

CHAPTER 2 Previous Work . 13

2.1 Introduction . 13

2.2 Cooperation . 14

2.3 Conflict Resolution . 15

2.3.1 General Systems . 16

2.3.2 Design Systems with Conflict Resolution 18

2.4 Negotiation . 20

2.4.1 Generic Negotiation Systems . 20

2.4.2 Negotiating Systems in the Design Domain 23

Single Function Agents and their Negotiation Behavior in Expert Systems

vi

2.5 Communication . 24

2.5.1 Internal-only Communication . 25

2.5.2 Speech Acts . 25

2.5.3 Hybrid Communication Architectures 26

2.5.4 KQML Knowledge Query and Manipulation Language . . . 27

2.5.5 KIF . 30

2.5.6 SHADE . 31

2.6 SiFA Systems . 32

2.6.1 Sneakers . 32

2.6.2 I3D . 34

2.6.3 I3D+ . 35

2.7 Summary . 37

CHAPTER 3 SiFAs and Negotiation . 39

3.1 Introduction . 39

3.2 Agent Types . 39

3.2.1 Selector/Advisor . 40

3.2.2 Estimator . 40

3.2.3 Evaluator . 41

3.2.4 Critic/Praiser . 42

3.2.5 Suggestor . 42

3.3 Conflict Occurrences . 43

3.3.1 Estimator related Conflicts . 44

3.3.2 Evaluator related Conflicts . 45

3.3.3 Selector related Conflicts . 46

3.3.4 Critic/Praiser related Conflicts . 49

3.3.5 Suggestor related Conflicts . 50

3.4 Conflict Types . 52

Single Function Agents and their Negotiation Behavior in Expert Systems

vii

3.5 Conflict Resolution . 53

3.6 Negotiation Strategies . 54

3.7 Knowledge Requirements . 55

3.8 Functional Requirements . 55

3.9 Summary . 56

CHAPTER 4 SINE: A Platform for Negotiating SiFAs 57

4.1 Introduction . 57

4.2 Goals . 57

4.3 Architecture . 59

4.3.1 Agent Topology . 59

4.3.2 Data Flow and Negotiation Links . 60

4.3.3 Knowledge Representation . 62

4.3.4 Communication . 63

4.3.5 Conflict Detection and Notification 73

4.3.6 Conflict Resolution . 74

4.3.7 Agent Scheduling and Control Flow 76

4.4 Agent Design . 77

4.4.1 Selector/Advisor . 80

4.4.2 Estimator . 84

4.4.3 Evaluator . 84

4.4.4 Critic . 86

4.4.5 Suggestor . 88

4.5 Summary . 88

CHAPTER 5 Implementation of SINE . 89

5.1 Introduction . 89

Single Function Agents and their Negotiation Behavior in Expert Systems

viii

5.2 Programming Environment . 89

5.3 Classes and Inheritance . 92

5.3.1 History Class . 93

5.3.2 Message Class . 93

5.3.3 Design Object Class . 93

5.3.4 Target-Type Class . 97

5.4 Agent Implementation . 97

5.5 User Interface . 101

5.6 Summary . 101

CHAPTER 6 Evaluation . 103

6.1 Introduction . 103

6.2 Theoretical Achievements . 104

6.3 Simulation of I3D+ Conflicts 105

6.3.1 Selectors . 105

6.3.2 Estimators . 106

6.3.3 Evaluators . 106

6.3.4 Critics . 107

6.3.5 Design Process . 107

6.4 Design System Example with derived Attributes . . . 109

6.4.1 Selector . 110

6.4.2 Estimator . 111

6.4.3 Evaluator . 111

6.4.4 Negotiation . 112

6.4.5 Conclusion . 112

6.5 Adaptation to new Domain — Sailboat Design 112

6.5.1 Design Parameters and Attributes 113

Single Function Agents and their Negotiation Behavior in Expert Systems

ix

6.5.2 Conflicts . 114

6.5.3 State of the Implementation . 115

6.5.4 Impressions from the Sailboat Designer Developer 115

6.6 Comparison to other SiFA Systems 117

6.6.1 General Aspects . 118

6.6.2 Development and Implementation 119

6.7 Comparison to Systems with larger Agents 120

6.8 System Performance . 121

6.8.1 Development Process . 121

6.8.2 Runtime Performance . 123

6.8.3 System Maintenance . 125

6.9 Understandability . 126

6.10 Summary . 127

CHAPTER 7 Conclusions . 129

7.1 Results of the Research into SiFA Negotiation 129

7.2 Results of Design and Use of the SINE Platform . . . 130

7.3 Future Work . 130

7.4 Summary . 133

APPENDIX A Users’ Guide . 134

A.1 Introduction . 134

A.2 Components of a SINE-based Design Expert System . . 134

A.3 Requirement Specification . 135

A.4 Changing the Data Files . 136

A.5 Starting the Design Expert System 137

Single Function Agents and their Negotiation Behavior in Expert Systems

x

A.6 Activating the Design Process . 138

A.7 Using the SINE Multiwindow Interface 140

APPENDIX B Developers’ Guide . 141

B.1 Introduction . 141

B.2 Problem Definition . 141

B.2.1 Problem Analysis . 142

B.2.2 Specification of Functions, Targets and Points of View 142

B.2.3 Design Parameter Definition . 143

B.3 Implementation . 146

B.3.1 Building Agents . 146

B.3.2 Design Knowledge . 147

B.3.3 Negotiation Knowledge . 148

B.3.4 Building the Data Base . 148

B.3.5 Defining Routers . 149

B.3.6 Configuring the Interface . 149

B.4 Setup File . 149

B.5 Testing . 151

APPENDIX C Negotiation Output Traces 152

C.1 Introduction . 152

C.2 Annotated Conflicts . 152

C.2.1 Selector-Selector Conflict . 152

C.2.2 Estimator-Selector Conflict . 153

C.2.3 Critic-Selector Conflict . 154

C.2.4 Critic-Estimator Conflict . 155

C.2.5 Evaluator-Estimator Conflict . 156

Single Function Agents and their Negotiation Behavior in Expert Systems

xi

C.3 I3D+ Conflict Simulation . 157

C.4 I3D+ Conflict Simulation with Information Gaps 163

REFERENCES Bibliography . 176

Single Function Agents and their Negotiation Behavior in Expert Systems

xii

List of Figures

1-1 SiFA Definition . 9

1-2 SiFA Dimensions . 11

2-1 Klein’s Conflict Resolution Approach . 19

3-1 Functionality of the Selector Agent Type . 40

3-2 Functionality of the Estimator Agent Type. 41

3-3 Functionality of the Evaluator Agent Type. 41

3-4 Functionality of the Critic and Praiser Agent Type . 42

3-5 Functionality of the Suggestor Agent Type . 42

4-1 Data Flow in SINE . 60

4-2 Negotiation Links in SINE . 61

4-3 Speech Act Example . 64

4-4 Control Flow during Negotiation in SINE . 77

4-5 SINE Agent Structure . 77

4-6 The Components of SINE. 79

4-7 Selection Process . 82

4-8 Evaluator Functionality. 85

4-9 Critic Functionality . 87

5-1 SINE Class Hierarchy . 92

5-2 SINE: Multiple Inheritance for Agents. 98

5-3 Activation of Rule Modules in SINE . 99

5-4 Activation of Modules and Objects during CR. 100

5-5 SINE Multiwindow Interface . 102

Single Function Agents and their Negotiation Behavior in Expert Systems

xiii

6-1 Data Flow and Negotiation Links in the Material Selection Example 108

6-2 Data Flow and Negotiation Links in the Derived Attribute Example 110

6-3 Analysis of the Rule Base for I3D+ Simulation . 122

6-4 Analysis of the Algorithmic Parts of the I3D+ Simulation 123

6-5 Runtimes of the I3D+ Simulation. 125

Single Function Agents and their Negotiation Behavior in Expert Systems

xiv

List of Tables
2-1 Conflict Situations in I3D+ .36

3-1 Conflicts: Partners, Causes and Resolution .43

4-1 Agenda Manager .76

5-1 Parameter Update Requests and Reactions. .94

5-2 Constraint Types .96

6-1 Material Bend-Strength Selector . 105

6-2 Material Thermal-Conductivity Selector . 106

6-3 Material Cost Estimator . 106

6-4 Material Oxidation-Performance Evaluator . 106

6-5 Material Wear-Performance Evaluator . 107

6-6 Material Cost Critic . 107

6-7 Material Thermal-Conductivity Evaluation Selector 110

6-8 Material Thermal Conductivity Estimator . 111

6-9 Material Thermal Conductivity Evaluation Evaluator 111

Single Function Agents and their Negotiation Behavior in Expert Systems 1

CHAPTER 1 Introduction

1.1 Overview

This thesis is structured into seven chapters. The first, this introduction, explains the goals

and motivations of the underlying work. It then proceeds to explain the basic principles of

conflict resolution, negotiation and the paradigm of Single Function Agents (SiFAs), that

build the foundation of this research.

The second chapter analyzes the work in this and related fields of research. Existing

research into cooperation, conflict resolution, negotiation and software agent communica-

tion is presented. Also, three existing systems using Single Function Agents, i.e., Sneak-

ers, I3D and I3D+, are discussed.

The analysis of negotiation between Single Function Agents forms the third chapter.

Issues in this section are, where negotiation occurs, what kinds of conflicts lead to it and

how they can be resolved. We also discuss the knowledge and functional requirements for

the SiFAs.

In the fourth part, SINE, a platform for implementation of and experimentation with

SiFAs is introduced and discussed. The goals of its design, architecture, communication

language and knowledge representation are explained here. Also, the functionality of con-

Single Function Agents and their Negotiation Behavior in Expert Systems

1.2 Goals of the Thesis 2

flict detection, notification and resolution are presented, as well as the designs of the indi-

vidual agent types.

The fifth chapter discusses the implementation of SINE, describing the CLIPS program-

ming environment, the object class structure, the implementation of the individual agent

types and the graphical user interface. It concludes with a description of how the SINE

platform was used for the implementation of a prototype sailboat design tool.

In the sixth chapter, we evaluate the SINE system. We first shows how some of the I3D+

conflicts were simulated with the platform. Then we demonstrate a sample SiFA domain

with a more complicated dependency structure. After that we describe an ongoing imple-

mentation of SiFAs for the domain of Sailboat Design. We then compare SINE to other

SiFA systems, evaluate its understandability, analyze its performance and compare it to

systems with larger agent sizes.

In the conclusion, we summarize the insights drawn from the research and the experiences

from the development of and work with the platform. To finish up, we present opportuni-

ties for future research in the field of SiFAs.

Let us now proceed to the goals that motivated this thesis.

1.2 Goals of the Thesis

1.2.1 Basic Assumptions

The premise of this research is that Design Expert Systems can be built using many small,

cooperating, limited function expert systems — referred to as SiFAs. The belief is that by

using this approach we will be able to discover and investigate primitive problem-solving

Single Function Agents and their Negotiation Behavior in Expert Systems

1.2 Goals of the Thesis 3

components and primitive conflict resolution (CR) strategies in design systems. The

approach should also lead to a deeper understanding of the types of knowledge involved.

It stands in contrast to much of the current research in CR in design systems, which

assumes powerful agents with relatively unconstrained functionality and knowledge.

1.2.2 Exploration of the SiFA Paradigm

This thesis was motivated by several goals which fall into the two general areas, explora-

tion and experimentation. The first area we define in this section, the second in the follow-

ing one.

• Definition of a Domain Independent Set of Agents.

In order for the work to have general importance, we need to show that we can design

agent types that are suitable for a larger class of design tasks, not just for an individual

design problem.

• Investigation of Agent Negotiation.

As there has been only a very limited amount of research into SiFA negotiation, this is

probably the most important theoretical contribution of the thesis.

• Analysis of Communication Patterns.

Based on the negotiation research, we want to find common patterns in the exchange

between the agents, as this could give us information on how to improve the design and

performance of the SiFA systems. It is also important for further research into the pos-

sibility of learning within the agents.

Single Function Agents and their Negotiation Behavior in Expert Systems

1.2 Goals of the Thesis 4

• Knowledge Representation.

Past experience has shown that the way in which the knowledge is stored in a system

can have a severe impact on its ease of design, maintenance and its performance.

Hence, we want to analyze possible representations and choose the ones most suited for

the task.

• Catalog of Conflicts.

After investigating the agents’ negotiation behavior, we will attempt to list all the theo-

retically known and occurring conflicts. In this catalog we want to specify when, where

and why the conflicts appear, as well as what strategies might be used to resolve them.

• Use of Design Histories.

As agents make decisions by themselves and communicate with one another, they

exchange and gain knowledge about themselves and others. It would be interesting to

see, how they could use information about their own behavior and past decisions for

improving the way they perform their design tasks and their negotiation. This also

seems to be an important basis for learning within the agents.

1.2.3 Building and Using a Prototype System

• A Platform for Design System Implementation and Future Research.

We want to build a platform, i.e., a computer program, which would allow us to easily

design SiFA systems for new tasks. Also, such a platform can be used to perform a

more thorough analysis of SiFAs and extend them to suit future research.

Single Function Agents and their Negotiation Behavior in Expert Systems

1.3 Motivation 5

• Implementation of I3D+ Conflicts.

In order to analyze and evaluate the platform, we want to implement an expert system

with it. This system will then be compared against a different design expert system,

built without the platform. For this purpose, we will use the I3D+ system for compari-

son.

1.3 Motivation

In this section we present both the practical and the theoretical motivations, that led to the

research into the negotiation behavior of Single Function Agents.

1.3.1 Practical Motivation

From a practical point of view, we found three major issues that are important to this

work. The first is the growth of Concurrent Engineering (CE) and the implication that par-

ticipants from different backgrounds have to work together. Due to their heterogeneous

backgrounds, their knowledge, goals and preferences are different.

If we try to build expert systems that support or model the work in CE, we face the issues

of inherently conflicting knowledge and interests. Modelling these is difficult in traditional

expert system architectures. Usually this means that we have to build a knowledge base

which is mostly conflict free, which requires us to anticipate at development time all pos-

sible situations and outcomes, in order to avoid conflicting ones.

This conflict-anticipation would have to be done not only while developing, but also dur-

ing maintenance of the knowledge base. As expert systems are meant to work in domains

where enumerating or trying all possible solutions is prohibitively expensive, and unrea-

Single Function Agents and their Negotiation Behavior in Expert Systems

1.3 Motivation 6

sonable to do in advance, we want to find a different way of solving this system design

problem.

The second practical issue is that we often want to integrate human and computer experts

in one system. This is essential for computer aided engineering. We therefore need a way

to provide an interface between these agents that is suitable for both sides.

The third issue is the following: if we manage to design the interface and the system in

general in such a way that it supports location of the agents at different sites, then we can

support another trend in engineering, the distribution of work over multiple locations.

Many knowledge sharing tools already address this issue [Kuokka et al. 1993] and we will

present some of them later in this thesis.

1.3.2 Theoretical Motivation

On the theoretical side, the work is stimulated by four research aspects. First, there has

been some work in Generic Tasks (GT) and design system languages such as DSPL

[Brown & Chandrasekaran 1989] [Brown 1992 b].

In generic tasks, an attempt is made to formulate human information processing tasks on

an abstract level, e.g., selection between alternatives is a task we are often faced with. The

research formulates a general model of how we perform this task. Given the model, a

computer system to simulate that task can be implemented.

Design System Languages such as DSPL give developers a powerful computer language

in which they can formulate the design task. The language supplies constructs, which rep-

resent the steps or tasks that would have to be executed by a human designer. When run-

ning, the system simulates that task and, if possible, comes up with a design, as requested.

Single Function Agents and their Negotiation Behavior in Expert Systems

1.4 Negotiation 7

Although DSPL was originally intended to be a generic task, it was later recognized as a

mixture of GTs after its development [Brown 1994].

The second background against which we can view the work on SiFAs is Distributed Arti-

ficial Intelligence (DAI) [Bond & Gasser 1988] [Huhns 1987] [Huhns & Gasser 1989].

That research area focuses on splitting AI systems into multiple parts which can be exe-

cuted simultaneously, and possibly even at several locations. For example, a search task

could be performed by multiple search engines running on a multiprocessing machine or

on multiple workstations on a computer network. SiFAs share with DAI some issues, such

as the maintenance of multiple local memories, passing information between agents, split-

ting a task into multiple subtasks and assembling the solution from sub-solutions.We will

look at these issues in the discussion on SiFAs in chapter 3.

The issue of conflict resolution that was mentioned in the introduction has been investi-

gated by several authors. We will see more detail in the discussion on previous work in

chapter 2, and in chapter 3, where we discuss how the SiFA systems can make use of this

conflict resolution research.

The last theoretical issue is somewhat more implementational, but nevertheless important.

Unlike traditional expert systems, the SiFA platform in this work has been developed with

an Object Oriented approach in mind. We will see in the discussions on the system design

and implementation how this affects the architecture and performance of the system.

1.4 Negotiation

Very commonly in our everyday situations, we discover conflicts and we solve them (at

least most of the time). In some cases, we find it difficult to determine for ourselves how

Single Function Agents and their Negotiation Behavior in Expert Systems

1.4 Negotiation 8

we want to decide on an issue. This would then be an intra-personal conflict. However, in

those cases when we have disagreements with other people (inter-personal conflict), we

will try to reach a common solution with them.

Although many definitions of negotiation are possible and many are found in the litera-

ture, for the purpose of this thesis we define the following one:

Negotiation is communication between two or more active entities (agents), with the purpose of

achieving an agreement on a common topic, over which there is currently a disagreement.

The disagreement is marked by possibly differing goals and/or informational states of the agents,

and the process of negotiation will often lead to a change in the state or processing model for one or

more of the participants.

Let us take a look at the implications of this definition. First of all, there are two or more

active entities involved. Active, in a sense that they are able by some means to make deci-

sions on their own and react to external information. Then, we need communication.

There are different ways to achieve that and in section 2.5, “Communication”, we will

look at different ways of implementing communication in multi-agent systems.

Davis and Smith present a good definition of the components of negotiation [Davis &

Smith 1981]:

• There is a two-way exchange of information;

• Each party to the negotiation evaluates the information from its own perspective;

• Final agreement is achieved by mutual selection.

Single Function Agents and their Negotiation Behavior in Expert Systems

1.5 Single Function Agents 9

1.5 Single Function Agents

In the course of developing expert systems for support in concurrent engineering tasks,

research at WPI has developed a model which involves multiple agents that cooperatively

produce a solution. In particular, it has been found useful to separate the task of the entire

system into many, very small subtasks and assign exactly one of these to an individual

agent. Every agent now has exactly one function to perform, namely to execute this sub-

task. These agents are called “Single Function Agents”, SiFA for short.

As this idea proved to be so useful, it has been analyzed more carefully. The result was

that it is possible, in general, to specify an agent’s task by three parameters (see Figure 1-

1).

FIGURE 1-1: SiFA Definition

FunctionPoint-of-View

Agent

What to doWhat to consider

e.g. Selection, Criticisme.g. Cost, Strength

e.g. Material Cost Selector

Target

What to work on

e.g. Material, Tool

Single Function Agents and their Negotiation Behavior in Expert Systems

1.5 Single Function Agents 10

• Function

The function of the agent defines what kind of work it performs. Possible functions are,

e.g., providing Advice, Analysis, Criticism, Estimation, Evaluation, Planning, Selec-

tion and Suggestion. These functions are similar in spirit to the generic tasks described

in section 1.3.2, “Theoretical Motivation”.

• Target

The target defines on what parameter or object the agent has an immediate effect. A tar-

get could be, e.g., the material that an artifact is made from, or the process that will be

employed to produce the object.

• Point-of-View

The point of view specifies the perspective that the agent takes, as it performs its func-

tion on the target. That might be cost, strength, manufacturability etc. The agent will

probably try to optimize the performance of the artifact with respect to its point of view.

Given these three parameters, we can now specify agent roles very easily. For example we

could have a selector (function) of material (target) from the point of view of strength.

Another role could be criticism of material from the point of view of cost. Maybe a third

agent would select material from the perspective of thermal-conductivity, which would

probably lead to different preferences than the first selector, and therefore to conflicts.

Figure 1-2 shows the wide range of values, that can be used to specify the parameters that

define the agent roles.

We already see that many agents share some of their parameters, i.e. they have identical

functions, targets and/or points of view. This will prove to be useful in the design of the

system, as well as interesting during the analysis of negotiation.

Single Function Agents and their Negotiation Behavior in Expert Systems

1.6 Conventions 11

1.6 Conventions

For clarity, we define the following concepts:

• User: The person that uses a design expert system based on SINE.

• Developer: The designer and programmer of an expert system that uses the SINE plat-
form and language.

• Author: The original developer of the SINE platform and author of this thesis.

• Agent: An expert system that can act and behave based on built in knowledge,
possibly communicating with other agents.

FIGURE 1-2: SiFA Dimensions

Function

Target

Point-of-View

Material

Tools

Inspection

Cost

Process

Quantity

Packaging
Mat. Strength

Thermal Cond.

Manufacturab.

Disposal

Disassembly

Assembly

Estimator Evaluator Selector Critic Praiser Suggestor Advisor

Single Function Agents and their Negotiation Behavior in Expert Systems

1.7 Summary 12

Although users and developers can be of any gender, for the sake of readability, we will

use the male gender in future references. This is by no means meant as a devaluation of

the female.

1.7 Summary

In this chapter we presented the goals of the thesis (section 1.2), including the basic

assumptions that lead to the research and the two major threads of scientific exploration of

the SiFA paradigm and the more application oriented task of building a reusable platform

for design systems with negotiating SiFAs.

We then investigated the motivation for this work (section 1.3). One one side there was the

practical motivation from work with concurrent engineering systems, while on the other

side we presented relations to the research into distributed artificial intelligence.

We explained our definition of negotiation (section 1.4), the components of it and the

resulting implications for a system that works with negotiation.

The next section presented the basics of Single Function Agents (section 1.5), their three-

fold specification based on function, target and point-of-view. We also showed some of the

possible values for each of the three definitional parameters.

The last part of the chapter was devoted to clarifying name conventions that we use in this

thesis.

Single Function Agents and their Negotiation Behavior in Expert Systems 13

CHAPTER 2 Previous Work

2.1 Introduction

In this chapter, we review the relevant research literature. We will first investigate what

cooperation means and how it is being used in expert systems. Then, we will present dif-

ferent research that has focussed on conflict resolution and generated various models to

support it.

In the third section we will see how negotiation has been used in several research applica-

tions and especially design systems. After that, we will look at what kinds of communica-

tions schemes have been developed to support agent interaction.

The last section will present three systems that have been developed using the SiFA para-

digm. The first one, SNEAKERS, was developed to train users about the importance and

power of concurrent engineering. It used the domain of tower design with Tinker-Toys as

a demonstration of the impact of CE. A user would takes design actions and the system

would react with feedback from a multitude of agents. The second one, I3D used multiple,

cooperative intelligent agents to serve on a design team with a human designer. It assisted

the user in decisions on selection of powder ceramic materials, production processes and

Single Function Agents and their Negotiation Behavior in Expert Systems

2.2 Cooperation 14

inspection planning. The third one, I3D+ was developed from I3D, in order to investigate

some negotiation aspects of SiFAs and demonstrate conflict resolution in a SiFA system.

2.2 Cooperation

As mentioned in section 1.4, “Negotiation”, cooperation is found in daily life as well as in

computer systems. The introduction of agent-based systems in artificial intelligence has

opened a whole new field of research and exploration.

There are different definitions of exactly what cooperation means. One view is to see

cooperation as the opposite of selfishness. For the agents, this would mean that they are

willing to give up local goals in order to help satisfy global ones [Liu & Sycara 1993].

In another, weaker, definition, cooperation means that the agents are willing to exchange

information, but no commitments to global goals are prescribed [Klein 1991]. Agents

could cooperate just for the sake of satisfying their own goals. Not cooperating would

mean, that they do not supply knowledge, or that they give false information on purpose.

The second definition is the one we adopt in this thesis. It reflects the fundamental willing-

ness of the agents to work together. The behavior in goal trading is left to the area of con-

flict resolution.

In the literature on cooperation we find two main areas:

• Cooperation for simulation and representation of physical object.

• Cooperation in representation and modelling of reasoning of agents.

Single Function Agents and their Negotiation Behavior in Expert Systems

2.3 Conflict Resolution 15

Even though there are overlaps between the two areas, the main focus of the first lies in

recognition and exchange of information about the physical world. This is often

researched in robotics [Connah et al.].

The second area focuses on agents that are involved in cooperative problem solving, i.e.,

agents share a common goal and try to achieve it by using the knowledge and abilities that

they all provide. Often, the most important part of their work is building a plan. In order to

do that the agents have to exchange information. They share information about their

respective goals, as well as descriptions of their view of the world that they act in. The first

helps them plan cooperatively, by harmonizing their decisions. The second prevents poor

decisions that could occur due to the limited view of their environment that the agents

might have [Grosz & Sidner 1990] [Sidner 1992].

2.3 Conflict Resolution

Whenever a decision has to be made, with multiple reasons and goals taken into account,

we risk encountering a conflict. That is, the individual goals that affect the decisions

would lead to different results. For example, we might like to buy a sports car, for the fun

of driving, but a station wagon would be more useful when going on vacation. These goals

clash, unless we find a sports station wagon (a case where the car industry helps us resolve

our conflicts), but otherwise we have to find a way of resolving the problem, maybe by

ranking the two goals by importance or by taking additional constraints (financial budget)

into account, which eliminate some of the conflicting preferences.

If a conflict happens within one person, we call it an intra-personal conflict. If it occurs

between several people, it is a inter-personal conflict. Agent-based systems can be built to

have more of the first or the second kind of conflicts.

Single Function Agents and their Negotiation Behavior in Expert Systems

2.3 Conflict Resolution 16

The research into conflict resolution has long been rooted in the area of social studies. As

the modelling of human behavior is one of the original application fields of artificial intel-

ligence, it is little wonder that many systems have been written to support and analyze

conflict resolution. We will analyze to kinds of systems, those that perform conflict resolu-

tion in arbitrary domains and the systems that are specialized for design conflict resolu-

tion.

2.3.1 General Systems

The purpose of these systems is not restricted to performing design tasks, but they can be

made to model any kind of decision making. Some of the systems use very detailed

schemes for storing conflict resolution knowledge in an abstract way.

For example, Sycara’s “Situation Assessment Packages” (SAPs) [Sycara 1987] are infor-

mation structures that hold, among other things, the following contents:

• a description of a problem solving situation

• associated expectations about what is supposed to happen

• reasons why the expectations are violated

• responsibility for the violation

• solutions that could be achieved by a third party problem-solver

• justifications for the possible solutions

• warnings for potential failures

The purpose of SAPs is to prepackage knowledge about situations with psychological

considerations of the participants. From these informations, in case of a conflict, a causal

structure (graph) made from nodes, states and links can be built. The nodes describe the

goals, the states the actions of the agents. The links signify relations between goals and

Single Function Agents and their Negotiation Behavior in Expert Systems

2.3 Conflict Resolution 17

states. These causal structures then store generalized information about conflicts, they

organize expectations and explanations of failures.

When a conflict is detected, a match of the situation against all SAPs is done. The most

specific SAP is retrieved. Because the description of the conflict situation is abstract, i.e.,

it does not relate to any particular variable or goal in conflict, it has to be instantiated in

the current situation. After that, an explanation can be derived from the reason information

in the SAP. The solution method is passed to a problem-solver who then proceeds to

remove the conflict.

If a new conflict type is discovered, it is abstracted and characterized, after which it is

formed into a SAP and stored in memory, similar to a case base.

SAPs can be used by multi-agent systems. They support partial goals, allow blame assign-

ment and store cross-contextual cases through abstraction.

What remains unclear is whether these ideas can be fully implemented. The matching of

pre- and post-conditions of SAPs could be difficult. If implemented, it would be applica-

ble to any kind of problem situation.

Sometimes authors only provide a model for the different kinds of information that can be

exchanged and what their semantics are. Werner presents a very complete theory, with

explicit representation of agents’ informative, intentional and evaluative states [Werner

1989]. Messages that are passed between the agents are designed to only affect one of

these three states at a time. Through this, the semantics of communication acts are defined

very well. He then shows how several kinds of conflicts can be resolved with different

combinations of the three kinds of messages

Single Function Agents and their Negotiation Behavior in Expert Systems

2.3 Conflict Resolution 18

His model is close to the one used for planning discussed in [Grosz & Sidner 1990]. The

logic is strong enough to represent other models, such as the contract net. Werner defines

states, worlds/histories and roles. He defines how agents change their role and when this

can occur.

Other authors provide an algorithm for solving conflicts independently of the agents.

Wong’s work on cooperation [Wong 1992] is interesting for the implementation of social

choice as a solution paradigm. He uses a set of agents with preference operators for each

one. If a conflict occurs, the system will try to maximize the preference functions for all

agents. He introduces a formal model of preferences and a logic to support operations on

individual and sets of preferences.

These papers are interesting, because they show what kinds of knowledge can be

exchanged between agents and how task and domain-independent conflict resolution can

be supported.

2.3.2 Design Systems with Conflict Resolution

The second category of research focuses specifically on conflict resolution in design sys-

tems. Here we find the work of Liu and Sycara, where Constraint Partition and Coordi-

nated Reaction as a methodology is presented [Liu & Sycara 1993]. The idea is to separate

the design task into subtasks according to variable types. Agents are responsible for cer-

tain variable types. In the sample domain (job shop scheduling) there are Order and

Resource agents. Agents try to resolve conflicts through application of heuristics. These

will try to minimize ripple effects and the need for further CR.

Important for our work is the research by Klein [Klein 1991] [Klein & Lu 1990]. In their

system, a double hierarchy is introduced (see Figure 2-1). The first one consists of a tree

of conflicts, the most abstract one at the top and concrete conflicts at the bottom. If a con-

Single Function Agents and their Negotiation Behavior in Expert Systems

2.3 Conflict Resolution 19

flict is detected, then it is matched against that tree to recognize it and find the most spe-

cific conflict type. At the same time as the conflict is analyzed, the path to the root of the

tree provides a series of abstractions that can be used during conflict resolution.

The second tree consists of conflict resolution strategies. After the conflict type and its

abstractions are determined, the system tries to find the most specific strategy that is

appropriate for this conflict and solve the conflict by applying it. If this fails to solve the

conflict, a more general method is used, and so forth, until all the strategies up to the root

of the strategy tree have been applied. If that one fails too, then the conflict definitely can-

not be solved and the design fails.

FIGURE 2-1: Klein’s Conflict Resolution Approach

Strategy
Domain

Independent

Domain
Specific

Conflict

Single Function Agents and their Negotiation Behavior in Expert Systems

2.4 Negotiation 20

The remarkable aspect of this model is that it supports both domain dependent and domain

independent CR, and that there is a smooth transition from one to the other. It is also able

to recover from failures in the CR, by applying the more general approaches, if the more

specific ones fail.

2.4 Negotiation

For negotiation, we found generic and design-oriented research, just as we did for conflict-

resolution research.

2.4.1 Generic Negotiation Systems

Khedro and Genesereth present a strategy, “Progressive Negotiation”, which minimizes

backtracking and guarantees the consistency of distributed solutions [Khedro & Gen-

esereth 1994]. An agent is assumed to have Knowledge K (a set of predicate logic axioms),

Criteria Constraints C (also a set of predicate logic axioms) and a database D (a set of

ground predicate logic atoms). Furthermore, a facilitator agent manages the communica-

tion and translates between the different vocabularies of the agents.

The authors now distinguish three types of conflicts:

• Critical Conflict:

One agent R has knowledge K that is inconsistent with a solution proposal that it

received from the facilitator. This is solved as follows: R sends its problem statement P

(the failing axioms) to the sender S. S in turn checks whether it can find a solution that

satisfies all the axioms, i.e., make consistent. If so, it sends the updated proposal

to R, and the conflict is resolved. This may involve constraint relaxation. If R cannot

find an appropriate solution, it fails.

P K∪

Single Function Agents and their Negotiation Behavior in Expert Systems

2.4 Negotiation 21

• Non-Critical Conflicts with Authority:

Again R sends its problem statement P back to S. If S can accommodate the additional

constraints, it will send out a new solution proposal. If is inconsistent in the

knowledge of S, i.e., S cannot find a solution, and S has authority, it sends a reply to R,

which in turn relaxes its constraints.

• Non-Critical Conflicts without Authority:

Again R sends its problem P to S, which now checks whether is consistent

(i.e., it can find a solution that satisfies its knowledge and its constraints). The solution

process is the same as in the second case.

In essence, these are instances of a subset of the strategies that Klein has, i.e., accommo-

date additional constraints if possible, or relax constraints.

Davis and Smith coin the term ‘distributed problem-solving’ (DPS) and present a compre-

hensive analysis of DPS compared to distributed computing [Davis & Smith 1981]. They

define DPS as problem solving performed as a cooperative activity of a group of decen-

tralized and loosely coupled knowledge-sources. They mention several reasons why DPS

is useful, among them that it promises an increase of speed, reliability and extensibility, as

well as increased tolerance to uncertainty in data and knowledge.

Furthermore, they address design issues of DPS systems. First, coherence in the actions of

the agents is difficult to control, since every agent only has a limited and local view. This

limited perspective, on the other hand, simplifies the problem solving, as the agents only

have to look at their local subproblems. In order to reduce the potentially negative impact

of the decomposition into subproblems, Davis and Smith suggest to provide three ele-

ments in a DPS framework:

• The concept of negotiation as a mechanism for interaction

P K∪

P K C∪ ∪

Single Function Agents and their Negotiation Behavior in Expert Systems

2.4 Negotiation 22

• The network of tasks that result from the problem decomposition

• A common language shared by all nodes

We will later see how these issues receive support in the SINE system.

Laasri et al. present a ‘Generic Model for Intelligent Negotiating Agents’ [Laasri et al.

1992]. Among with a well founded theoretical background, they present the ‘Recursive

Negotiation Model’, which serves as a basis for classifying and specifying where conflict

resolution among multiple experts is needed. They also emphasize that negotiation can be

used in both domain-level and control-level problem solving.

Lander and Lesser present the TEAM system, which implements the negotiated search

paradigm [Lander & Lesser 1991]. Here, several agents iteratively search for a solution

(currently in pairs). They can use any approach to finding a point of agreement (on a

scale), although the linear compromise strategy usually gives the best efficiency.

In TEAM, the conflict resolution works in two steps: Search and Compose Solution.

Search can produce sets of alternative solutions. A selected solution will have to be com-

plete, i.e., acceptable by all agents, and acceptable, as defined by a user function, which

gives a threshold for quality.

Communication is established through a central blackboard (BB). A central controlling

agent, the Framework Controller, receives messages from the other agents and updates the

BB. The system works in cycles: First the agents process their data and post their mes-

sages, then the controller propagates all the changes to the BB. Agents can be ‘heteroge-

nous’ because there are no assumption about how the agents work.

Blackboard mechanisms are used in most centralized systems, i.e., systems that have a

single point at which they store all or a majority of the shared information. This is due to

Single Function Agents and their Negotiation Behavior in Expert Systems

2.4 Negotiation 23

the fact that they allow for easy transfer of common data, and no coherence problems

occur. Distributed systems however need a different way to maintain global data, unless

they are centralized with an information server at one place.

2.4.2 Negotiating Systems in the Design Domain

Sycara is among the most prominent developers of negotiating design systems. In [Sycara

1990], she presents a model that integrates several kinds of design knowledge, with

emphasis on case-based design. The idea is to build an abstraction ontology of design

parameters and a dependency graph, using qualitative description (sign, amount, impor-

tance, feasibility). The agents have some understanding of the dependency and they can

share a vocabulary at some level of abstraction. All goals have an importance ranking.

She presents four conflict situations:

• Conflicting recommendations for values from different agents.

• A proposed value makes selection of a dependent attribute’s value impossible for

another agent.

• A design decision made by one agents negatively affects the optimality of another

agents’ choice.

• Plan conflict: alternate approaches exist for similar results.

Agents can exchange different kinds of information:

• design proposals

• justifications and reasons

• agreements

• requests

Single Function Agents and their Negotiation Behavior in Expert Systems

2.5 Communication 24

• utilities and preferences

The idea of a shared vocabulary can be realized with an object hierarchy and inheritance

of communication skills (ability to produce and understand messages) from more abstract

agents. The richness of possible communications makes the design of negotiation schemes

very difficult for this system. The agents have to be very complex, because they have to be

able to find out, what language they share with a negotiation partner, every time they

encounter a conflict. Nevertheless, the agent functionality and the richness of the commu-

nication promise to provide very powerful CR abilities.

Werkman presents ‘Designer Fabricator Interpreter (DFI)’, a system for cooperative eval-

uation of beam-to-column connections from multiple points of view [Werkman & Barone

1991]. In the DFI system three agents assist the user in selecting the best connection, by

evaluating and suggesting a connection type. As they have to agree on the suggestion, a

central arbitrator is used to trade off the different preferences.

In section 2.6.3, “I3D+”, we will see another negotiating design system, which was devel-

oped at WPI.

2.5 Communication

The transport of messages from agent to agent is an issue that has been heavily researched

and still receives considerable attention in artificial intelligence research. As is so often

true, the background stems from the effort of replicating human interaction. Major efforts

are designing computer languages to capture all the needed information and formulating

clear semantics for the information exchange.

Single Function Agents and their Negotiation Behavior in Expert Systems

2.5 Communication 25

On the other hand, distributed computing and distributed artificial intelligence have

brought about many more issues, such as the need for a transport protocol and meta-ser-

vices, such as locating another agent or brokering information.

2.5.1 Internal-only Communication

The first kind of communication we find has the sole purpose of allowing the agents in the

machine to exchange messages. No specific effort is made to make the communication

understandable by humans, hence we refer to it as “internal-only”. We can distinguish the

models by their explicitness, i.e., how directly an agent addresses a message to another

agent. In the work of Liu and Sycara [Liu & Sycara 1993], we find only indirect communi-

cation between the order and the resource agents. They tag activities that they try to sched-

ule with coordination information that other agents can read.

More explicit, but not necessarily more understandable by humans, is the messaging

scheme that Agha and Hewitt adopt in their object-oriented model [Agha & Hewitt 1985].

Their agents communicate in a variation of LISP (Apiari), and their messages are execut-

able pieces of code.

Cromarty discusses various forms of agent connection topologies [Cromarty 1987], and

then formulates a model that facilitates communication between them through ports,

which are an abstraction of the topology.

2.5.2 Speech Acts

Most often, we find models that are based on speech acts [Austin 1962] [Searle 1965].

Speech acts, also called language acts or linguistic acts, are minimal units of linguistic

communication. Performing a speech act means to engage in a rule-governed form of

behavior, producing output that has been intentionally designed. Models based on speech

Single Function Agents and their Negotiation Behavior in Expert Systems

2.5 Communication 26

acts use short messages that are similar to human sentences for the exchange of informa-

tion and knowledge between the agents. The expressions used in the acts have a pre-

defined meaning that both sender and receiver agree upon.

A simple example of a negotiating system with speech acts can be found in [Bussmann &

Mueller 1993]. They present agents that try to build a certain word from letters that they

have. The bargaining starts, after every agent has received a specific task, i.e., a word to

build and a set of letters to start with. The agents plan to build a word, then try to exchange

letters with other agents. Their partners may accept or reject the exchange deal. If an agent

cannot achieve his goal, he will select a different plan.

The Communication acts include: inform, request, accept, deny, propose, answer. Agents

can request information and actions from one another. Goals get expanded into action

steps according to a fixed grammar. A history of all speech acts is kept locally by every

agent, for retrieval of information about which agent has which letters.

2.5.3 Hybrid Communication Architectures

In [Taleb-Bendiab & Oh 1993], a cooperative design system is presented. It uses a hybrid

communication architecture, i.e., the agents can communicate directly with one another,

or post public messages on the blackboard.

Their language is made from communication primitives, which include: request, analyze,

calculate, compare, query, inform, accept, disagree, evaluate, comment. The speech acts

can contain a single instruction, or a set of actions (a plan), that one agent expects the

other agent to perform.

The examples are based on the mechanical design of a fluid coupler. Participating agents

are the Cost, Assembly, Manufacturing and Design Agents. A design Manager helps coor-

Single Function Agents and their Negotiation Behavior in Expert Systems

2.5 Communication 27

dinate, while a Geometric Reasoner, a Constraint Processor and a Truth Maintenance sub-

system are supporting the agents. This work is based on the SIMAD (System for

Improving Mechanical Assembly Design).

2.5.4 KQML Knowledge Query and Manipulation Language

In order to provide a separation of message transport, semantic information and content,

the DARPA Knowledge Sharing Initiative External Interfaces Working Group has devel-

oped the KQML standard. It defines a language that can be used as a wrapper around mes-

sage contents, so that messages can be handled in a uniform way, independent of the

information content. It also specifies some aspects of how the messages are to be inter-

preted, as well as where they come from and to whom they are addressed. Here are some

of the specific aspects of KQML:

• KQML adds on to domain content languages, such as KIF (see section 2.5.5, “KIF”) It

wraps around the contents and allows the exchange of information in the content lan-

guage.

• It facilitates the communication between autonomous agents by providing primitives

(performatives).

• Agents are seen as programs manipulating a database. KQML helps other agents mutu-

ally access these databases and transfer requests etc.

• It makes no assumptions about the way in which the messages are transported, except

that the transport is reliable and that it passes messages First-Out-First-In.

• Agent data are called virtual knowledge bases (VKB), because it is not important in

what form the knowledge is stored and manipulated within the agent.

• VKB’s are supposed to hold at least two kinds of information: Beliefs and Goals

Single Function Agents and their Negotiation Behavior in Expert Systems

2.5 Communication 28

They consist of a performative name (e.g., ask-about, tell, evaluate, broadcast, broker) and

some named arguments (:content :in-reply-to :language :ontology :receiver :sender, and

more). Performatives are keywords that specify how the content is to be interpreted by the

receiving agent. They fall into different categories:

• basic informative (tell, deny, untell)

• database (insert, delete)

• basic responses (error, sorry)

• basic query (evaluate, reply, ask-if, ask-about)

• multi-response query (stream-about, stream-all, EOS)

• basic effectors (achieve, unachieve)

• generators (standby, ready, next, rest, discard, generator)

• capability-def (advertise)

• notification (subscribe, monitor)

• networking (register, unregister, forward, broadcast)

• facilitation (broker, recommend, recruit)

Ontologies define the meanings of the things that get talked about. They are an explicit

specification of a conceptualization of an abstract simplified view of the world. A com-

mon ontology defines the vocabulary with which queries and assertions are exchanged

among agents. An ontological commitment is an agreement to use the shared vocabulary

in a coherent and consistent manner [Gruber 1993].

Ontologies are external to KQML and can be defined in KIF, or by special help from

Ontolingua, an ontology maintenance tool. An ontology describes all of the objects that an

agent can communicate and reason about. We can define several ontologies, specific to

Single Function Agents and their Negotiation Behavior in Expert Systems

2.5 Communication 29

certain domains, and large unified ontologies that attempt to represent everything that can

be communicated about in a software agent system.

Example 1: A simple query and response

Agent A asks for the value of the motor torque at the simulation time 5:

(evaluate :language KIF
:ontology motors
:reply-with q1
:content (val (torque motor1) (sim-time 5)))

and B replies with the appropriate value:

(reply :language KIF
:ontology motors
:in-reply-to q1
:content (scalar 12 kgf))

Example 2: Requests to achieve states

Agent A asks agent B to achieve a state such that the torque of the motor is of 2kgf at sim-

ulation time 5:

(achieve :language KIF
:ontology motors
:in-reply-to q1
:content (= (val (torque motor1) (sim-time 5))

(scalar 2 kgf)))

Agent B tells agent A the achieved torque:

(tell :language KIF
:ontology motors
:in-reply-to s1
:content (= (val (torque motor1) (sim-time 5))

(scalar 12 kgf)))

Single Function Agents and their Negotiation Behavior in Expert Systems

2.5 Communication 30

Developers may decide to support only a subset of the performatives. They may also

decide to use additional performatives, but they should use the existing ones as far as pos-

sible.

KQML has been used in a handful of systems, including PACT (Palo Alto Collaborative

Testbed), with message passing via LISP, TCP/IP, email and CORBA (Common Object

Request Broker) (see 2.5.6, “SHADE”, and [Kuokka et al. 1993]).

2.5.5 KIF

KIF is a formal language for the interchange of knowledge among disparate computer pro-

grams. It is not intended for human computer interaction, though it is readable by humans.

It is also not intended for internal knowledge representation, although it can be used for

that purpose. The origins of the syntax was adapted from the LISP programming lan-

guage, and KIF still is very close to the Common-LISP.

KIF allows expression of first order predicate logic. It uses objects such as constants, vari-

ables, sets, lists, functions and relations. Variables can be quantified (existentially and uni-

versally), functions allow the definition of implications and rules, e.g.:

(material moon stilton)
(flies bird)
(believes john ?p)

It allows the expression of meta-knowledge, i.e., KIF can make statements about other

KIF statements, by putting them into KIF expressions.

(=> (believes john ?p) (believes mary ?p)) ; implication

KIF supports non-monotonic reasoning, through ‘consis’ which is a predicate that evalu-

ates to true if the situation, that its objects produce, would be consistent, e.g.:

Single Function Agents and their Negotiation Behavior in Expert Systems

2.5 Communication 31

(<<= (flies ?x) (bird ?x) (consis (flies ?x)))

which is a backward chaining rule that says, the bird flies, if that is consistent with other

knowledge. This allows for default rules, closed world assumptions etc.

KIF allows a constant to be specified by an analytic definition. The specification can be

partial or complete, e.g.:

(defobject id (= (f ?x id) ?x) (= (f id ?x) ?x))

This defines the constant id to be a left and right identity for the binary function f.

KIF was developed by Michael R. Genesereth and Richard E. Fikes at Stanford in con-

junction with KQML and Ontolingua, to support knowledge sharing between agents.

2.5.6 SHADE

Kuokka describes a set of systems that have been implemented using KQML and KIF

[Kuokka et al. 1993]. The main thrust lies in building cooperative design systems that will

support knowledge sharing between several agents (human and computer) and software

tools.

Apart from design agents, there are facilitation agents that help in the communication by

brokering information, i.e., they receive offers from agents to supply information, and

requests from other agents to receive the same. The brokers try to locate information

sources and sinks, and provide the appropriate connections to the other agents. This

proved very useful in a distributed system, such as the internet.

Shared design knowledge is represented by KIF (first order predicate logic) using an

ontology specified by Ontolingua. Contents are marked with attitudes (belief, interest,

ability, expectation, fulfillment). Both LISP and C-Language Application Program Inter-

Single Function Agents and their Negotiation Behavior in Expert Systems

2.6 SiFA Systems 32

faces for KQML are available. Message transport can be performed by any means, but

Service Mail (email) has been used most of the time for security reasons.

2.6 SiFA Systems

2.6.1 Sneakers

SNEAKERS was the first SiFA system developed at WPI. A few lines from its introduc-

tion clarify its purpose:

“SNEAKERS is a single user demonstration system. Its task is to design towers composed of

pieces similar to Tinker Toys TM. The screen is set up in a windowed environment, with which the

user interacts using a mouse. Various expert systems run in the background and offer criticisms and

suggestions to the user concerning recent design decisions. SNEAKERS is easy to use, and helpful

in demonstrating the value of CE.” [Douglas 1992]

As a SiFA system, it has several agent types, which it adopts from [Brown 1992 a]:

• Advisor makes recommendations for the next decision;

• Critic compares the design to standards, offers criticism on the last

user action;

• Suggestor takes the criticism and offers suggestions for satisfying them;

• Analyst offers numerical analysis to derive attributes, such as strength

cost or size;

• Evaluator evaluates the whole design from one perspective, determines

how well the design meets the needs of a certain perspective.

It also has a set of points-of-view:

Single Function Agents and their Negotiation Behavior in Expert Systems

2.6 SiFA Systems 33

• Design Rules about structure, design process, symmetry, stress and

buckling analysis;

• Manufacturing Knowledge of the manufacturing process, connection of pieces

on site and in house, rules on composition of connectors and

materials;

• Assembly Rules on tower height, number of pieces and connector type

selection;

• Cost Cost estimation for materials and processes, suggestions for

cost reduction.

• Marketing Knowledge of customer preferences for certain tower shapes

• Safety Rules about safety for tower visitors (bracing, hand holds, mini-

mum platform size, tower height).

• Disposal Concerned with disassembly and recycling.

• Packaging Preferences for smaller pieces, that are easier to get on site.

As this work was based on the original version of the SiFA idea, it only separated the

agents by function and point of view. There was no distinction by target.

When a user designs a tower, the agents in SNEAKERS give feedback from their domain.

All the output from the agents goes to the user, there is no communication between agents

and also no negotiation. The system produces comments, evaluations and recommenda-

tions. As the recommendations and evaluations are coming from different points of view,

with different intentions, they are often conflicting. This is useful, because it teaches the

users an important aspect of CE.

Single Function Agents and their Negotiation Behavior in Expert Systems

2.6 SiFA Systems 34

2.6.2 I3D

The second SiFA system was I3D [Victor et al. 1993]. It interacts with a designer sitting at

a workstation. As the designer moves through requirements specification, conceptual

design and detailed design of a part to be made from powder ceramic material, the system

graphically displays the state of the design on the screen. It makes appropriate assump-

tions about design decisions not yet made in order to be able to continuously display the

component during both the conceptual and detailed stages of design.

In both rough and detailed design phases, the system provides feedback from different

agent types and points of view [Victor 1993].

The agent functions found in I3D are:

• Advisor providing information about what to do next, what parameter to

decide;

• Critic comments on possible problems with existing design decisions;

• Planner produces a choice of actions and their sequencing;

• Selector picks one item from a list;

• Estimator estimates values derived from the current design parameters.

The points of views are

• Material

• Process

• Manufacturing

• Inspection

• Cost

Single Function Agents and their Negotiation Behavior in Expert Systems

2.6 SiFA Systems 35

• Reliability

• Durability

Unlike SNEAKERS, the agents in I3D are partially dependent on one another, i.e., the

output from some agents is needed for others. This is the reason, why a rigid sequencing

of the agents execution was adopted.

I3D too, was developed with a two dimensional agent role model, based on agent function

and design aspect. The system did not deal with conflicts, those were eliminated at devel-

opment time, by not allowing more than one agent to select a value for the same design

parameter. This makes addition of new agent knowledge difficult.

2.6.3 I3D+

In the thesis work on I3D+, an attempt was made to remove some of the restrictions that

were inherent in I3D [Victor 1993]:

• First, the potential for conflicts was allowed and a mechanism was implemented to

demonstrate how conflict resolution might be handled.

• Second, the rigid agent sequencing was replaced by a flexible agenda mechanism,

which schedules the agents, based on tasks that they announce.

• Since the agents demonstrate conflict resolution by negotiation, they have to exchange

information. This is implemented by using speech acts and message files. The agents

communicate directly among themselves, without the use of a central communication

manager.

Similarly, the negotiation is done between pairs of agents, without help from a central

arbitrator. The agents are responsible themselves for conflict detection and notification.

Single Function Agents and their Negotiation Behavior in Expert Systems

2.6 SiFA Systems 36

The negotiation is produced by a sequence of rules that react to a specific conflict situation

(which, for testing and demonstration, is asserted as a fact before run-time).

Victor classifies conflicts into 6 situations, depending on the relation between the agents’

local goals and the global goal, as shown in Table 2-1. (The grey areas have not been

implemented.)

Let us now summarize some of the aspects of I3D+:

• I3D+ simulates the handling of selection conflicts based on goals. It doesn’t differenti-

ate between preferences that are allowed to fail, and constraints that must not fail for

agents.

• It has no mechanism for constraint relaxation.

• The conflict resolution is domain dependent, it is encoded in the agents knowledge

base. There is no support for more abstract, domain independent resolution.

• Agents have no facility to talk about constraints, and therefore cannot learn about other

agents’ reasons for failure.

• No design history is kept for lookup in later conflicts.

• The simulation only allows one negotiation per target for every run.

Type Agent1 Goal Agent2 Goal Global Goal Result

1 X Y Z Either one will win

2 X Y X Agent1 will win

3 X Y Y Agent2 will win

4 X Y X,Y Either one will win

5 X X Z Either one will win, depending on
their expertise

6 X X X Either one will win, depending on
their expertise

TABLE 2-1: Conflict Situations in I3D+

Single Function Agents and their Negotiation Behavior in Expert Systems

2.7 Summary 37

• The model has no means of preventing loops.

• Agents have to detect conflicts themselves, by checking the values on the blackboard.

This is expensive, as it has to be done every time an agent is considered for scheduling.

2.7 Summary

In this chapter we focused on previous work in negotiation and SiFAs. We started by pre-

senting the four founding aspects of this work.

First, we investigated Cooperation (section 2.2), with its two definitions of ‘non-selfish-

ness’ and ‘willingness to exchange information’.

Second, the definition of Conflict Resolution and the different ways of implementing it

were presented in section 2.3. We showed different research models, some of which were

focused on design in particular, and some were not geared to any particular task or

domain. We described Situation Assessment Packages, Mediator based models, Constraint

Partition and Coordinated Action, and Klein’s hierarchical approach.

Third, we presented Negotiation (section 2.4), both for general problem solving and for

design. We described the works by Khedro & Genesereth, Davis & Smith, Laasri et al.,

Lander & Lesser, Sycara and Werkman.

Fourth, we discussed Communication (section 2.5), with internal only communication,

speech acts, hybrid models, and two important standards, KQML and KIF. We finished the

section by describing the SHADE research, which uses both of these standards.

Single Function Agents and their Negotiation Behavior in Expert Systems

2.7 Summary 38

The last part of this chapter (section 2.6) described three SiFA systems, SNEAKERS, I3D

and I3D+, explaining their agent types, targets and points of view. For I3D+ we also dis-

cussed the limited amount of negotiation in it.

In the next chapter, we investigate SiFAs and their negotiation behavior.

Single Function Agents and their Negotiation Behavior in Expert Systems 39

CHAPTER 3 SiFAs and Negotiation

3.1 Introduction

In this chapter, we will first describe a set of single function agents that we think are

widely applicable. Then we analyze where conflicts might occur in a SiFA system.

After classifying the conflicts into categories, we then proceed to describe possible resolu-

tion methods for the conflicts. We then show some of the general strategies that can be

used by agents in negotiation.

The last two sections focus on the requirements that we can derive for the knowledge and

the function of the agents. These will be used to guide the implementations.

3.2 Agent Types

Although we have found a slightly different set of agent types in SNEAKERS and I3D/

I3D+, most of the functions were recurring. We present each individual agent type in the

following sections.

Single Function Agents and their Negotiation Behavior in Expert Systems

3.2 Agent Types 40

3.2.1 Selector/Advisor

A Selector picks one item from a set of alternatives (see Figure 3-1). In doing so, it can

use preferences to rank alternatives, and constraints restrict the alternatives to only valid

choices. Some possible items could be choice of a material from a list, suggested next

steps, or some parameter for an attribute of the design object

The advisor is a more general form of the selector. It is not bound to an enumerated list of

possible choices, but it has an abstract description of what it can choose from. For exam-

ple, the options could be described by a set of constraints on a numeric parameter, requir-

ing the advisor to use linear optimization to produce a specific value.

3.2.2 Estimator

An Estimator produces approximate values derived from values of attributes of the design

object (see Figure 3-2). These values are “approximate”, because not necessarily all the

input parameters are available, or some of the input values are by themselves approxi-

mated or statistical. In addition to that, the agent can use a function that is only close to,

but is not exactly the function that applies in real life. This is often done to save time and

effort in early design stages.

FIGURE 3-1: Functionality of the Selector Agent Type

f(a,p,c) Choice of a Parameter’s ValuePreferences

Constraints

Alternatives

Selection Knowledge

Single Function Agents and their Negotiation Behavior in Expert Systems

3.2 Agent Types 41

3.2.3 Evaluator

The Evaluator uses design goals and attributes of the artifact to evaluate the design from

one point of view. The result is an information about the quality of the design, i.e., how

well the design meets the requirements or some explicit goal (see Figure 3-3). The evalua-

tion can be expressed numerically (e.g., in percent), or in an abstract way (e.g., ‘good’,

‘average’ or ‘poor’). The evaluation does not make any statements about whether the

achieved quality is satisfactory or not.

FIGURE 3-2: Functionality of the Estimator Agent Type

FIGURE 3-3: Functionality of the Evaluator Agent Type

f(p) Derived Design AttributesDesign Parameters

Estimation Knowledge

f(p,g,s) Design-Quality, Design-PerformanceGoals, Preferences, Requirements

Standards

Design Parameters

Evaluation Knowledge

Single Function Agents and their Negotiation Behavior in Expert Systems

3.2 Agent Types 42

3.2.4 Critic/Praiser

A Critic points out potential problems, suboptimal decisions, poor choices that stand in

conflict with the preferences that are expressed in the requirements. Positive criticism is

generated by Praiser agents.

3.2.5 Suggestor

The Suggestor takes a criticism and the context and suggests alternative solutions or rec-

ommended actions to achieve a solution.

FIGURE 3-4: Functionality of the Critic and Praiser Agent Type

FIGURE 3-5: Functionality of the Suggestor Agent Type

f(d,p,s,c) Praisal / Criticism
Standards

Constraints

Design Parameters

Praisal/Criticism Knowledge

Preferences

f(d,cr,s,co) Recommended Action/
Standards

Constraints

Design Parameters

Suggestion Knowledge

Criticism

Alternative Solution

Single Function Agents and their Negotiation Behavior in Expert Systems

3.3 Conflict Occurrences 43

3.3 Conflict Occurrences

In Table 3-1, we show a matrix of conflicts. In the rows, we list the agents that initiate the

conflict, by discovering it, and in the columns we have the partners, that they go into

negotiation with. For example, one of the most common conflicts, is the Selector-Selector

conflict. The square in the intersection between the selector row and the selector column

describes a conflict cause, then an arrow and a possible resolution step. This table only

gives an overview, but it shows how rich the interactions between the different agent types

are. The grayed squares show conflicts that are not yet supported by the SINE system. The

outlined squares, however, show places where multiple types of conflicts exist between

the same pair of agents.

Initiators
(below):

Estimator Evaluator Selector Critic Suggestor

Estimator Conflicting Estima-
tions
⇒
Modification of Esti-
mation Basis

Poor Estimation Basis
⇒
Select different alterna-
tive, or give more
details

Evaluator Incomplete Evaluation
Basis, Poor Estimation
⇒
Modify Estimate, add
Attributes to Estimate

Conflicting Evalua-
tions
⇒
Modification of Evalu-
ation Basis

Poor Evaluation Basis
⇒
Select different alterna-
tive, or describe selec-
tion in more detail

Selector Poor Estimation Qual-
ity
⇒
Request Modification
of Estimate

Undercritical Evalua-
tion
⇒
Request Refinement of
Evaluation

Constraint Failure,
Preferences
⇒
Removal and Reorder-
ing of Alternatives

No selection between
several suggestions
possible
⇒
Refine Rationale

Critic Complaint about Qual-
ity of Estimation
⇒
Modify Estimation
Procedure

Complaint about Qual-
ity of Evaluation
⇒
Modify Evaluation Cri-
teria

Disqualification of
Alternatives
⇒
Additional Constraints

Conflicting Criticism
(e.g. too high and too
low)
⇒
Agreement on Cr.

Praiser Approval of Choices
⇒
Reordering of pre-
ferred Selection
Method

Conflicting Statements
⇒
Re-evaluate or retract

Unwanted Change
Suggestion
⇒
Receive Reason for
Improvement

Suggestor Improve Estimation
⇒
Add/Remove Item
Types, Methods

Improve Evaluation
⇒
Add/Remove Attribute
Types, Methods

Improve Selection Pro-
cess
⇒
Intensify Search;
Extend Search Space

Enable Selection
⇒
Relax Constraint

Conflicting Suggestion
⇒
Agreement on common
suggestion

TABLE 3-1: Conflicts: Partners, Causes and Resolution

Single Function Agents and their Negotiation Behavior in Expert Systems

3.3 Conflict Occurrences 44

Let us now investigate individual pairs of conflicting agents. For each conflict, we

describe the object of the conflict, the cause, the strategy that could be used to solve it and

an explanation of why this conflict can occur. We also mention whether the SINE platform

currently supports the conflict type or not.

3.3.1 Estimator related Conflicts

• Conflicts with Evaluator type agents:

Object: Not enough information available for Estimation.

Cause: The evaluator’s output doesn’t provide the kinds of data that the esti-
mator needs.

Strategy: Try to come up with richer results from the evaluator.

Explanation: The evaluator produced an evaluation, which the estimator wants to
use. The evaluation, however, does not provide the right kind of infor-
mation. This could happen, for example, if the evaluator specifies the
result in the wrong units.

State: Not supported yet.

Object: Estimator cannot produce an accurate or reliable enough output, due to
non-accurate output from the evaluator.

Cause: The evaluator was using only a rough model, only some of the infor-
mation available, or estimated values which are not reliable or exact
enough.

Strategy: Switch to a more detailed model or use better quality information.

Explanation: When an evaluator uses a rough approach with default values, instead
of the final design values, this might not be good enough for an estima-
tor.

State: Not supported yet.

Single Function Agents and their Negotiation Behavior in Expert Systems

3.3 Conflict Occurrences 45

• Conflicts with Selector/Advisor type agents:

3.3.2 Evaluator related Conflicts

• Conflicts with Estimator type agents:

Object: Not enough information available for estimation.

Cause: Some information to base the estimation or evaluation on is not avail-
able for the current choice.

Strategy: Select an object which can be evaluated better, i.e. which has that
information.

Explanation: The selector or advisor decided on a value. The estimator does not
have enough information to perform its estimation. This could happen,
for example, if the estimator does not know the material that got
selected.

State: Supported.

Object: Not enough information available for Evaluation.

Cause: The estimator’s output doesn’t provide the kinds of data that the evalu-
ator needs.

Strategy: Try to come up with richer results from the estimator.

Explanation: An evaluator might need more information than just a single value
result from the estimator. For statistical values in particular, a range/
probability pair is usually needed. If the estimator fails to provide that
kind of information, the evaluator might not be able to perform its
function.

State: Supported.

Object: Evaluator cannot come up with an accurate or reliable enough output,
due to non-accurate output from the estimator.

Cause: The estimator was using only a rough model or only some of the infor-
mation available, not all.

Strategy: Switch to a more detailed model or use more information.

Explanation: When an evaluator has to produce a detailed evaluation, it might need
detailed estimates from the estimator.

State: Supported.

Single Function Agents and their Negotiation Behavior in Expert Systems

3.3 Conflict Occurrences 46

• Conflicts with Selector/Advisor type agents:

3.3.3 Selector related Conflicts

• Conflicts with other Selector/Advisor type agents:

Object: Not enough information available for evaluation.

Cause: Some information to base the estimation or evaluation on is not avail-
able for the current choice.

Strategy: Select an object which can be evaluated better, i.e., which has that
information.

Explanation: The selector or advisor decided on a value. The evaluator does not
have enough information to perform its estimation. This could happen,
for example, if the evaluator does not know the material that got
selected.

State: Supported.

Object: Different Selection.

Cause: Use of a model that is too shallow.

Strategy: Abandon recommendations from the selector that uses the shallow
model.

Explanation: If two selectors with the same target and point of view clash, and if one
of them uses a shallow model, while the other one uses a detailed
model, it is advisable to withdraw the recommendations that are only
supported by the selector with the shallow model. This conflict type
has been adapted from [Klein & Lu 1990].

State: Not supported yet.

Single Function Agents and their Negotiation Behavior in Expert Systems

3.3 Conflict Occurrences 47

Object: Different Selection.

Cause: Use of default values, lack of information.

Strategy: Replace invalid default values with real values and fill in knowledge
gaps.

Explanation: If the difference in choice is based on the fact that one of the selectors
has wrong information, or lack of information, then this can be
resolved by updating his knowledge. This conflict has been adapted
from [Werner 1989].

State: Not supported yet.

Object: Differing Selection.

Cause: Differing Knowledge of Alternatives.

Strategy: Inform other agent of additional alternatives.

Explanation: This is a subclass of the previous conflict type, where the reason for
the conflict is that the selectors have different lists of alternatives to
begin with. This could happen in a distributed system, due to lack in
information transport, or because one of the agents has a different
alternative-query method. Usually, this conflict can be resolved by
mutually informing the other agent of the additional choices.

State: Not supported yet.

Object: Different Selection.

Cause: Differing Preferences.

Strategy: Agree on common value, or convince other agent to abandon choice in
favor of more important/global goals.

Explanation: If two selectors differ, because they have different preferences, even
when all the information is the same, they can only try to agree on a
common value, or try to get the other agent into accepting their own.
This conflict is the one most commonly found in the literature, e.g., in
[Lander & Lesser 1991] and [Victor 1993].

State: Supported.

Single Function Agents and their Negotiation Behavior in Expert Systems

3.3 Conflict Occurrences 48

• Conflicts with estimator and evaluator type agents:

Object: Different Selection.

Cause: Different Constraints.

Strategy: Build intersection of both agent’s possible choices.

Explanation: If the reason for the disagreement is that the agents choose from differ-
ent supersets of alternatives, then it is advisable to build the intersec-
tion of the two sets and resolve it the same way as the previous conflict
type.

State: Supported.

Object: Not enough information available for selection.

Cause: Some criteria pertinent to the selection process are not available for
that object.

Strategy: Add needed information into the evaluation/estimation result.

Explanation: The estimator or evaluator decided on a value. The value alone might
not provide enough information for the selector (e.g., for statistical
values: an estimated value, a reliability factor and an error tolerance
always go together).

State: Not supported yet.

Object: Alternatives don’t show enough difference in quality.

Cause: Evaluation or estimation model is too weak to produce significantly
different results for the input, maybe due to too high tolerances.

Strategy: Improve estimation or evaluation contrast.

Explanation: The selector / advisor can use feedback from evaluators or the estima-
tors to rank its possible choices. If the ranking is not possible, because
the values do not show enough difference, then the selector or advisor
may request a more critical evaluation or estimation.

State: Supported.

Single Function Agents and their Negotiation Behavior in Expert Systems

3.3 Conflict Occurrences 49

3.3.4 Critic/Praiser related Conflicts

• Conflicts with estimator and evaluator type agents:

Object: Not enough information available for Criticism.

Cause: The estimator’s / evaluator’s output doesn’t provide the kinds of data
that the critic needs.

Strategy: Try to come up with richer results from the agents.

Explanation: The estimator or evaluator decided on a value. The critic does not
receive enough information to perform its criticism. This can happen
for example with statistical estimates, when they do not provide the
needed all of the value, the statistical reliability and the error margin.

State: Not supported yet.

Object: Not enough information gets used in estimation / evaluation.

Cause: The critic wants to make sure that all the pertinent information is used.

Strategy: Try to add additional design parameters, goals, preferences or stan-
dards into the estimation / evaluation data.

Explanation: Critics can be used to ensure that a certain level of quality of work is
performed by the other agents. If an agent does not use all the pertinent
information, this can prompt the critic to request from the agent in
question to use more information in his approach.

State: Not supported yet.

Object: Poor processing model.

Cause: Agents were only using a rough model to come up with a quick
answer.

Strategy: Switch to a more detailed model.

Explanation: Critics can be used to ensure that a certain level of quality of work is
performed by the other agents. When an agent uses a quick and shal-
low approach (e.g., during rough design), this might not be acceptable
in later design stages. The critic can then request the other agent to use
a more thorough approach.

State: Supported.

Single Function Agents and their Negotiation Behavior in Expert Systems

3.3 Conflict Occurrences 50

• Conflicts with selector type agents:

3.3.5 Suggestor related Conflicts

• Conflicts with other suggestors:

Object: Unsatisfactory Selection.

Cause: Constraint violated.

Strategy: Inform Selector of constraint, try to select again, with the additional
constraint.

Explanation: When a specific constraint fails for a particular selection, and the critic
has reason to believe that the selector could interpret the constraint
itself, then the critic can decide to request from the selector to incorpo-
rate his failing constraint into the selector’s design knowledge.

State: Supported.

Object: Different Suggestion.

Cause: Model too shallow or too general.

Strategy: Abandon recommendations from the Suggestor that uses the shallow
or general model.

Explanation: Similar to the selector-selector conflicts. Two suggestors might differ
on their suggestions about what to do next. If one of them uses a shal-
low or general model and the other one employs a more detailed or
more specific model, then the simpler or less specific suggestor’s solu-
tion should be abandoned in favor of the more specific one.

State: Not supported yet.

Object: Different Suggestion.

Cause: Default Values or lack of information.

Strategy: Replace invalid default values with real values and fill in knowledge
gaps.

Explanation: If the difference in suggestion is based on the fact that one of the sug-
gestors has wrong information, or lack of information, then this can be
resolved by updating its knowledge.

State: Not supported yet.

Single Function Agents and their Negotiation Behavior in Expert Systems

3.3 Conflict Occurrences 51

• Conflicts with other agent types:

Object: Different Suggestion.

Cause: Different Preferences and/or different goals.

Strategy: Agree on common values, or convince other agent to abandon goal in
favor of more important/global goals.

Explanation: If two suggestors differ, because they have different preferences, even
if all the information is the same, they can only try to agree on a com-
mon value, or try to get the other agent into accepting their own.

State: Not supported yet.

Object: The suggestion cannot be implemented.

Cause: The other agents do not know how to apply the suggestion to the situa-
tion.

Strategy: Inquire possible alternatives from agent and operationalize suggestion
accordingly.

Explanation: If the suggestor makes a proposal which cannot be implemented,
because the agents in concern are unable to instantiate the proposal,
then the suggestor can be asked for a more specific description or a
more appropriate suggestion.

State: Not supported yet.

Object: The suggestion can be implemented but produces problems.

Cause: There are constraints that fail when other agents try to apply the sug-
gestion.

Strategy: Find a different plan that avoids the conflicts or modify plan to satisfy
constraints.

Explanation: A suggestor cannot always anticipate all the possible difficulties in
implementing the suggestion. It might be prompted to refine or adjust
its proposal, if not to withdraw it and suggest a different solution.

State: Not supported yet.

Single Function Agents and their Negotiation Behavior in Expert Systems

3.4 Conflict Types 52

3.4 Conflict Types

Although there is the possibility for a multitude of conflicts between SiFAs, they fall into a

limited number of categories. The conflict types recur in several agent type combinations:

• Not enough Information in Output

This conflict type occurs, when one agent needs information from another agent and the

information provided is less descriptive than the first agent needs. The conflict can be

found with all agents that use output of another agent, especially the pairs Evaluator-

Estimator, Evaluator-Selector, Selector-Estimator, Selector-Evaluator, Critic-Selector.

• Information Quality not sufficient

Among those situations where an agent uses another agents’ output, the agent that uses

the information might have quality requirements, e.g., reliability or error tolerance val-

ues. Agent pairs where this type of conflicts is found are Evaluator-Estimator, Selector-

Evaluator, Critic-Estimator, Critic-Evaluator.

• Poor Processing Model

This conflict type can only occur when an agent has knowledge about another agents’

different processing models. An agent might have a rough and a detailed model for

devising a value. Although knowledge about these processes can be acquired through

communication, it is mostly used by critics, suggestors and selectors. The selector for

example might request the evaluator to use the detailed model, so that the evaluations

are more usable for the selection purpose.

• Differing Preferences

When several agents compete for assignment of the same design parameter or general

issue, they can have differing local optima. Two selectors can have different first

choices, but also two suggestors may want to suggest a different solution approach.

Single Function Agents and their Negotiation Behavior in Expert Systems

3.5 Conflict Resolution 53

• Design Constraint Violation

Violations of constraints relating to values of parameters are most commonly discov-

ered by critics and are produced by selectors and advisors, because they are the agents

making the design decisions. But a suggestion can also violate an agents’ constraints.

3.5 Conflict Resolution

Conflicts can be solved in several ways, depending on the conflict type:

• Add needed Information.

When an agent needs more information in the output, the output producing agent can

try to fill in the kinds of data that have been requested. Often, the agent will not be able

to produce the values. In those cases, the producing agent will have to supply default

values, or the information using agent will have to make default assumptions.

• Improve Information Quality.

Information quality is often dependent on the amount of research done. For estimators

especially, statistical information can sometimes be improved by performing a more

thorough analysis of the data. This will produce a higher reliability and/or less error

margin in the estimate. If a better information quality cannot be achieved, the agents

that use the data might have to be more careful in their use. For evaluators this can

mean that they produce a less drastic difference between their best and worst evalua-

tions. For selectors this can mean that they do not select alternatives that are character-

ized by a high degree of uncertainty.

• Change to a Better Processing Model.

In many cases a poor or shallow model has only been used to allow quick prototyping

or rough design. In the detailed design phase these models should be abandoned in

favor of better models, which use the additional information available at that point.

Single Function Agents and their Negotiation Behavior in Expert Systems

3.6 Negotiation Strategies 54

• Agree on Common Value.

Depending on the strategy (see 3.6, “Negotiation Strategies”) an agreement can be

reached through different means. However, in the course of the design, revision and

further agreements might be needed. Agents should be flexible enough to react to

changed situations, but intelligent enough to avoid redundant negotiation and vicious

circles. This means that they might have to keep historical information, which will

avoid asking another agent to perform what it cannot do or what it already has done.

3.6 Negotiation Strategies

For any conflict with more than one possible outcome, some way of driving the agents’

behaviors will have to be available. These strategies are different in the behavior that they

produce and they can have an impact on the portability to a new domain.

Agents can have a different strategy, depending on behavioral aspects, which we can call

‘character traits’. For example, the agents might give in, whenever they can suit the

requesting agents needs, insist on their previous behavior/value, or negotiate and adapt to

requests, possibly by trading knowledge and resources as they do.

Strategies can be domain dependent or domain independent. Usually, the domain depen-

dent strategies allow a direct solution of the conflict, but the strategy cannot be transferred

to a new design domain, without modification. The reason is that the strategy might

include knowledge about domain specific agent-interactions, dependencies of values, and/

or aspects of parameters.

Another aspect of strategies is whether they can be applied to any kind of agent-pair or

whether they are specific to a certain grouping, for example selector-estimator.

Single Function Agents and their Negotiation Behavior in Expert Systems

3.7 Knowledge Requirements 55

3.7 Knowledge Requirements

Agents need mostly two kinds of problem-solving knowledge: Design Knowledge and

Negotiation Knowledge. The design knowledge allows them to perform their function and

it is described in the section 3.2, “Agent Types”, and section 4.4, “Agent Design”.

In order to solve conflicts, the agents need the negotiation knowledge. It consists of sev-

eral parts. One part has to analyze what other agents have lead to the current inconve-

nience. This is known as blame assignment, and in SiFA systems it consists of tracing

origins of values or using knowledge about value dependencies to find the ‘culprit’.

The information from the first part is used in the second part, analyzing the conflict type.

This usually involves tracing historical information and/or asking the other agent ques-

tions, in order to classify the conflict into one of the conflict types in section 3.4, “Conflict

Types”. In SINE, agents can also use their knowledge about agent structure to gather

information about the agent type that the stand in conflict with.

3.8 Functional Requirements

For the negotiation, the agents need:

• Communication Functions

These features facilitate the locating of agents and transmitting messages to them. In

distributed systems the messaging can be layered on top of existing communication

channels (TCP/IP, RPC, IPC, email). In communication environments based on

KQML, information brokering functions might be available. The agents need function-

ality to use these for their negotiation purposes.

Single Function Agents and their Negotiation Behavior in Expert Systems

3.9 Summary 56

• Functionality for finding Conflict Solutions

In negotiation the agents need to be able to find possible points of agreements, choosing

the best one of them and signaling them to the other agents. These functions will take

into account the strategies and conflict types. They also involve recognizing what pro-

posals are possible solutions and making proposals to the other agents in a way that

keeps the negotiation short and efficient.

• Functions for Implementation of Solutions

Once a common solution has been agreed on, the agents will need functionality to

implement it. For some agents that might involve redeciding their values and often it

includes adding, relaxing or removing constraints, or activating different rule-sets and

functions.

3.9 Summary

In this chapter we investigated Single Function Agents. We started by defining the individ-

ual agent types in terms of their functions, inputs and outputs (section 3.2). We then con-

tinued with an analysis of where conflicts could occur between the different agent types,

by building a matrix of all agent types and investigating each combination (section 3.3). In

the same section, we described the possible conflicts for each agent type, with the causes,

strategies and explanations pertinent to the conflict.

We then abstracted the conflict occurrences into a set of five conflict types (section 3.4)

and built a similar set of negotiation strategies (section 3.5). We concluded the chapter by

deriving the knowledge and functional requirements (sections 3.6 and 3.7, respectively)

for the agents from these two sets.

In the next chapter, we present SINE, a platform for research into negotiating SiFAs.

Single Function Agents and their Negotiation Behavior in Expert Systems 57

CHAPTER 4 SINE: A Platform for Negotiating
SiFAs

4.1 Introduction

In this chapter we will present SINE, a platform for research into negotiating SiFAs. We

first describe the goals that are to be fulfilled with this platform and explain the reasons for

its development.

In the second section, we present the architecture that SINE uses, including the knowledge

representation, the data and control flow, as well as the language and communication that

we use. We also present the methods used for conflict detection and notification, the con-

flict resolution model and the scheduling system.

The third section explains the design of the individual agent types.

4.2 Goals

After the development of several SiFA systems at WPI, there was considerable evidence

that some of the structure and functionality was recurring. In SNEAKERS and I3D, for

example, we find many identical agent types. Also, with the implementation of negotiat-

Single Function Agents and their Negotiation Behavior in Expert Systems

4.2 Goals 58

ing SiFA systems it became obvious that it is inefficient to design an entire negotiating

SiFA system from scratch. We therefore decided to build a platform with the following

goals:

• Build a reusable SiFA system for the future

The system should allow easier development of SiFA based systems, especially for

parametric design systems. A large amount of domain-independent design functionality

should be made available. Also, the system should provide a programming environ-

ment to the developer which allows the development on an abstract, high level. For

example, it should provide support for explicit data representation and writing the

development of the design knowledge independent of the data that get used in the sys-

tem. This would prevent hard coding data in the design knowledge, which has been

found to be difficult for software maintenance and extension.

• Implement domain-dependent and domain-independent CR knowledge

In I3D+, only domain dependent negotiation knowledge was implemented. A universal

platform would have to supply some general CR rules and strategies that could be used

as a background for implementing more specific techniques in critical areas. Then the

domain independent part could be used for the bulk of the occurring conflicts.

• Experiment with conflicts and their resolution in a CE system

As not all the aspects of negotiation in SiFA systems had been researched in previous

work, the platform should allow experimenting with different knowledge, strategies

and conflict situations.

• Design and implement a negotiation language for SiFAs

A reusable language for negotiation would allow present and future agents to be com-

patible and set a standard for SiFA communication, which up to now did not exist.

Single Function Agents and their Negotiation Behavior in Expert Systems

4.3 Architecture 59

4.3 Architecture

One of the challenging tasks in developing SINE was to devise an architecture that would

suit the needs of present and future SiFA systems in multiple domains. As building a

totally universal system would have been difficult, the SINE platform is geared mostly

toward routine parametric design. This means that the structure of the design object, its

features and the parameters influencing it are known in advance.

The design task will consist of making decisions on values for design attributes, which can

be either parameters (lengths, widths, colors, materials etc.) or general design decision

(e.g., selecting a structure type for the artifact or determining the class of material to use).

This also allowed a more function specific and efficient design for the agents, while still

allowing routine conceptual and configurational design.

4.3.1 Agent Topology

The agent topology defines what agents exist and where interaction between them occur.

Many kinds of topologies are possible, such as star, ring, multi-star and hierarchy. The

SINE system adopts a flat, totally connected structure. This means that all agents are able,

if necessary, to communicate with all others, and no agent has a hierarchical priority over

any other agent.

The advantages are that this most closely represents a human team at work. While some

agent could take on a controlling function, the system does not enforce any kind of behav-

ior on the agents. Also, agents can be developed, tested, added and removed without con-

siderations about the rest of the system. They could in fact randomly join and exit the

design process.

Single Function Agents and their Negotiation Behavior in Expert Systems

4.3 Architecture 60

A possible disadvantage is that this structure produces an exponential number of possible

conflicts and negotiations for very large design tasks. As analyzing all the possible con-

nections was one of the goals for the research, this is an advantage for research. The flat

agent topology could be extended to support some agent hierarchy in future research.

4.3.2 Data Flow and Negotiation Links

For efficiency and coherency reasons, the agents design the artifact on a centralized black-

board, i.e., all the information about the design parameters is located at one site. When an

agent decides on a design parameter or when it retrieves information about the design, the

information is sent to or retrieved from this blackboard.

Figure 4-1 shows how the agents store and retrieve information about a design parameter

from the central blackboard. If no negotiation occurs, the data flow is star shaped.

FIGURE 4-1: Data Flow in SINE

Estimators Selectors/Evaluators

Critics/Praisers

Design

Estimates

Advisors

Suggestor

Parameter

Value

Critique

Value
Value

Value

Value

Parameter Values

Other Data

Eval.

Suggestion

Single Function Agents and their Negotiation Behavior in Expert Systems

4.3 Architecture 61

Even though this removes some of the possibilities that a fully distributed system would

offer, the advantages of having a shared location for the design description outweighed the

disadvantages in the design of SINE. This is due to the fact that a shared memory prevents

knowledge inconsistencies due to propagation latencies, and it also makes retrieval of

information about the artifact more efficient. A large portion of research in DAI has ana-

lyzed the implications of knowledge distribution, so there is no goal for SINE to replicate

these insights [Bond & Gasser 1988] [Huhns 1987] [Huhns & Gasser 1989].

The interactions during negotiation are much more complex. Apart from using the central

blackboard, agents also use their communication features to request and send information

to other agents. Figure 4-2 shows all the possible negotiation links between agents. A key

part of the research is to investigate these links and their use. The platform supports com-

munication between any pair of agents.

FIGURE 4-2: Negotiation Links in SINE

Estimators Selectors/

Evaluators

Critics/Praisers

Advisors

Suggestor

Single Function Agents and their Negotiation Behavior in Expert Systems

4.3 Architecture 62

The data flow and the negotiation occur intermittently, with agents using the blackboard to

retrieve information and post the results of the negotiation.

4.3.3 Knowledge Representation

The SINE system uses a combination of rules and reactive objects to store knowledge.

Reactive objects, like all objects in an object oriented design, have some data content, e.g,

a simple or structured value, and some functions that allow access and usage of the data.

The objects are generated as instances of classes. The classes are structured in a hierarchy.

Functions that the objects provide, as well as structure and default values can be inherited.

A design parameter, for example, has a ‘value’ slot and an ‘origin’ slot. The ‘value’ slot

stores the current value of the design parameter, the ‘origin’ slot holds the source of the

parameter, i.e., which agent decided it. The parameter class also provides three functions

to access its objects: one read-access function, and two write-access functions, one with

and one without restriction.

The value of a design parameter could be a numeric value, such as a length in millimeters,

weight or volume. It could also be a reference to a structured value, such as a material that

includes information about density, thermal conductivity, cost etc., in attribute value pairs.

Agents can use constraints, which are represented as objects of a constraint class. There

are three kinds of constraints:

• Constraints on values, e.g., (> length 3), meaning “the length has to be larger than 3”.

• Constraints on the existence of values, for example (≠ cost nil) to express “The cost of

the material has to be known.”

• Constraints on the interaction of values, e.g., (> length width), which could mean that

the length of the artifact has to be larger than the width.

Single Function Agents and their Negotiation Behavior in Expert Systems

4.3 Architecture 63

For agents that need to make a choice between different alternatives, there is a class called

preference. Its instances store an abstract relation. These can be used to produce a (partial)

ordering on a set of values or choices. For example, an agent could have a

‘low_cost_preference’ with an ordering expression stored in it. The agent can then send

the names of two alternatives to the preference object, with the request to have them

ordered. The preference object can use an inherited mechanism to order the alternatives by

increasing cost. It can also use a built in iterative mechanism, which will sort a list of alter-

natives by applying the preference operator repeatedly.

Requirements are specified in two parts. The first part consists of the rules, constraints and

preferences. It is thought to change only occasionally, with the addition of new knowledge

into the system, or modifications of the design task or design artifact structure.

The second part of requirement specifications consists of filling slots in a requirement

structure, similar to design parameters, with values. These values, together with the con-

straints, rules and preferences, drive the agents in the design.

For a material cost critic, for example, the maximum total cost is specified as a value in the

material requirement structure, and can be changed before any run or derived from user

input, while the ‘lower-than’-constraint is part of the agents knowledge base.

4.3.4 Communication

The communication structure adopted by SINE reflects the flexibility necessary for

research into negotiation. As all agents can negotiate with all other agents, the communi-

cation supports direct addressing of agents.

The communication mechanism implements synchronous messages, i.e., when agent A

sends a message to agent B, B is given control to process the message immediately, while

Single Function Agents and their Negotiation Behavior in Expert Systems

4.3 Architecture 64

A has to wait for B to return control to it. Synchronous messaging might seem like a

restriction, but since the receiving agents are free to simply store the message, without

doing anything else, an asynchronous messaging system can easily be built on top of the

existing scheme.

The message format is based on speech acts (see section 2.5.2, “Speech Acts”), i.e, it cap-

tures a complete utterance in one message. The utterances are similar to a human sentence,

which allows a straightforward adaptation of sentences found in human discussion. The

format is similar to the KQML message structure, with slots for storing the primitive,

sender, receiver, time stamp, language and ontology information, as well as references to

previous and future messages [Finin et al. 1993]. However, the KQML content slot has

been split apart into a more specific structure, consisting of a subject and two parameter

slots. These can be filled with standard names of design parameters and other names of

objects and attributes.

FIGURE 4-3: Speech Act Example

Example

• primitive tell

• subject proposal-count

• parameter1 nil

• parameter2 nil

• in-reply-to [msg14]

• language sifa_language

• ontology sifa_ontology

• receiver [mts]

• reply-with [msg15]

• sender [mbs]

• timestamp 12

Single Function Agents and their Negotiation Behavior in Expert Systems

4.3 Architecture 65

How the primitive, subject and parameters can be filled to form meaningful sentences is

defined by the SINE communication language, which we present in the following list. We

will use some elements of BNF (Backus-Naur-Form) for representing logical relationships

in the description, so that | stands for logical ‘or’, ‘{’and ‘}’ mark the beginning and end

of a set, ‘*’ means zero or more elements, ‘+’ means one or more elements, ‘::=’ means ‘is

defined as’, and ‘<name>’ represents a placeholder.

• Alternatives:

All agents that produce values by selection, or by elimination from a set of possible

choices (e.g. Selector, Advisor, Suggestor), should be able to communicate their alter-

natives (i.e., their different possible choices). Selectors have a finite input set of alterna-

tives, which can then be filtered through constraints and sorted by preferences. Other

agents might request a selector to consider an additional option or to refrain from using

an alternative.

“Add the following alternative to your list of considered choices.”

“Remove the following alternative from your list of considered choices.”

primitive insert

subject alternative

parameter1 <alternative-name>

parameter2 nil

primitive delete

subject alternative

parameter1 <alternative-name>

parameter2 nil

Single Function Agents and their Negotiation Behavior in Expert Systems

4.3 Architecture 66

• Constraints

Many agent types use constraints. Selectors restrict their set of choices with them, Crit-

ics use them to trigger specific messages and other agents can check their preconditions

with constraints.

Communication about constraints can help agents understand reasons for conflicts. It

can also help them avoid conflicts in later stages, if they manage to incorporate other

agents’ constraints into their considerations.

Constraints can have one of three states: failed, satisfied or unknown.

<c-status> ::= {failed | satisfied | unknown}

“What are your (all, satisfied or unsatisfied) constraints?

“My constraint is/are”

“What is the status of the following constraint?”

primitive ask-about

subject constraint

parameter1 <all | <c-status>>

parameter2 nil

primitive tell

subject constraint

parameter1 {<constraint-name> <c-status>}+

parameter2 nil

primitive ask-about

subject constraint_status

parameter1 <constraint-name>

parameter2 nil

Single Function Agents and their Negotiation Behavior in Expert Systems

4.3 Architecture 67

“The constraint is satisfied/unsatisfied”

“Add the constraint to your list of things to consider”

“Remove the constraint from your list”

• Preferences

Agents that have to search a set of choices for the best option can use preferences for

the purpose. Passing information about preferences can be used to locate reasons for

differing choices, in situations where the same data are known to both agents.

“What are your preferences?”

primitive tell

subject constraint_status

parameter1 <constraint-name>

parameter2 <c-status>

primitive insert

subject constraint

parameter1 <constraint-name>

parameter2 nil

primitive delete

subject constraint

parameter1 <constraint-name>

parameter2 nil

primitive ask-about

subject preferences

parameter1 nil

parameter2 nil

Single Function Agents and their Negotiation Behavior in Expert Systems

4.3 Architecture 68

“My preferences are...”

• Proposals

A value that an agent asserts for a design parameter is considered a ‘proposal’, since it

can be contested by other agents through negotiation. This is probably the most often

used type of subject. The language reflects this importance by offering a large variety

of speech acts for proposal communication, including agreement, disagreement,

counter-proposals, queries as to the number and the values of possible proposals, etc.

“I agree with your proposal for design-value x.”

“I don’t agree with your proposal for design-value x.”

primitive tell

subject preference

parameter1 <preference-name>+

parameter2 nil

primitive tell

subject proposal

parameter1 agree

parameter2 nil

primitive tell

subject proposal

parameter1 disagree

parameter2 <reason>

Single Function Agents and their Negotiation Behavior in Expert Systems

4.3 Architecture 69

“Here is my counter-proposal”

“How many different proposals do you have?”

“I have x proposals.”

“Give me another/all possible proposals(s)”

primitive tell

subject proposal

parameter1 <value>

parameter2 nil

primitive ask-about

subject proposal_count

parameter1 nil

parameter2 nil

primitive tell

subject proposal_count

parameter1 <value>

parameter2 nil

primitive ask-about

subject proposal

parameter1 {one | all}

parameter2 nil

Single Function Agents and their Negotiation Behavior in Expert Systems

4.3 Architecture 70

“Here is another proposal / are all other proposals”

“I accept your counter-proposal x”

“I reject your counter-proposal x”

• Data

In order to decide whether a conflict exists due to the lack of knowledge, agents can

inquire what data other agents are using.

“What data are you using?”

primitive tell

subject proposal

parameter1 <object-name>+

parameter2 nil

primitive tell

subject proposal

parameter1 accept

parameter2 <value>

primitive tell

subject proposal

parameter1 reject

parameter2 <value>

primitive ask-about

subject data

parameter1 nil

parameter2 nil

Single Function Agents and their Negotiation Behavior in Expert Systems

4.3 Architecture 71

“Do you have knowledge of x?”

“I use the following data:”

“What is your value for data-item x?”

“Try to get information about data x (with attribute <data-value>)!”

primitive ask-if

subject data

parameter1 <data-name>

parameter2 nil

primitive tell

subject data

parameter1 <data-name>*

parameter2 nil

primitive ask-about

subject data-value

parameter1 <data-name>

parameter2 nil

primitive achieve

subject data

parameter1 <data-name>

parameter2 <data-value>

Single Function Agents and their Negotiation Behavior in Expert Systems

4.3 Architecture 72

“I have the value y for data-item x”

• Processes

Agents may have different ways of performing their functions. These can be tagged

with names. Then, they can exchange information about their processes (e.g., with a

Critic).

“What process are you using?”

“I use the following process:....”

“What process can you use / could you use?”

primitive tell

subject data

parameter1 <data-name>

parameter2 <data-value>

primitive ask-about

subject process

parameter1 current

parameter2 nil

primitive tell

subject process

parameter1 <process-name>+

parameter2 nil

primitive ask-about

subject process

parameter1 {all-applicable | all}

parameter2 nil

Single Function Agents and their Negotiation Behavior in Expert Systems

4.3 Architecture 73

“Do you have knowledge of process x?”

“Please use the process x”

“I accept your request to use process x”

4.3.5 Conflict Detection and Notification

Selection-Selection Conflicts are detected when an agent tries to assert a value for a design

parameter. When it sends a request to the parameter to store a value in a parameter which

is different from the previously stored one, it will get a negative reply.

Value-Usage Conflicts can be detected when an agent checks its preconditions before it

gets run. If a design value does not satisfy all its precondition constraints, the failure of the

appropriate constraint is its indication of conflict.

primitive ask-if

subject process

parameter1 <process-name>

parameter2 nil

primitive tell

subject request-process

parameter1 <process-name>

parameter2 nil

primitive tell

subject request-process

parameter1 accept

parameter2 <process-name>

Single Function Agents and their Negotiation Behavior in Expert Systems

4.3 Architecture 74

Value-Criticism Conflicts can also be detected through constraint failure If the critics have

a set of constraints that they evaluate during their run and one of them fails, this is an indi-

cation of a conflict. In addition to that, the critics can have domain dependent knowledge

(e.g., in rules) that indicates conflicts in other situations.

After recognizing the fact that a conflict exists, the agent uses a built-in function to assert

the fact that a conflict exists. The conflict information gets posted in the global database

and can be seen by all the agents. It holds information about what type of conflict has been

detected, which agent discovered it, what agents are participating in the conflict (e.g. the

agent that proposed the original value) and when it was discovered.

4.3.6 Conflict Resolution

After posting the conflict information in the central database, the initiating agent starts the

conflict resolution. It is possible that the agent has a separate CR module, which concen-

trates all the CR knowledge in one place. These modules can be inherited from the agents’

parent classes. A material selector, for example, can inherit CR knowledge from the selec-

tor agent class.

How exactly the agent solves its conflict, what questions it asks and messages it sends, is

up to the developer of the agent, as long as the agent uses the SINE language for the com-

munication. It is not necessary that all agents have the same CR knowledge.

However, a convenient way to solve a problem is to have the initiating agent iterate

through several questions, in order to determine the current state of its partner in the con-

flict. It may then proceed to requesting the other agent to produce a new value or, if it

receives an indication that this is the only value that the partner can accomplish, try to

adapt to the given value itself.

Single Function Agents and their Negotiation Behavior in Expert Systems

4.3 Architecture 75

The agent behavior can be guided by strategies and general behavioral attributes. An agent

may be set up to give in to other agents’ request very quickly or very slowly. It might be

designed to share only a minimal amount of information or as much as it has at any point.

Apart from these behavioral issues, there are also some more technical issues that have to

be decided. For example, the amount of information that is retrieved from previous con-

frontations with other or the same partner has to be determined. Reusing this information

can reduce the amount of conflicts that occur, as well as the message traffic, but the infor-

mation might also be outdated, due to intermediary design changes. Reusing too much

knowledge can therefore overconstrain the design.

The agent is also responsible for recognizing that the conflict has been solved or that no

solution is possible. Although this might seem difficult, in many cases one of the two

agents will make a proposal to which the other one agrees. This agreement message can be

used to automatically trigger a functionality in the agent which removes the conflict infor-

mation from the blackboard.

Otherwise, if the agent has tried all its possible solution steps without success, there is

apparently no feasible solution. In that case, a different strategy or plan might have to be

used, the CR might have to be postponed, or other agents might have to be taken into the

resolution process.

Single Function Agents and their Negotiation Behavior in Expert Systems

4.3 Architecture 76

4.3.7 Agent Scheduling and Control Flow

The SINE platform has a scheduling mechanism which maintains a list of agents that

should be run next. This agenda manager is the top level controller of the system. It goes

through a loop of steps, until no agents can be scheduled anymore:

An entry is proposed by an agent by sending a message to the agenda manager. This mes-

sage will contain the agent’s name, a reason, explaining why the agent wants to be sched-

uled and a textual description of the task the agent wants to perform, for reference by the

user or developer. The reason can be one of the following (in increasing importance):

• usage (An agent is ready to use values)

• selection (An agent is ready to select a value)

• criticism (An agent wants to criticize) or

• conflict (An agent has encountered a conflict)

When no agent proposes an entry, the agenda manager assumes that the design is either

finished or stuck unrecoverably, and it terminates, returning control to the user.

In the case of a conflict, the agenda system is inactive. Instead, the communication mech-

anism that passes the information back and forth between the agents ensures that each

agent receives control to be able to evaluate and react to the message (see Figure 4-4).

1 Request all agents to propose agenda entries

2 Evaluate all the proposals with their reasons and tag them with a numerical value indicating the
importance

3 Sort all proposals by importance

4 Execute the most important task

TABLE 4-1: Agenda Manager

Single Function Agents and their Negotiation Behavior in Expert Systems

4.4 Agent Design 77

4.4 Agent Design

An agent in SINE consists of four major parts (see Figure 4-5):

FIGURE 4-4: Control Flow during Negotiation in SINE

FIGURE 4-5: SINE Agent Structure

Agenda Agent A Agent B
1

2
3

n-1
n-2

n

Agenda executes Agent Communication passes Control

Agent

Design Knowledge CR Knowledge

Design

Redesign

Communication Knowledge

CR Expertise

Speech Act Construction

Speech Act Interpretation

Local Facts

CR Facts

Local Goals

CR History

Design History

Single Function Agents and their Negotiation Behavior in Expert Systems

4.4 Agent Design 78

• Design Knowledge

• Conflict Resolution Knowledge

• Communication Knowledge

• Local Memory

The design knowledge contains all the functionality that the agent needs to perform its

design task, if no conflicts arise. The knowledge can be encoded in rules or in a more func-

tional programming language. In addition to that, there is also a small portion of knowl-

edge devoted to redesigning, for use after or during conflicts.

The conflict resolution knowledge contains all the methods that are used to detect and

classify conflicts, as well as the strategies for conflict resolution. It also contains a memory

for storing historical information about previous CR interaction with other agents, such as,

their goals, previous proposals that failed, preferences of other agents, etc.

The communication knowledge consists of two parts:

• Speech Act Construction

• Speech Act Interpretation

The first is used to produce and dispatch messages to other agents, the second retrieves

messages that are addressed to the agent and provides immediate reaction to the message.

The agent can be designed so that reactions to some messages are directly triggered

through this interpretation knowledge, without involving the CR knowledge. This can

improve message turnaround time.

It is generally desirable to keep actions during CR as slim as possible and to perform most

of the action during the work phases, when the agent is scheduled by the agenda. Only

then can the agenda system ensure a fair distribution of processing between the agents.

Single Function Agents and their Negotiation Behavior in Expert Systems

4.4 Agent Design 79

The connections between the different parts of the system and the agents can be seen in

Figure 4-6.

FIGURE 4-6: The Components of SINE

Messages

(Snd ... Rcv ... Pri ... Sub ... Par1 ... Par2 ...)
(Snd ... Rcv ... Pri ... Sub ... Par1 ... Par2 ...)
....
(Snd ... Rcv ... Pri ... Sub ... Par1 ... Par2 ...)

Agents 1..n

Design Knowledge CR Knowledge

Design

Redesign

Communication Knowledge

CR Expertise

Speech Act Construction

Speech Act Interpretation

Design Database

Design Parameters
Par1 Value p1
Par1 Value p1
...
Design Parameters
Object x1 (Attr1 Val1)(Attr2 Val2)...
Object x2 (Attr1 Val3)(Attr2 Val4)...
...

Design Specifications
Object r1 (Attr1 Val1)(Attr2 Val3)...
Object r2 (Attr6 Val3)(Attr7 Val9)...

Local Facts

CR Facts

Local Goals

CR History

Design History

Agenda Handler

Agent 1, Reason ..., Task ..., Importance ...
Agent 2, Reason ..., Task ..., Importance ...
...
Agent n, Reason ..., Task ..., Importance ...

Single Function Agents and their Negotiation Behavior in Expert Systems

4.4 Agent Design 80

4.4.1 Selector/Advisor

The selectors and advisors hold a key role in a SiFA system, as they are the agent types

that directly select values for design parameters, which involves decision making. On the

other hand, the selectors are the agent type which have the most rigidly defined function.

That is why the SINE platform provides a strong supporting structure for implementing

selectors.

The general task of the selector type is to:

• Produce a list of all types of values that the design parameter can hold

• Remove from the list all values/object that do not satisfy the set of constraints that the

selector knows about.

• Use preference operators to choose among the set of valid-choices the locally best

value.

• Negotiate with other agents in case of a conflict.

For example, let us consider how a selector for material using thermal-conductivity con-

siderations, can be designed through inheritance. The material-thermal-conductivity-

selector class inherits from the following classes:

• selector function class

This provides the agent with selection functions and agenda scheduling, as well as con-

flict resolution knowledge.

• material target class

The material class provides knowledge about how to find possible choices.

• thermal-conductivity point-of-view class

The thermal-conductivity class specifies what aspect of the target to consider, in this

case it is the thermal-conductivity attribute.

Single Function Agents and their Negotiation Behavior in Expert Systems

4.4 Agent Design 81

Selection Process. Given only these three inheritances, the agent can already perform its

function, i.e., select a value for the material parameter. It will use its materials knowledge

to find all the materials and then apply its selection knowledge to pick one of them and

store it in the design parameter.

However, without a preference function, the selector will not be able to optimize the

choice with respect to its point-of-view. Therefore we need to add a preference object to

the selector, which orders alternatives by decreasing thermal-conductivity. Now the selec-

tor can find its locally optimal choice. Figure 4-7 shows the steps that the selector takes in

order to decide on a value. We will see in section 5.4, “Agent Implementation”, how this is

programmed.

If the design parameter object accepts the value that the selector requests, then the agent is

done, and it goes into a ‘waiting’ state until the design parameter is modified by another

agent or until some agent sends it a speech act.

The selector also provides a scheduling function. When the agenda polls the agents for

scheduling requests, the selector automatically requests an agenda entry, when its precon-

ditions are satisfied. If the selector has never been run before in the current session, it will

request to be scheduled for ‘selection’.

Otherwise, it remembers what its previous choice for the parameter was. If the current

value for the parameter is different from its previous choice, it detects the conflict and

requests to be scheduled for ‘conflict’, which will give it a higher priority.

Conflict Resolution. When the selector encounters a conflict during the selection process,

it categorizes the conflict and activates a resolution strategy. For selection-selection con-

flicts, the selector module provides CR functionality:

Single Function Agents and their Negotiation Behavior in Expert Systems

4.4 Agent Design 82

FIGURE 4-7: Selection Process

Retrieve all alternatives of the target class (from database)

Remove all forbidden alternatives (from memory)

Add all additional alternatives (from memory)

Apply ordering relation to sort by preference

Send request to design parameter to store preferred choice as the value

mat1, mat2, mat3 ... matn

mat_x, mat_y, ... mat_z

mat1, mat2, mat3 ... matn
mat_x, mat_y, mat_z

mat_1, ... mat_z

mat2, mat3 ... matn
mat_x, mat_y

mat_x, mat1, mat_y ... mat2

mat_x

(empty list)

Store as ‘valid-choices’

Store as ‘preferred-choice’

Single Function Agents and their Negotiation Behavior in Expert Systems

4.4 Agent Design 83

• The selector can ask the other selector whether it has a different proposal to offer. If

both of them can agree on a proposal, the design parameter is updated to hold the new

value.

• Otherwise one of the agents will have to adapt to the design value or a counter-proposal

by relaxing some of its constraints.

• If this is not possible, the agents will have to block the design process, because it is

over-constrained, unless their difference is due to lack of information, which can be

resolved by exchanging information between the selectors.

Conflict Avoidance. The selector has three mechanisms that can help prevent conflicts:

• Additional Constraints

The selector can accommodate additional constraints from other agents, that it learned

through negotiation. These will help it refine its options to prevent further conflict with

other agents due to that constraint. For example, if a material evaluator needs density

information about the material, then this constraint can be passed to the selector to pre-

vent proposal of materials that do not have density information associated with them.

• Forbidden Alternatives

The selector can hold a list of forbidden choices. This list can be built from requests by

other agents, not to use certain alternatives. It will avoid selecting those alternatives.

• Additional Alternatives

A list of additional alternatives, built from descriptions passed to it from other agents,

allows it to consider choices that it was not able to find by its standard method (as

inherited from the target class).

Single Function Agents and their Negotiation Behavior in Expert Systems

4.4 Agent Design 84

4.4.2 Estimator

The estimator functionality is much more domain dependent than the selector. Our experi-

ence has shown that the estimation process need specific knowledge, such as rules, or

functions, such as statistical methods. This is probably due to the fact that there is no esti-

mation function that can be used in all cases.

However, the design of the estimator supplies some basic structures which help during the

development. All estimators can have a list of precondition constraints. Unless all those

constraints are satisfied, the agent will not perform its estimation. If any of the constraints

fail, the estimator stores their names in memory, for use during conflict resolution. If it can

blame a particular agent for the failure (e.g. a selector), it may proceed to requesting that

agent to incorporate the failed constraint to prevent further conflicts. Alternatively it may

choose to request from the other agent not to propose the value that lead to the failure any-

more.

4.4.3 Evaluator

An evaluator can use evaluation functions to derive the quality of the current design

choices. These functions can be stored in objects of the quantified_preference class. A

quantified preference is a preference, with the added possibility of numerically or symbol-

ically expressing the quality of any possible choice.

For example, we can build an absolute preference for material strength, such that any

material strength can be compared to a scale from 0 to the maximum required strength

(from the design specifications). If the strength is 1/2 of the maximum, the function

returns 0.5. If the strength is at the maximum, it returns 1, if it is closer to 0 it returns

smaller values.

Single Function Agents and their Negotiation Behavior in Expert Systems

4.4 Agent Design 85

Given a list of such preferences, the evaluator can iterate through them, evaluating each

individual preference and posting the results on the blackboard. Figure 4-8 shows the pro-

cess. In addition to that, the evaluators have precondition constraints just like the estima-

tors.

FIGURE 4-8: Evaluator Functionality

Retrieve a preference object

Store the result in the design database

Send current design value to preference

Done

preference_1

preference_1 =
0.68

Obj: preference_1
Attr: eval Val: 0.68

More Preferences?

No

Yes

Single Function Agents and their Negotiation Behavior in Expert Systems

4.4 Agent Design 86

Conflict Resolution. The basic CR that the evaluators provide is equivalent to the estima-

tor CR, with negotiation about failed preconditions and requests to add constraints, in the

case of selector-evaluator conflicts. In addition to that, it can negotiate with estimators

about missing information and required information quality.

4.4.4 Critic

The critics have a set of constraints, similar to the evaluators set of preferences, which

they analyze in turn (see Figure 4-9). If any of the constraints fail, the critic can start a

negotiation with the originator of the design value. Depending on the agent’s point-of-

view (POV) several things can happen:

• If the originator has the same POV, the critic might be able to send the failing constraint

to the agent. For example, when a material critic has a failing constraint on the thermal-

conductivity, it can request the material thermal-conductivity selector to add the con-

straint into the selection constraints.

• If the POV is different between the critic and the originator, it is not guaranteed that

such a constraint passing would be successful. In a situation where the selector makes a

decision, e.g., based on thermal conductivity, and the critic has a complaint about the

price of the material (which has been derived from the material selection by the mate-

rial cost estimator), the failing constraint on the material cost cannot be used by the

selector, since it has no knowledge about cost.

• A situation where constraint passing is useful, even with different POVs, occurs when a

critic has a constraint failure about a value or attribute which the selector can evaluate

immediately, i.e., without involvement of a third agent. For example, a critic for mate-

rial bend-strength might be able to send the failing constraint on the bend strength to

the material-thermal conductivity selector. In following selection steps, the selector

will incorporate part of the knowledge from another point-of-view into its decisions.

Single Function Agents and their Negotiation Behavior in Expert Systems

4.4 Agent Design 87

In other words, constraint-passing is only useful, if the other agent can directly evaluate

and use the constraint. Tracing the interactions between these design decisions is not a

trivial task, so that constraint-passing between different POVs can probably only be

applied in a domain-dependent way.

In addition to the standard constraint-complaint cycle, the developers are free to imple-

ment additional, more complex criticisms in the critics knowledge base.

FIGURE 4-9: Critic Functionality

Retrieve a constraint

Evaluate Constraints on design value

Done

constraint_1

constraint_1 =
satisfied/failed

Start Negotiation
originator of design value

Constraint satisfied

No

Yes

No

More Constraints?

Yes

Single Function Agents and their Negotiation Behavior in Expert Systems

4.5 Summary 88

4.4.5 Suggestor

At present, no support for suggestors has been built into the SINE system. Unlike the sug-

gestors in a user-interactive system, which suggest to the user what steps to take next, the

suggestors in a non-interactive system, such as SINE, would suggest to other agents what

steps to take. This could be used in cases where no agreement can be reached in a negotia-

tion.

4.5 Summary

In this chapter we discussed the SINE platform. We started out by defining the goals of the

platform: building a reusable system, implementing domain-dependent and domain-inde-

pendent CR knowledge, experimenting with conflict, and designing and implementing a

negotiation language for SiFAs (see section 4.2).

In section 4.3, we describe the architecture, by presenting the agent topology, data and

negotiation links, knowledge representation, communication, conflict handling and sched-

uling.

Section 4.4 presents the agent design, describing in detail the functionality of every agent

type.

In the next chapter we describe the implementation of SINE.

Single Function Agents and their Negotiation Behavior in Expert Systems 89

CHAPTER 5 Implementation of SINE

5.1 Introduction

This chapter focuses on the implementational issues of SINE. First we describe the pro-

gramming environment in which SINE has been developed. In section 5.3, “Classes and

Inheritance”, we show how inheritance is used to develop the library of agents and design

information objects. Section 5.4, “Agent Implementation”, describes the implementation

of each agent type.

5.2 Programming Environment

The SINE system has been developed using the CLIPS (C Language Integrated Produc-

tion System) language [Giarratano & Riley 1993] [Giarratano & Riley 1994]. CLIPS was

developed by the NASA at the Software Technology Branch of the Johnson Space Center.

It is a forward chaining rule-based inference engine, which is entirely programmed in the

C language. CLIPS is distributed for a nominal fee, including the documentation and

source code. This allows users to write rules in a language that is close to LISP, for use in

a rule base system that is similar to the OPS5 rule base language. It also allows developers

to modify and enhance the CLIPS system, by adding functionality through the CLIPS lan-

Single Function Agents and their Negotiation Behavior in Expert Systems

5.2 Programming Environment 90

guage or additional C functions. The CLIPS environment is available on UNIX™/X-Win-

dows™, Macintosh™ and MS-DOS™/MS-Windows™1. For this project, the UNIX

version of CLIPS was used. The system was developed on a DEC Alpha™2 3000-300,

using GNU C.

CLIPS offers multiple ways of programming:

• Rules

For a rule based system, the most common way is to design rules that get activated by

facts, produce output and generate new facts. The inference engine analyzes the facts at

all times and activates all the rules whose ‘if’ condition can be satisfied by the facts. Of

the activated rules, one is selected and ‘fired’ (executed). Different strategies, such as

most-specific-first, least-recently-used-first etc., can be used to decide which rule to

fire.

• Functions and Methods

CLIPS has strong support for functional programming. It implements an interpreter for

a recursive language, similar to LISP. These functions can be used to manipulate facts,

global variables and objects, and to activate rule-sets.

• C Language Interface

CLIPS is written in C and it provides an interface through a library of functions for

developers to compile with their own code. These functions can use any of the CLIPS

or user-level C functions. Functions that the developers declare in CLIPS are made

available in the CLIPS language and can be used just like any other CLIPS function.

CLIPS supports three kinds of data:

1. UNIX is a trademark of ATT Unix Systems Labs. X-Windows is a trademark of MIT. Macintosh is a trademark of
Apple Computer Inc. MS-DOS ans MS-Windows are trademarks of Microsoft Inc.

2. Alpha is a trademark of Digital Equipment Corp.

Single Function Agents and their Negotiation Behavior in Expert Systems

5.2 Programming Environment 91

• Facts

A fact is an assertion, e.g. (is-a herring fish), meaning that herring are fish. A rule can

be built to match this kind of fact, produce some output and/or derive new facts.

• Objects and Classes

A data object is a combination of a data structure, holding information, and functions

that act on the data. A developer can build a hierarchy of classes, where data members

and functions can be inherited from the higher classes to the more concrete classes.

CLIPS allows objects to be used on the left hand side (the ‘IF’ side of rules). It can pat-

tern-match against any object description, i.e., by object class, object name, or any kind

of slot value pattern.

Objects are not restricted in complexity or size and therefore allow very powerful func-

tionality to be realized with them. CLIPS supports multiple inheritance for classes, i.e.

a child class can inherit the features of more than one parent class. This possibility is

exploited by the agent classes.

• Global Variables

This kind of data is very limited in use, as it cannot be employed to control the activa-

tions of rules, unlike objects and facts. It is useful though, for maintaining internal

counters, such as for counting the current cycle of agent activity.

As the objects have functions attached to them, they become active entities in the pro-

gram. Communication to objects is realized with messages. Message-Handlers in objects

are functions that respond to messages and perform some kind of action on the data in the

object. The actions can be anything from storing a value in the object over generating new

objects to running an entire rule-base to produce new results.

Single Function Agents and their Negotiation Behavior in Expert Systems

5.3 Classes and Inheritance 92

The SINE system makes extensive use of these methods, both for rule base activation and

for data manipulation. Sections 5.3, “Classes and Inheritance” and 5.4, “Agent Implemen-

tation” describe the methods used in more detail.

5.3 Classes and Inheritance

All classes in SINE are derived from one top-level class called ‘sifa-object’(see Figure 5-

1). This allows the developer to attach functions for tracing information and general object

management. The class provides slots for storage of a location, i.e., where, or to what

agent, the data belongs. It also has a slot for storage of a full, verbose name of the object,

for output to the users.

FIGURE 5-1: SINE Class Hierarchy

sifa-object

history messagedesign-object agentagenda targetpoint-of-view

specification parameter target-type

constraint preference

selector

critic

estimator

material

cost

thermal-conduct.

bend-strength

evaluator wear

oxidation

material process inspection

Single Function Agents and their Negotiation Behavior in Expert Systems

5.3 Classes and Inheritance 93

5.3.1 History Class

The history class holds information that the agents can generate whenever they want to,

especially after decisions or positive/negative outcomes of negotiations. It stores the name

of the agent, a time stamp, the name of the action that the agent has taken, the objects that

are affected by the action, the partners that were involved in the decision and an explana-

tion for output to the user.

5.3.2 Message Class

The message class stores all the information for a speech act, i.e., the KQML slots and the

message content, made from the subject and the two parameter slots. It also contains a

time stamp slot containing information about when the message was created.

5.3.3 Design Object Class

All objects that directly relate to the design are derived from the design_object base class.

This class provides the ‘object_type’ slot for tagging the instances as being either require-

ments, alternatives or parameters. This is used by agents to distinguish between parame-

ters in the design and possible choices for parameters, among other purposes.

Design Parameter Class. The design parameter class is derived from the ‘design_object’

class. It stores the value of a parameter or a reference to an instance that fills in for the

value. For the material parameter, for example, the parameter stores the name of a particu-

lar material in the value slot. This is a reference to an instance of a material class object.

The origin slot contains the name of the agent that stored the value, or nil if the value has

not been stored yet. The time stamp slot is updated every time that the value is changed.

Single Function Agents and their Negotiation Behavior in Expert Systems

5.3 Classes and Inheritance 94

The callback slot stores a list of agents that will automatically be notified when the param-

eter is updated. Agents can request entries to be added and removed from this list through

add and delete messages. The list is used for agent activation and conflict detection by the

agent class.

The design_parameter class also provides three message-handlers. The first one, ‘request’

is used by agents to request the parameter object to accept (i.e., store) a certain design

value for its value slot. There are several situations that can occur, depending on whether

the value that the agent requests is the same as the value stored in the parameter object,

and whether the origin, i.e., the agent requesting the value, is the same as the origin stored

in the object, i.e., the agent that originally stored the previous value:

An agent can use the ‘force’ message-handler to unconditionally update a design parame-

ter, but this is not necessary in most cases, since the new value should be decided in nego-

tiation with the original agent. In that case, the original agent can update the value with the

‘request’ message.

The design parameter class uses a specially designed ‘put’ function for storing new val-

ues. This function automatically notifies all the agents in the callback list of the updated

value, by sending them a ‘callback’ message.

Value (in Object) Origin (in Object) Action

nil nil Value is stored and the origin slot is updated with the
name of the requesting agent. Agent receives positive
acknowledgment.

<value> = <request> <origin> = <agent> Value is updated to reflect most recent request. Agent
receives positive acknowledgment.

<value> = <request> <origin> ≠ <agent> Value and origin remain the same. Agent receives posi-
tive acknowledgment.

<value> ≠ <request> <origin> ≠ <agent> Modification is refused by the parameter. Agent receives
negative acknowledgment.

TABLE 5-1: Parameter Update Requests and Reactions

Single Function Agents and their Negotiation Behavior in Expert Systems

5.3 Classes and Inheritance 95

Specification Class. This is the base class of all object that contain design specifications,

such as constraints and preferences.

Constraint Class. As constraints are probably the most important objects in design expert

systems, SINE provides a large number of different kinds of constraints for use in building

design systems. In essence, a constraint has a list of object attribute pairs that it constrains.

A predicate is stored and used to evaluate for success or failure. The ‘check’ message han-

dler retrieves this predicate and evaluates it with the values of the object attributes in the

design database.

In order to allow constraint relaxation, the constraint object contains a list of predicates, in

increasing order of relaxation. By default, the first predicate will be used, but whenever

the object receives a put-relaxation message, it retrieves the predicate that is associated

with the level specified in the parameter of the message and stores it in the

‘current_predicate’ slot. Only the ‘current_predicate’ is used to evaluate the constraint.

While the ‘check’ message request the constraint to evaluate whether it is satisfied under

the given design choices, the ‘check_alt’ message handler allows agents to evaluate alter-

native choices. For example, if a constraint that restricts the material cost fails given mate-

rial A, it can be sent a message to check material B. If it is satisfied, the agent that sent the

message might consider material B a better choice than A.

The ‘filter’ message-handler receives a list of alternatives and iterates through them,

returning a restricted list, of which all members would satisfy the constraint.

Single Function Agents and their Negotiation Behavior in Expert Systems

5.3 Classes and Inheritance 96

There are different subtypes of constraints:

Preferences. Whenever a relation between objects has to be stored, such as for ordering

alternatives by their quality, objects of the ‘preference’ class can be used. A preference

stores the name of an attribute and a function. There are two types of preferences:

• Comparative Preferences

The ‘compare’ message-handler retrieves the values of the two objects that are passed

as parameters and applies the function to them. The comparison function acts as a pred-

icate, returning TRUE if the relation holds, FALSE otherwise.

The ‘sort’ message-handler takes a list of alternatives and returns them sorted by

decreasing preference.

The ‘min’ and ‘max’ message-handlers search for the objects with the highest/lowest

preference value in a list.

• Quantified Preferences

A more powerful type is the ‘quantified_preference’ class, which uses quantitative

measures to perform the evaluation. It stores a minimum and a maximum value and

computes a linear index for any alternative.

The ‘evaluate’ message-handler returns the index, which can be used by evaluator

Type Description Logical Equivalent

exist A value has to exist for the specified slot in the named
object

value ≠ nil

larger The first attribute has to be larger than the second. value1 > value2

smaller The first attribute has to be smaller than the second. value2 < value1

ref_range The value of the first object’s attribute has to be in the
range specified by the second object’s attribute.

value2a < value1 < value2b

alt_range The range specified by the first object has to include the
value specified in the attribute of the second object.

value1a < value2 < value1b

TABLE 5-2: Constraint Types

Single Function Agents and their Negotiation Behavior in Expert Systems

5.4 Agent Implementation 97

agents, by selectors, but also by other agent types. The ‘compare’ message-handler

computes the indices of the alternatives and compares those. The ‘min’ and ‘max’ han-

dlers perform equivalent functions to the previous class.

There are two types of preference for each of the ‘quantified_preference’ and the

‘comparative_preference’ classes, namely the ‘smaller’ and the ‘larger’ type. They prefer

smaller or larger attribute values, respectively. This makes preference specification one

step easier, as they use predefined comparison functions and only the attribute has to be

specified.

5.3.4 Target-Type Class

For every kind of target, an appropriate class has to be created. It should have slots for all

the kinds of information that are relevant to the target. In the domain of the demonstration

only the material target is used. The material class has slots for bend-strength, thermal-

conductivity, wear performance, oxidation performance, unit-cost, density, mass, part-cost

and total cost.

5.4 Agent Implementation

Every agent in SINE is an instance of some kind of class. There is a specific class for

every agent, where the class is based on features inherited from a specific agent type class,

a target class and a point of view class. Figure 5-2 shows this multiple inheritance. The

three letter abbreviations in the agent blocks are the names of the agents in the implemen-

tation, see in 6.3, “Simulation of I3D+ Conflicts”.

Single Function Agents and their Negotiation Behavior in Expert Systems

5.4 Agent Implementation 98

The agents all inherit from a common base class called ‘agent’. This class provides many

features that are used by the majority of the agents, such as storing the names of the con-

straints and preferences that the agents use, as well as the names of the rule modules (see

below) that the agents employ. The agent base class can also handle the activation of

agents through callback messages from the agenda handler, and through checking of an

agent’s precondition constraints.

Many other message-handlers are included in the agent class (see appendix B, “Develop-

ers’ Guide”). There are facilities to add and remove constraints, modify the current pro-

cess that the agent uses, and a method that displays the decision history of the agent.

Since CLIPS does not provide any way to inherit rules in object classes, the SINE system

provides modules with rules for every agent type. These can be used for each instance of

FIGURE 5-2: SINE: Multiple Inheritance for Agents

Selector

Critic

Estimator

Material

Cost Thermal-Bend-
Conduct.Strength

MCE

MCC

MBS MTS

Evaluator

Suggestor

Process
Inspection

MWV MOV

Wear-
Perform.

Oxide.-
Perform.

FUNCTION

POINT-OF-VIEW

TARGET

Single Function Agents and their Negotiation Behavior in Expert Systems

5.4 Agent Implementation 99

an agent, by filling a slot value with the name of the rule-module. The rules get activated

from message-handlers. Figure 5-3 shows how the rule module gets activated.

The module, in turn, can send messages to objects, especially to the agent instance that

called it. This is used in the selector and critic agents to activate the message-handlers

which perform their major functions.

In the case of a conflict, the CR-Module is activated. It then sends speech act messages

which are dispatched by a communication function. This function automatically locates

the CR module of the destination agent. It activates that module, so that the rules can fire

and produce a reaction. A reply is sent back.

There can be multiple messages sent back and forth between the CR modules, until the

conflict gets resolved. Once that is the case, the first CR module returns control to the

agent that activated it. The agent terminates its main function and control is returned to the

agenda manager object. Figure 5-4 tries to capture the complexity of the recursive calls in

graphical form.

FIGURE 5-3: Activation of Rule Modules in SINE

Agenda-Object Agent_1-Object Rule-Module

1: ‘run’ message
2: focus, execute

3: send message

6: return 4: return
5:return

Single Function Agents and their Negotiation Behavior in Expert Systems

5.4 Agent Implementation 100

FIGURE 5-4: Activation of Modules and Objects during CR

Agent_1-Object

Design-Rule-Module

Agent_2-Object

CR-Rule-Module

CR-Rule-Module
(possibly)

Design-Rule-Module

Communication Handler

Agent 2

Agent 1

1: focus, execute

10: return

2: send message

3: focus, execute

9: return

8: return

4: request

5: request 6: reply

7: reply

send message

return

Single Function Agents and their Negotiation Behavior in Expert Systems

5.5 User Interface 101

5.5 User Interface

Design expert systems developed with the SINE platform can use a multi-windowed user

interface, developed by Jonathan Kemble, a Masters student in CS at WPI. The CLIPS

process and the windowing program interface act as client and server through a TCP/IP

connection. Router functions in CLIPS allow the platform to work with or without win-

dow interface, without change in the code.

The window interface provides individual output for every agent, a main window and an

agenda window. Figure 5-5 on page 102 shows a screen dump of the interface running

with the I3D+ simulation. Since the agents usually produce more output than can be dis-

played in the limited space available on the screen, each window has a horizontal and a

vertical scrollbar, to allow random scrolling through the message text.

5.6 Summary

This chapter began with a section about the programming environment used for imple-

menting SINE, which was developed using CLIPS and GNU C on a UNIX system.

In section 5.3 we presented the object classes and the inheritance relations that are used in

SINE. We described the history class, the message class, the design object class and the

target type class, postponing the discussion of the agent class until the following section.

Section 5.4 was entirely devoted to the description of the agent implementation and the

threefold multiple inheritance that SINE uses.

The user interface that SINE offers (section 5.5) concluded the material in this chapter.

Single Function Agents and their Negotiation Behavior in Expert Systems

5.5 User Interface 102

In the next chapter we evaluate the work described in this thesis, by analyzing the theoret-

ical and practical contributions of it.

FIGURE 5-5: SINE Multiwindow Interface

Single Function Agents and their Negotiation Behavior in Expert Systems 103

CHAPTER 6 Evaluation

6.1 Introduction

In this section, we will attempt to evaluate the work in this thesis. We will first investigate

the theoretical achievements, related to the exploration of the SiFA Paradigm. We will

compare the goals that were defined in section 1.2.2 to the results from chapter 3, “SiFAs

and Negotiation”.

In order to analyze how well the practical goals of the thesis, as defined in section 1.2.3,

were met, we evaluate the SINE platform by analyzing three design system examples that

were developed with it. Sections 6.3, “Simulation of I3D+ Conflicts”, 6.4, “Design Sys-

tem Example with derived Attributes” and 6.5, “Adaptation to new Domain — Sailboat

Design” present these systems. We also compare the platform to other SiFA systems and

systems with larger agents (sections 6.6 and 6.7 respectively) by contrasting their key fea-

tures.

In section 6.8 we evaluate the performance through measurements and by pointing out key

aspects of SINE. We finish the chapter by assessing the understandability of the platform

and the negotiation it produces with the help of an experienced I3D user who was an I3D

co-developer.

Single Function Agents and their Negotiation Behavior in Expert Systems

6.2 Theoretical Achievements 104

6.2 Theoretical Achievements

The first theoretical goal described in section 1.2.2 was to define a set of domain indepen-

dent agents. This was achieved by analyzing the agents in SNEAKERS, I3D and I3D+.

We described the resulting set of agents in section 3.2, “Agent Types”. Section 6.5 pre-

sents a sample design system which has been developed independently of the previous

SiFA systems for an entirely new domain by using the SINE platform. This suggests that

the set of agent types is at least sufficient for simple design systems.

Two of the goals were to the investigate the agent negotiation and to generate a catalog of

conflicts. Sections 3.3, “Conflict Occurrences”, 3.5, “Conflict Resolution” and 3.6, “Nego-

tiation Strategies” describe the individual conflicts and the negotiation that could result

from them, while section 3.4, “Conflict Types”, presents an abstraction of the conflicts

into more general categories.

An important goal was to develop a communication language for the SiFAs. Section 4.3.4,

“Communication”, describes the language that was developed and the speech acts that the

agents can exchange.

Finding an adequate knowledge representation that would be suited both for design and

conflict resolution was another goal. We presented the knowledge objects that are used for

design (constraints and preferences) and the use of reusable rule modules for conflict reso-

lution in section 4.3.3, “Knowledge Representation”.

The last theoretical goal, analyzing the use of design histories, has received a limited

amount of study. The platform supports the generation of history objects which can be

used both by the agents and by humans, but SINE does not employ this functionality for

conflict resolution or design at this point.

Single Function Agents and their Negotiation Behavior in Expert Systems

6.3 Simulation of I3D+ Conflicts 105

6.3 Simulation of I3D+ Conflicts

The first practical goal of the thesis was to implement the conflicts that were generated in

the I3D+ platform. I3D+ was used as a test case, since it was the first and only negotiating

SiFA system. Although I3D+ used domain specific conflict resolution knowledge, SINE,

being a domain-independent platform, should ideally be able find solutions for the same

conflicts. For this purpose the design domain of the I3D+ material selection process was

implemented [Victor 1993], by building two selectors, one estimator, two evaluators and

one critic which are equivalent in terms of function, point of view and target to the ones

used in I3D+. The following sections describe the agents.

6.3.1 Selectors

TABLE 6-1: Material Bend-Strength Selector

Name MBS MaterialBend-StrengthSelector

Task Select a Material such that the range of bend strength that the material offers include the
value of the bend strength parameter in the requirements. If several materials apply, use
the one with the highest bend strength

Inheritance Selector, Material-Target, Bend-Strength POV

Preferences Preference for high bend-strength

Constraints Alt_range_constraint on the range of the bend-strength

Single Function Agents and their Negotiation Behavior in Expert Systems

6.3 Simulation of I3D+ Conflicts 106

6.3.2 Estimators

6.3.3 Evaluators

TABLE 6-2: Material Thermal-Conductivity Selector

Name MTS MaterialThermal-ConductivitySelector

Task Select a Material such that the thermal conductivity is as high as possible.

Inheritance Selector, Material-Target, Thermal-Conductivity POV

Preferences Larger_comparative_preference for high Thermal-Conductivity

Constraints none

TABLE 6-3: Material Cost Estimator

Name MCE MaterialCostEstimator

Task Estimate the material cost, using either a rough or a detailed process

Inheritance Estimator, Material-Target, Cost POV

Preferences none

Constraints Existence_constraint for valid density, Existence_constraint for valid unit cost

TABLE 6-4: Material Oxidation-Performance Evaluator

Name MOV MaterialOxidPerformanceEvaluator

Task Evaluate the oxidation performance of the material, with respect to the requirements

Inheritance Evaluator, Material-Target, Oxidation-Performance POV

Preferences Quantified_preference for high oxidation-performance

Constraints Existence_constraint for valid oxidation-performance

Single Function Agents and their Negotiation Behavior in Expert Systems

6.3 Simulation of I3D+ Conflicts 107

6.3.4 Critics

6.3.5 Design Process

The agents interact to produce a value for the material parameter that satisfies all agents.

They use requirements that the user can specify in a file before execution. The require-

ments are specified as a partial description of the material to be obtained. For example:

(req_material of material_type
 (object_type requirement)
 (full_name “Requirement on Material”)
 (bend_strength 500)
 (wear_performance 2)
 (oxid_performance 4)
 (cost 50))

TABLE 6-5: Material Wear-Performance Evaluator

Name MWV MaterialWearPerformanceEvaluator

Task Evaluate the wear performance of the material, with respect to the requirements

Inheritance Evaluator, Material-Target, Wear-Performance POV

Preferences Quantified_preference for high wear-performance

Constraints Existence_constraint for valid wear-performance

TABLE 6-6: Material Cost Critic

Name MCC MaterialCostCritic

Task Criticize high costs, ensure accuracy of cost estimation

Inheritance Critic, Material-Target, Cost POV

Preferences

Constraints smaller_constraint on the Material Cost, domain specific rules

Single Function Agents and their Negotiation Behavior in Expert Systems

6.3 Simulation of I3D+ Conflicts 108

The sequence of the agents is only partly defined by dependencies, in that the estimators

and evaluators have to wait for the selectors to make a decision on the material, before

they can run. The critic has to wait for the estimator to produce an estimation before it can

start criticizing. The evaluators and estimators can only start deriving values when their

input constraints are satisfied. However, they will start negotiation with the selectors

whenever the selectors assert a value which is not suitable for the precondition constraints

in the estimators or evaluators. Figure 6-1 shows all the data dependencies and the possi-

ble negotiation links, of which some or all can appear at runtime.

Although the general structure of agents and design parameters was preserved in the I3D+

simulation, some the resulting conflicts and the conflict resolution are noticeably different.

First, I3D+ only simulated conflict resolution between the selectors and between MCC

and MCE. It did not have any evaluators.

FIGURE 6-1: Data Flow and Negotiation Links in the Material Selection Example

Material

MBS

MCE

MTS

MCCMOV

MWV

Materia-Param.l

Oxid.

Wear.

Cost.

Data Negotiation
MaterialMaterials

Single Function Agents and their Negotiation Behavior in Expert Systems

6.4 Design System Example with derived Attributes 109

Furthermore, I3D+ used global and local goals to decide which agents should win in con-

flict. SINE is situation driven, i.e., the agents have no goals and plans, but rather try to

solve conflict situations by compromising or adapting as well as possible. The selectors do

not try to override the value asserted by the other selector, but they try to find a value that

both of them can agree on.

Due to these differences in structure, SINE will not produce the same negotiation as I3D+.

However, it is able to solve conflicts between the same pairs of agents, and it implements

CR for more pairs of agents and with more possible outcomes than I3D+. Due to this, the

CR abilities in SINE can be seen as a superset of those implemented in I3D+, which

proves the quality of the CR knowledge. The design decisions that each individual agent

takes if no conflict occurs are equivalent to the decisions taken by the agents in I3D and

I3D+.

6.4 Design System Example with derived Attributes

In the I3D/I3D+ systems, and the I3D+ simulation using SINE, only alternatives with pre-

determined attribute values are used. In order to evaluate the support of the platform for

design problems with more complex dependencies we designed a sample case in which

attributes of material alternatives are estimated and evaluated.

In the example, an estimator derives a thermal-conductivity value for each material, based

on the material’s density.

From the thermal-conductivity estimates, the evaluator computes a thermal-conductivity

index, and it stores the values in the materials. The index is called ‘thermal-conductivity

evaluation’, and it is the target for both the evaluator and the selector.

Single Function Agents and their Negotiation Behavior in Expert Systems

6.4 Design System Example with derived Attributes 110

The index is used by the selector agent to choose the one material with the highest value

(see Figure 6-1). Sections 6.4.1 through 6.4.3 describe the agents that were implemented.

6.4.1 Selector

FIGURE 6-2: Data Flow and Negotiation Links in the Derived Attribute Example

TABLE 6-7: Material Thermal-Conductivity Evaluation Selector

Name MES MaterialThermalCondEvaluationSelector

Task Select the material with the highest thermal-conductivity evaluation (index).

Inheritance Selector, Material-Target, Thermal-Cond-Eval POV

Preferences Preference for high thermal conductivity evaluation

Constraints none

Material-Choices

Th Cond. Eval

Thermal Cond

Material-Choices

Th Cond. Eval

Thermal CondMTE

MES

MEV

Materials

Th Cond. Eval

Thermal Cond

Data Negotiation

Material-Parameter

Th Cond. Eval

Thermal Cond

Single Function Agents and their Negotiation Behavior in Expert Systems

6.4 Design System Example with derived Attributes 111

6.4.2 Estimator

The estimator can use a rough or a detailed estimation method. The rough method simu-

lates an estimation method that can produce a statistical reliability of up to 60% and a sta-

tistical error margin of 20%. The detailed method can produce 80% and 5% respectively.

The agent will at first only assert the estimates and provide no reliability information. At

the request of other agents, it will also assert reliability and/or error margin information. If

other agents request higher reliability or lower error margins, the estimator will switch to

the detailed model.

6.4.3 Evaluator

TABLE 6-8: Material Thermal Conductivity Estimator

Name MTE MaterialThermalCondEstimator

Task Estimate the thermal conductivity, using either a rough or a detailed process

Inheritance Estimator, Material-Target, Thermal-Cond POV

Preferences none

Constraints none

TABLE 6-9: Material Thermal Conductivity Evaluation Evaluator

Name MEV MaterialThermalCondEvalEvaluator

Task Evaluate the thermal conductivity and produce an index for it

Inheritance Evaluator, Material-Target, Thermal-Cond-Eval POV

Preferences Quantified preference for high thermal conductivity

Constraints none

Single Function Agents and their Negotiation Behavior in Expert Systems

6.5 Adaptation to new Domain — Sailboat Design 112

6.4.4 Negotiation

There is a possibility for negotiation between the selector and the evaluator when the

selector cannot find enough difference in quality between the alternatives. This will

prompt the evaluator to produce a more critical evaluation.

Also, the evaluator can request the estimator agent to produce statistical information (reli-

ability, error-margin) and it can request information in a certain quality (x% reliability, x%

error).

Please refer to the traces in Appendix C for details of the negotiation.

6.4.5 Conclusion

This example shows that the SINE platform is able to handle design tasks in which the

attributes of alternatives are produced by the agents themselves. Since this shows that the

platform can handle more complex interactions than the ones presented in the I3D+ simu-

lation, it proves that it is usable for a wider range of design tasks.

6.5 Adaptation to new Domain — Sailboat Design

In order to test the portability and usefulness of the SINE platform, a visiting student, Phil

Tomlinson (now at the Key Center of Design, University of Sidney), implemented a

design system for sailboats using SINE. The task of the system is to perform a routine type

selection and parametric design, involving several design attributes and parameters (Hull

Design Type, Sail Design Type, Sail Material, Hull Material, Number of Sails). For every

one of the parameters, several values are possible but only one can be selected.

Single Function Agents and their Negotiation Behavior in Expert Systems

6.5 Adaptation to new Domain — Sailboat Design 113

6.5.1 Design Parameters and Attributes

The values are multi-attribute structures, similar to the material_type values in the I3D

simulation. Each numeric slot can take a value in a range from 0 to 100. For instance, a

Hull Design can be of the following kind:

Hull Design Type
name “Sloop”
cost 70
draft 30
floatation 20
durability 60

The system uses the following targets:

• Sail Boat

• Hull Design Type

• Sail Design Type

• Hull Material

• Sail Material

• Num Sails

These agent functions are used:

• Selector

• Estimator

• Suggestor

• Critic

• Evaluator

And these Points of View are taken into account:

Single Function Agents and their Negotiation Behavior in Expert Systems

6.5 Adaptation to new Domain — Sailboat Design 114

• Cost

• Speed

• Durability

• Cargo

6.5.2 Conflicts

The developer of the Sailboat design system expects interesting conflicts about different

issues between agents. One area of the conflicts appears to be where cost versus perfor-

mance is an issue. This is a typical area for trade-offs between goals. The following con-

flicts have been identified:

• Sail Material Cost Selector - Sail Material Durability Selector

• NumSails Cost Selector - NumSails Speed Selector

• Hull Design Cost Selector - Hull Design Cargo Selector

Another set of conflicts are located where suboptimal values are chosen for two or more

design parameters, so that the parameters together offer an improvement over the optimal

decision chosen for either one of the individual design parameters.

• Num Sails Speed Selector - Sail Design Type Durability Selector - Boat Speed/Durabil-

ity Evaluator:

The number of sails affects the speed and the sail design influences the durability. An

evaluator could be designed to produce an evaluation that represents a preference for a

combination of these points of view.

Single Function Agents and their Negotiation Behavior in Expert Systems

6.5 Adaptation to new Domain — Sailboat Design 115

• Num Sails Speed Selector - Hull Design Speed Selector - Boat Cost Critic:

In this case the globally optimal solution might be where the Num Sails Speed Selector

and the Hull Design Speed Selector select suboptimal values from their individual

point of view.

A third range of conflicts appears where one value can be traded for another:

• Hull Design Cargo Selector - Num Sails Speed Selector:

A conflict where the preference is for a fast boat which holds a large amount of cargo.

In this case it may be necessary to go down from the FRIGATE hull design to the

SLOOP hull design, giving up cargo capacity in exchange for speed.

6.5.3 State of the Implementation

In the current state of the implementation, about 30 agents have been designed, with their

basic functionality implemented. Most of the computational tasks have been designed and

coded with an algorithmic approach, rather than rules. This, again, is similar to what was

done for the I3D simulation.

The domain independent part of SINE allows the system to perform some very basic

negotiation, but more development and adaptation is needed here, to gather the full sup-

port from SINE for the design task.

6.5.4 Impressions from the Sailboat Designer Developer

Even though the developer has not yet finished the basic implementation of the Sailboat

Designer, he was already able to provide the author with some feedback about his experi-

ences:

Single Function Agents and their Negotiation Behavior in Expert Systems

6.5 Adaptation to new Domain — Sailboat Design 116

• Agent Classes

The object oriented approach to expert system design was perceived as very useful,

especially for a developer with no previous experience in expert system development,

since the agent classes provide the developer with an outline of the functionality and

knowledge that needs to be implemented in the agents.

• Domain Independent Conflict Resolution

The developer expressed faith in the ability of SINE to solve basic conflicts without the

addition of domain dependent CR knowledge. For example, agent precondition negoti-

ation and selector-selector conflict types can be handled by the existing CR knowledge

in SINE.

• External Data and Preferences

According to the developer, the use of preference objects and data (alternatives) stored

separately from the agents has been found to be an unusually abstract but very practica-

ble approach. He noted that compared to standard expert systems, the SINE platform

had a strong ability to make relative choices using only minimal situational informa-

tion, instead of being built around situation-action rules, because of the preference

functions which can order alternatives under any circumstances.

• Object Oriented Architecture

Even though the Sailboat Designer will possibly include a large number of agents, built

from all the possible combinations of function, target and point-of-view, the developer

noted that the inheritance of rules and functionality drastically limited the number of

necessary rules and specific functions for each individual agent.

One of the goals of developing the SINE platform was to reduce the time needed to

develop a negotiation based SiFA system. From the experience with the Sailboat Designer,

the following statistics have been derived:

Single Function Agents and their Negotiation Behavior in Expert Systems

6.6 Comparison to other SiFA Systems 117

• About 50 hours of work were needed by the developer to implement the system to its

current point.

• Of that time, around 40% were spent on learning about expert systems in general, and

the CLIPS environment and syntax.

• About 30% of the time was spent understanding the functioning of the SINE platform

and the I3D+ simulation. In particular, the workings of the objects with their multiple

inheritance was found to be challenging, since no documentation was available yet, and

the source code is written at a very abstract level. The developer noted that some higher

level development environment would be useful for further development with the SINE

platform.

• The last 30% were used for reviewing papers about SiFAs and SINE, and helping the

author in developing the platform through questions and recommendations.

It should be noted that at the time of development of the Sailboat Designer, neither the

platform nor the documentation were finished. For future developers, the Programmers’

and the Users’ Guide in this thesis should help reduce the effort needed in understanding

the platform. These should be revised in the future as more experience is gained with the

SINE platform.

6.6 Comparison to other SiFA Systems

We now present a comparative analysis of SINE and previous SiFA based design systems,

I3D+ in particular, as SNEAKERS had no support for negotiation. We first compare the

general aspects of the systems, including the solution quality and the negotiation support,

and then, in the second part, we compare development issues.

Single Function Agents and their Negotiation Behavior in Expert Systems

6.6 Comparison to other SiFA Systems 118

6.6.1 General Aspects

• Solution Quality

SINE finds solutions for more combinations of requirements than I3D/I3D+, since

these systems are not able to make a material choice, if the problem is undercon-

strained. In SINE, the selectors will make a proposal from the list of all possible

choices and allow other agent types to agree or disagree with the value.

• Conflict Types

SINE currently implements support for five different types of conflicts (see section 3.4,

“Conflict Types”), each of which can appear between different sets of agent types.

I3D+ only supported a limited number of situations for conflict between two selectors.

• Knowledge Representation

In SINE, agents use explicit representations of constraints, preferences and alternatives.

This allows formulation of the design task on a more abstract level. Traditionally,

expert systems encode this knowledge in the rule base. Although rules are very useful

for encoding knowledge about specific actions to take under certain circumstances,

they prevent the design knowledge from being handled and manipulated like data. In

SINE, agents can converse and reason about the design knowledge, they can even learn

this knowledge during the design process.

• Support for Constraint Relaxation

The constraint object class in SINE has built in functionality for constraint relaxation

by simple message passing. This allows reusing the same rules and functions, indepen-

dently of the current level of relaxation, which reduces the amount of code.

• Templates

The uniform structure of agents allows both easy development of design systems using

agent templates (classes) and domain-independent functionality, as well as easier

understanding and modifying of an existing system.

Single Function Agents and their Negotiation Behavior in Expert Systems

6.6 Comparison to other SiFA Systems 119

In other SiFA systems, understanding the functionality of the agents is more difficult,

due to the heterogenous form of the agents and the low-level and implicit representa-

tion of knowledge and data.

• External Data Files

The use of knowledge databases avoids data-representing rules and simplifies the

design, which also makes maintenance and reuse more efficient than in the other SiFA

systems, where the data are stored in the rules.

6.6.2 Development and Implementation

In the following we will contrast some of the rule based agents from the I3D+ implemen-

tation with the equivalent SINE agents.

• Selectors

A typical material selector in I3D+ needed about 20 to 30 of rules. In the I3D+ simula-

tion with SINE, each of the two selectors only had 3 rules, two of which displayed

begin and end messages and one which activated the domain independent selector

function. The two agents themselves were defined with two and three instance-declara-

tions respectively, of which one for each agent declares the agent object, one is used for

defining the preference operators, and one selector uses a constraint object attached to

it.

• Critics

The material cost critic in I3D+ uses 9 rules, whereas the same function is achieved in

the SINE implementation without any rules, using only constraints expressed as

objects.

Single Function Agents and their Negotiation Behavior in Expert Systems

6.7 Comparison to Systems with larger Agents 120

• Estimators

For the estimators, the difference is less obvious. The material cost estimator in I3D

and I3D+ is made from 13 rules, whereas the one built on the SINE platform uses 9

rules.

In addition to that the conflict resolution supported by the SINE implementation is more

elaborate than the original I3D+ system’s, since it supports more types of conflicts and

more adequate solution-strategies.

6.7 Comparison to Systems with larger Agents

In this section we attempt to contrast the SINE platform and SiFA based expert systems

designed with it to systems built with a larger agent size. We have to use a feature analysis,

since there are no implementations available which would allow a direct comparison of

the two approaches:

• SINE makes building negotiating systems easier. SiFA Agents usually have a simple

function and share something in common, e.g. function, target or point-of-view.

• Larger agents have more complex negotiation, as functionality is less restricted.

• SINE provides a large amount of domain independent CR knowledge as a basis for

negotiation and thus reduces the size of the domain-dependent CR knowledge needed.

In systems with larger agents, the complexity of the agents prevents some of the

abstraction that lead to such domain independent knowledge.

• Larger agents can less easily anticipate what the other agent knows, perhaps leading to

a more complex communication language, or the increased need for a system to act as a

converter between vocabularies and/or ontologies.

Single Function Agents and their Negotiation Behavior in Expert Systems

6.8 System Performance 121

• Design system development is made easier, due to inheritance and existing supporting

functions.

6.8 System Performance

Performance is less of an issue in research, but very important for full-fledged implemen-

tations in repeated use. Although the author developed SINE with considerations particu-

larly for run-time performance, testing this performance is difficult, since the sizes of the

demonstration problems were too small to produce run times over 1.5 seconds.

In the future, the design and implementation of larger size SiFA systems should give a bet-

ter insight into the performance aspects of SINE.

In the following sections we evaluate usability of the SINE platform by analyzing the

effect it has on the development process, the runtime performance and the maintenance of

the resulting expert system.

6.8.1 Development Process

We can evaluate the quality of the platform by analyzing the effect it has on the develop-

ment process. Ideally, the net effect of designing an expert system with SINE should be

that it makes development easier and/or quicker. Also, in comparison to implementing

negotiation in other ways than SiFAs, using SINE should make the design of the negotia-

tion scheme simpler and possibly more effective. We find the following effects of SINE on

design:

Single Function Agents and their Negotiation Behavior in Expert Systems

6.8 System Performance 122

• The application can be developed without data files, i.e., the data can be acquired at the

same time that the system is designed and implemented. This allows easier testing with

“fake” data and prototyping with small data sets.

• The built-in basic negotiation knowledge and communication functionality remove a

major burden from the application developers and allow an incremental implementa-

tion of domain specific CR knowledge. We can see from the implementation of the

I3D+ simulation, how only a small number of rules had to be designed in a domain

dependent fashion (see Figure 6-3).

• The negotiation itself is simpler than with non-SiFA systems, due to the function, target

and/or point-of-view that many of the negotiating partners share. The agents can make

more assumptions about the other agents’ knowledge and abilities. Also, since the

agents’ tasks are very limited, blame assignment is nearly trivial.

• As we already noted in 6.5, “Adaptation to new Domain — Sailboat Design”, the agent

templates simplify the design of the expert systems.

FIGURE 6-3: Analysis of the Rule Base for I3D+ Simulation

domain-domain-

17%

83%

Number of Rules in the Rule Base

dependent independent

Single Function Agents and their Negotiation Behavior in Expert Systems

6.8 System Performance 123

• The available functions and methods reduce the amount of functionality that has to be

implemented by the developer. In the I3D+ simulation, the number of domain depen-

dent computational functions and class definitions was less than 10% (see Figure 6-4),

6.8.2 Runtime Performance

Using SINE should produce performance at least as good as with other approaches. Ide-

ally, it will speed up the problem solving task. The following are the runtime effects of

SINE:

• The algorithmic support functions in SINE produce runtime speedup, especially during

operation on larger data sets. This is due to the fact that operations such as search for

optima and the sorting of choices is expensive in rule based systems, but a simple task

for an algorithm to perform.

FIGURE 6-4: Analysis of the Algorithmic Parts of the I3D+ Simulation

Number of Classes & Methods

7%

93%

domain-domain-
dependent independent

Single Function Agents and their Negotiation Behavior in Expert Systems

6.8 System Performance 124

• One way of implementing agents involves running one agent at a time, as a CLIPS pro-

cess by itself. I3D+ uses this scheme, which produces expensive context switches and

generation of data files on disk. The use of CLIPS 6.0 rule modules produces a higher

execution speed, because it avoids stopping and restarting the CLIPS inference engine,

thus reducing the time needed to switch between agents from around 50 milliseconds to

about 10 microseconds(!).

• Conflict avoidance through learning of constraints (see sections 4.3, “Architecture”,

and 4.4.1, “Selector/Advisor”) reduces the amount of negotiation needed, especially for

complex problems. It breaks the exponential number of possible combinations of val-

ues down to a very limited set of potential candidates after only a few negotiation

cycles.

• External data can be included dynamically in the system. This allows more interactive

applications, where the system assists the user in refining design decisions. It can also

be used to make design decisions based on live data from other external sources.

• Figure 6-5 shows selected runtimes for the I3D+ simulation. It shows the runtime in

dependence of the number of agents and the resulting number of design and negotiation

cycles for different constellations of requirements. The first two bars represent the sim-

ulation of I3D+ both with and without the evaluators, for a run with the original 4 mate-

rial types. The last two bars show the times and cycles needed to come to a decision,

when 7 additional materials with missing information (unit-cost, density, etc.) are intro-

duced. The difference in complexity between the last two runs is due to the differences

in the requirements, which lead to different conflicts.

Single Function Agents and their Negotiation Behavior in Expert Systems

6.8 System Performance 125

6.8.3 System Maintenance

• Probably the most important maintenance issue is that the knowledge base can be kept

the same, even when modifications to the data are made, due to the fact that the data are

stored separately from the design knowledge.

FIGURE 6-5: Runtimes of the I3D+ Simulation

4 Agents 6 Agents 6 Agents 6 Agents

250

500

750

1000

Runtime

8 cycles
10 cycles

13 cycles

15 cycles

in Milli-Seconds

1250

1500

0

I3D+
without

Evaluators

I3D+
with

Evaluators

I3D+
with missing

Info and
Requirements A

I3D+
with missing

 Info and
Requirements B

Single Function Agents and their Negotiation Behavior in Expert Systems

6.9 Understandability 126

6.9 Understandability

An important aspect of negotiation in AI systems is whether the resulting conflict resolu-

tion is understandable by a human. This leads to two requirements:

• A human should be able to read the output produced by the negotiating agents.

• The conflict resolution performed by the agent should appear reasonable and under-

standable for a human.

SINE has features that support both of these requirements:

• The system automatically generates human- and machine-readable output. During the

negotiation, the rules that generate speech acts automatically produce a user readable

form of the same information. In addition to that, the speech acts themselves are so

close to human language, that even the pure data structures can be read with little expe-

rience.

• The explicit representation of constraints and preferences makes knowledge and com-

munication understandable, since they are able to more accurately describe the inten-

tions and constraint issues of the agents, compared to the usual non-descriptive rules.

The design and output of the I3D+ simulation has been presented to several faculty mem-

bers and graduate students. Among them was a student from the Manufacturing depart-

ment (Peter McCann), who had participated in the original development of I3D. He is now

designing a graphical user interface and integration of I3D into a new CAD system. His

comments support the claim that SINE had achieved the two most important goals:

Single Function Agents and their Negotiation Behavior in Expert Systems

6.10 Summary 127

• The negotiation introduced into SINE is understandable to potential users. In addition

to that, the additional complexity introduced through the negotiation between the

agents is acceptable to the user, because it reflects the conflicting nature of the CE

design task.

• The implementation with abstract agent functions acting on high-level objects, such as

preferences and tasks, was commented on as not only being understandable, but also

being easier to comprehend than the original rule-based implementation.

• The separation of the system design into design knowledge and data was perceived

very positively, since it achieves a maintainability which is important to the I3D devel-

opers and users, but which was never achieved with the original design.

6.10 Summary

This chapter presented an evaluation of the SINE platform. The first two parts (section 6.3

and 6.4) described a simulation of the I3D+ system using the platform and an example that

uses derived attribute values.

The second section (6.5, “Adaptation to new Domain — Sailboat Design”) presented

work that has used the platform to build an expert system for an entirely different domain.

We described the system, with its attributes and parameters, the conflicts and the current

state of the implementation. The section finishes by detailing the experiences that the

developer had with the platform.

In section 6.6, we compared the SINE platform to other SiFA systems, I3D+ in particular.

We investigated general aspects, development and implementational issues.

Single Function Agents and their Negotiation Behavior in Expert Systems

6.10 Summary 128

Performance issues were discussed in 6.8, where we evaluated development, runtime and

maintenance issues.

The understandability of the system was evaluated in section 6.9, by analyzing the work-

ing and the output of the platform. We also presented the I3D+ simulation to an I3D expert

for evaluation.

The chapter concluded with a comparison of SiFA systems based on SINE to expert sys-

tems with larger agent size (see section 6.7).

Single Function Agents and their Negotiation Behavior in Expert Systems 129

CHAPTER 7 Conclusions

7.1 Results of the Research into SiFA Negotiation

From the analysis of conflict occurrences, conflict types, the CR strategies and the agent

character traits (see section 3.6, “Negotiation Strategies”), SiFAs show many more con-

flict possibilities and solution methods than have been discovered in previous research.

This should provide many more opportunities for future research into conflict resolution

using history and learning.

The analysis of functional and knowledge requirements (sections 3.7 and 3.8) can be used

to guide the development of SiFA implementations, or to expand the capabilities of the

SINE platform.

The list of different conflict types that has been developed can be used to refine design

system implementations and remove unnecessary conflicts in systems that stem from poor

system design or lack of information.

Single Function Agents and their Negotiation Behavior in Expert Systems

7.2 Results of Design and Use of the SINE Platform 130

7.2 Results of Design and Use of the SINE Platform

The implementation of the I3D+ simulation and the Sailboat Designer show that the plat-

form significantly reduces the amount of work needed to build a SiFA system and to sup-

port negotiation in it.

The quality of the results achieved by the negotiating agents and the demonstrated flexibil-

ity of the agents in situations with missing information show that SINE can both optimize

design system output and reduce some of the brittleness of design expert systems. It also

supports the hypothesis that negotiation is a useful tool in problem solving.

The breadth of negotiation situations producible with SiFA systems and supported by

SINE allows research to investigate design systems and their internal conflicts and trade-

offs much more accurately, by breaking down the design task into very small subproblems

which will be handled by distinct agents.

7.3 Future Work

Although a working platform is available and a considerable amount of research has been

done in the area of SiFAs, both in this thesis and in [Victor 1993], there is still a large

number of topics that can be further investigated and functionality that waits to be incor-

porated or improved:

• Multiple CR Inheritance

Inheritance of multiple sets of rules and CR with fallback from specific to more abstract

rules has not yet been implemented.

Single Function Agents and their Negotiation Behavior in Expert Systems

7.3 Future Work 131

• Design Parameter Structure

The structure of design parameter objects in SINE (e.g., Material, Sail-Type, etc.) is

fairly fixed, and design of less pre-structured objects should be made possible.

• Agent Grouping/Hierarchy

For systems with a larger number of parameters, some grouping of agents into sub-

systems that are responsible for certain design areas might be useful. Meta-agents could

help administrate the activation of the groups and the negotiation between groups. The

structure could be similar to the hierarchy used in DSPL, but further investigation is

needed to evaluate how that would change the problem solving power of SINE.

• Negotiation

More negotiation should be implemented, i.e., between more agents and with more

depth and variation in the existing negotiation support. The effect of different strategies

and character traits of agents has not been investigated yet. Most of the negotiations

involve only a small number of possible outcomes. Future work should investigate how

more contextual information can be taken into account to adapt the conflict resolution

to the situational needs.

• Constraint Relaxation

Although SINE provides facilities for constraint relaxation, the current implementa-

tions do not employ them. A different design problem should be automated with SINE

to use and analyze this feature.

• Truth Maintenance

The current version of SINE informs all the concerned agents of new values of parame-

ters. Although this is used as a basic form of truth maintenance, by ensuring that agents

are aware of parameter changes, its effect is very limited. For example, the agents can

Single Function Agents and their Negotiation Behavior in Expert Systems

7.3 Future Work 132

make assertions to one another and later revise their beliefs without notifying their part-

ners. Some truth maintenance system within the agents should be available to prevent

false information from remaining in the system.

• Distributed Implementation

An implementation of SINE to work on several computers simultaneously, with each

agent running as an individual process could be developed to investigate parallel SiFA

systems. Such a system could introduce vast increases in design processing speed. Also

it would lead to interesting research into the scaleability of SiFA systems.

• Derived Parameters

SINE is best suited for design problems in which the choices of alternatives are pre-

defined. Although a sample implementation has been built in which a selector uses the

information from an evaluator, which in turn produced its evaluation from values

derived by an estimator, the platform has only limited support for this kind of agent

interaction. In the 6.4, “Design System Example with derived Attributes”, the lack is

most obvious in that the agents have to use domain dependent knowledge and function-

ality to keep track of changes in the alternatives’ values. An enhanced version of SINE

could have explicit support for parameter dependencies and agent-agent interactions.

This would also simplify the blame assignment.

• History Keeping and Design Rationale Uses

Even though SINE agents create history objects, that are kept in their memory and

could be parsed to retrieve information, the domain independent parts of the platform

do not take advantage of this information. Design rationale can be used for design revi-

sion and learning. Design history as well as rationale capture and use are both currently

an active international research area. Investigation of both of these fields with respect to

SiFAs could probably fill more pages than this entire thesis.

Single Function Agents and their Negotiation Behavior in Expert Systems

7.4 Summary 133

7.4 Summary

The evaluation shows that the SINE system has achieved most of its goals. It also shows

that many more possibilities for research are available and that more work is needed to

achieve the full potential of the SiFA paradigm. The research into negotiation has opened

up a number of interesting issues, which also require more investigation, particularly the

applications of learning.

Single Function Agents and their Negotiation Behavior in Expert Systems 134

APPENDIX A Users’ Guide

A.1 Introduction

In this guide we describe how a user can start and use a design expert system that has been

developed with the SINE platform. We will first explain the basic components of the sys-

tem, requirement specification, and modifications of data files.

Then we describe how to start the design system and how to use the user interface.

A.2 Components of a SINE-based Design Expert System

An expert system that was developed with the SINE platform consists of several parts:

• a modified version of the CLIPS expert system shell,

• a set of CLIPS definition files that form the basis of the SINE platform,

• a set of four CLIPS files for each agent in the system,

• requirements in a CLIPS file and

• data files (e.g., description of materials) for the expert system.

If set up correctly, the system will automatically take care of loading all the necessary

files.

Single Function Agents and their Negotiation Behavior in Expert Systems

135

A.3 Requirement Specification

Since the requirement specification is dependent on the particular expert system that is

used, we will use the example of the I3D+ simulation for all further discussion.

The requirements for the I3D+ simulation are a partial description of the material. The

user has no influence on how these values are interpreted, as that knowledge is encoded in

the agents. The values themselves, however, can be changed.

In the I3D+ simulation, for example, the requirements are specified as follows:

(req_material of material_type
(object_type requirement)
(full_name “Requirement on Material”)
(bend_strength 800)
(wear_performance 4)
(oxid_performance 3)
(cost 17)
)

The parameters that can be defined by the user as requirements are:

• Bend Strength, i.e., the value that is entered for this attribute is used by the system to

find a matching material that supports the required strength.

• Wear Performance, which is used by the Material-Wear-Performance-Evaluator to

compute an factor that describes how well the selected material matches the require-

ment from the point of view of wear. The values in the requirement have the following

meaning: very poor = 1, poor = 2, average = 3, good = 4, very good = 5. A lower index

in the requirement will give a higher index for the chosen material. E.g., if the require-

ment has the value 2 and the material provides the performance 4, the evaluator will

assert an accomplishment of the wear_performance requirement of 200% in the design

database.

Single Function Agents and their Negotiation Behavior in Expert Systems

136

• Oxidation Performance, which is used by the Material-Oxidation-Performance-Evalua-

tor to compute an index that describes how well the selected material matches the

requirement from the point of view of oxidation. The meaning of the values is the same

as for Wear Performance.

• Cost, which defines a maximum for the total production cost in Dollars. This value is

used by the Material-Cost-Critic to prevent the selection of a material that is too expen-

sive.

In order to change the requirements, simply edit the values by loading the require-

ments.ins file into your favorite editor (e.g., Emacs) and save the file back to disk.

A.4 Changing the Data Files

Although the data files are set up by the developers of the SINE-based design expert sys-

tem, the users might need to update them for maintenance reasons. The data are stored in a

CLIPS file, similar to the requirements. In order to change the data or to add new data,

load the appropriate file into the editor.

For example, the file materials.ins contains the descriptions of all the materials that the

selector agents can choose in the I3D+ simulation. A material description has the follow-

ing parameters:

• Bend Strength (see section A.3);

• Wear Performance (see section A.3);

• Oxidation Performance (see section A.3);

• Thermal Conductivity (in Watts per Meter Kelvin), where a high value is preferred by

the Material-Thermal-Conductivity-Selector;

Single Function Agents and their Negotiation Behavior in Expert Systems

137

• Unit Cost (in $/kg), which is used by the Material Cost Estimator to determine the cost

of a single component and

• Density (in kg/ccm), which is used by the Material Cost Estimator to determine the

mass of the component and to derive the cost based on the unit cost and the mass.

In the file, the format is in LISP syntax, for example, Silicon Nitride is described as fol-

lows:

(SN of material_type
 (object_type alternative)
 (full_name “Silicon Nitride”)
 (thermal_cond 48)
 (wear_performance 4)
 (oxid_performance 4)
 (bend_strength 701 900)
 (unit_cost 2.25)
 (density 0.001)
)

The first name in the description is an internal name for the system. The name that is dis-

played to the user is stored in the full_name slot. In order to change some of the specifi-

cations of the material, just modify the values and save the file to disk again. If you want

to add a material, use one of the descriptions as a template, by copying it and modifying

the values. Make sure you change the internal name of the material to be distinct from all

the other materials, otherwise the second of the two descriptions with the same name over-

rides the first one.

A.5 Starting the Design Expert System

In order to start the SINE system and the application that you want to use, you must

change to the appropriate directory first. For the I3D+ simulation example, use the follow-

ing command:

Single Function Agents and their Negotiation Behavior in Expert Systems

138

cd ~airg/SINE/src <CR>

Now, if the developer has installed the system correctly, you can simply start the SINE

platform by typing:

start_sine <CR>

It will also load the user interface. (Note that in order to run the SINE system with the

windowing user interface, you need to have the MOTIF libraries available on the com-

puter where the software is executed. If this is not the case, you can run the system in text-

mode, by calling start_local_sine instead.) The SINE system will automatically look

for the file system.bat from which it reads the information about what agents and data

files to load.

Now, the system is ready to start processing.

A.6 Activating the Design Process

In the window in which you started the SINE platform, you will find the following

prompt:

CLIPS>

Type the following command to start the design process:

(Design) <CR>

This command calls the agenda system, which will automatically schedule the agents and

execute the design process. After every execution cycle, the agenda will prompt you for

input:

Press <return> to continue, or ‘q’ to quit.

Single Function Agents and their Negotiation Behavior in Expert Systems

139

If you press <CR> the program will continue with the next cycle. If you press the ‘q’ key,

the agenda will terminate the current design cycle:

agenda: Main Agenda finished
agenda: **** Finished ****
agenda: Running time was 129 milliseconds.
0
CLIPS>

At this point, you can investigate values in the system by using the CLIPS commands

(please refer to the CLIPS Manuals for further information [Giarratano & Riley 1993]

[Giarratano & Riley 1994]). You can also continue the design process, by restarting the

agenda:

(Design) <CR>

You can exit the SINE system altogether:

(Shutdown) <CR>

This will bring you back to the UNIX command line. Notice that the I3D+ simulation does

not save any data or decisions. Now, use the ‘Exit’ option in the ‘File’ menu of the win-

dowing interface to quit the user interface.

If you want to modify the requirements and/or the data, proceed as described in sections

A.3, “Requirement Specification”, and A.4, “Changing the Data Files”, and then start the

SINE system again.

Single Function Agents and their Negotiation Behavior in Expert Systems

140

A.7 Using the SINE Multiwindow Interface

The window interface is run as a separate process from the SINE platform. As it receives

all the data from the platform, it is called a client, and SINE is its server. When the inter-

face client starts, several windows appear. The number is dependent on the application

that you are using, but for the I3D+ simulation it is eight. There will be a window for

every agent type in the system, as well as a ‘Main’ window and an ‘Agenda’ window.

The agent windows display all the information that the agents produce, the agenda win-

dow prints out the messages from agenda scheduler, and the main window prints out gen-

eral messages, such as changes in parameter values etc.

You can clear the window contents by clicking on the ‘Clear’ button in the Interface Main

Menu Window (see Figure A-1). In the same window, you can also use the ‘Font’ and

‘Style’ options for changing the type of font that is used in the output.

If, for some reason, the client fails to connect to the server, use the ‘Connect’ option in the

‘Communications’ menu, to reattempt a connection to the server. If this fails too, exit the

client through the ‘Exit’ option in the ‘File’ menu. Exit the SINE server too, as described

in the previous section. Then, wait for 1 to 2 minutes, and restart the SINE system. SINE

waits for the interface to automatically start and connect, before it continues loading.

FIGURE A-1: SINE Interface Main Menu Window

Single Function Agents and their Negotiation Behavior in Expert Systems 141

APPENDIX B Developers’ Guide

B.1 Introduction

This guide is intended to help the developer of a design expert system using SINE through

the process of designing the application. It is not a description of the system architecture

or the object classes and functions available in SINE. Please refer to chapter 4, “SINE: A

Platform for Negotiating SiFAs”, and chapter 5, “Implementation of SINE”, for more

information about how the platform works. Also, read through the readme.txt file which

is located in the SINE home directory (~airg/SINE).

B.2 Problem Definition

Probably the best way to define a design expert system with SINE is to think of it in a

three step approach. First, analyze the design problem. Make sure, you know what knowl-

edge is needed to solve the problem. Then, structure it by analyzing the design functions,

targets and points of view in the problem and the expert knowledge. The last step is to

derive what the parameters are, i.e., refine the targets into structured design parameters

and specify the attributes that the parameters should have.

Single Function Agents and their Negotiation Behavior in Expert Systems

142

B.2.1 Problem Analysis

First, you should analyze what the structure of the design object is and what functions

have to be performed to produce the needed information. You can use the agent type defi-

nition in 3.2, “Agent Types”, for reference. Try grouping the different tasks that you find

by the kind of function, as well as by what values they determine and how the values inter-

act.

Then, derive the points of view from the expertise that you gathered during knowledge

acquisition. Often, one expert uses multiple points of view during his/her work. If points

of view have to be traded against one another, keep them separate and plan to have the

negotiation taking care of the conflict.

B.2.2 Specification of Functions, Targets and Points of View

Now, you should be able to list all the functions that you will need, all the targets that will

have to be acted on, and all the points of view, from which actions will be taken in the sys-

tem. Depending on the size of the problem, a large number from around two to three times

the number of parameters, up to the maximum of the product of the number of parameters,

targets and points-of-view is possible. Any number of points of view above 2 can be

expected. Less than two points of view will probably not lead to much negotiation.

If two points of view are closely related and non-conflicting, then consider unifying them.

That will make further development easier.

You will have to define a class for each target that will be used by the agents, for example:

(defclass material_target
 “Superclass of all agents with material as target”
 (is-a target)
 (slot target_full_name

(source composite)
(default “Material”))

Single Function Agents and their Negotiation Behavior in Expert Systems

143

 (slot target_name
(source composite)
(default MAIN::material))

)

The points of view can only be defined after the design parameters are defined.

B.2.3 Design Parameter Definition

Analyze all targets, to find those that are directly dependent on others. If a target is always

directly derived from another one, consider making the second target an attribute of the

first one. Using this technique, you should be able to define structures for parameters, e.g.,

in the I3D domain, the mass and the cost are derived from the material type. Therefore

they are stored as attributes of the material. If the material is changed in the design pro-

cess, the assertion of the new material will automatically remove all the old information

about mass and cost from the database.

Now design CLIPS object structures that can hold all the information that will need to be

stored in each parameter. For example, attribute values from the definitions of the alterna-

tives, as well as derived information that the agents will produce will need to be stored in

the material. For the I3D+ simulation, we used the following structure:

(defclass material_type
 “Description for material types, derived from I3D+”
 (is-a target_type)
 (role concrete)
 (pattern-match reactive)
 (slot strength

(access read-write)
(create-accessor read-write)
(type NUMBER)
(visibility public)
(default 0)
)

 (slot thermal_cond
(access read-write)
(create-accessor read-write)

Single Function Agents and their Negotiation Behavior in Expert Systems

144

(type NUMBER)
(visibility public)
(default 0)
)

 (slot wear_performance
(access read-write)
(create-accessor read-write)
(type INTEGER)
(visibility public)
(default 0)
)

 (slot oxid_performance
(access read-write)
(create-accessor read-write)
(type INTEGER)
(visibility public)
(default 0)
)

 ;; Bend Strength as a range (min .. max)
 (multislot bend_strength

(access read-write)
(create-accessor read-write)
(type INTEGER)
(visibility public)
(default 0 0)
)

 ;; Unit cost in $/kg
 (slot unit_cost

(access read-write)
(create-accessor read-write)
(type NUMBER)
(visibility public)
(default 0)
)

 ;; Density in kg/ccm
 (slot density

(access read-write)
(create-accessor read-write)
(type NUMBER)
(visibility public)
(default 0)
)

 ;; Mass in kg
 (slot mass

(access read-write)
(create-accessor read-write)
(type NUMBER)

Single Function Agents and their Negotiation Behavior in Expert Systems

145

(visibility public)
(default 0)
)

 ;; Total material cost as derived from unit cost and density
 (slot part_cost

(access read-write)
(create-accessor read-write)
(type NUMBER)
(visibility public)
(default 0)
)

 ;; Total material cost per batch
 (slot cost

(access read-write)
(create-accessor read-write)
(type NUMBER)
(visibility public)
(default 0)
)

)

Please refer to the CLIPS Manuals for further information about class declarations [Giar-

ratano & Riley 1993] [Giarratano & Riley 1994].

Now the points of view can be defined. Each point of view requires one class, for exam-

ple:

(defclass bend_strength_pov
 “Superclass of all agents with bend-strength as point-of-view”
 (is-a pov)
 (slot pov_full_name

(source composite)
(default “Bend-Strength”))

 (slot attribute ; the attribute that the agent watches
(source composite)
(default bend_strength))

)

The attribute specifies what slot of the design parameter structure the agents will be

retrieving and/or storing values in.

Single Function Agents and their Negotiation Behavior in Expert Systems

146

B.3 Implementation

B.3.1 Building Agents

In order to define the types of agents in the system, a class has to be generated for each

agent. This can be done through multiple inheritance, which allows information from a set

of parent classes to be reused by the agent class. For example, the Material Bend-Strength

Selector was defined as follows:

(defclass MaterialBendStrengthSelector
 “Selector for Beam Material by strength”
 (is-a selector material_target bend_strength_pov)
 (role concrete)
 (pattern-match reactive)
 (slot design_rules

(source composite)
(default selector))

 (slot state
(source composite)
(default ready))

 (slot router
(source composite)
(default mbs))

)

Also, we have to generate an object instance for each agent, for example:

(mbs of MaterialBendStrengthSelector)

If we need constraints and/or preferences in the agent, we specify them before the agent

object, e.g.:

(high_bendstrength_pref of larger_comp_pref
 (full_name “Preference for high bend-strength”)
 (attribute bend_strength))

(bendstrength_con of alt_range_constraint
 (full_name “Constraint on the range of the bend-strength”)
 (objects [material] [req_material])
 (attributes bend_strength bend_strength))

Single Function Agents and their Negotiation Behavior in Expert Systems

147

Notice that no predicate has to be defined for the constraint, as it uses the default predicate

for the alt_range_constraint class (see 5.3, “Classes and Inheritance”). The references to

the preference and constraint objects can be stored directly in the agent’s instance descrip-

tion:

(mbs of MaterialBendStrengthSelector
 (preferences [high_bendstrength_pref])
 (constraints [bendstrength_con])
)

B.3.2 Design Knowledge

We have already discussed how constraints and preferences can be stored in the knowl-

edge base of an agent. If more flexible knowledge representation is needed, rules can be

used. For example, the Material Cost Estimator uses the following rule to derive the object

mass:

(defrule mce::compute_mass
 (current_instance mce ?self)
 (not (failed_constraint ?self density_con))
 (part_volume ?vol)
 =>
 (bind ?material (get ?self target_obj))
 (bind ?mass (* (get ?material density) ?vol))
 (put ?material mass ?mass)
 (printout (get ?self router)

 “The mass of the part made from “
 (get ?material full_name) “ is “
 ?mass “ kg.” crlf)

)

The (current_instance mce ?self) fact is asserted automatically by the estimator, so

that rules have a reference to the object that invoked them. The (part_volume ?vol)

facts is asserted in the mce.fac fact file. In the rule, the mass is computed by multiplying

the density of the material with the declared part volume. The result is stored in the mate-

rial parameter.

Single Function Agents and their Negotiation Behavior in Expert Systems

148

All the design knowledge is stored in a file with the name of the module, e.g., the design

knowledge for the Material Cost Estimator is stored in mce.clp.

B.3.3 Negotiation Knowledge

You can use the domain independent negotiation knowledge as a basis for developing your

own CR knowledge. The cr_rules slot in the agent class references the rule module that

contains all the negotiation rules for the agent. In the I3D+ simulation no agent has its own

CR knowledge, but all agents use the CR modules provided for their agent function type.

For the two selectors, for example, the selector CR module is used. The Material Cost

Estimator uses the estimator rule module, etc. The rules are stored in a file with the name

of the module, e.g., the estimator CR knowledge is stored in estimator.clp.

B.3.4 Building the Data Base

Since we already have defined the class description of each parameter type (see section

B.2.3), we can simply store a list with the descriptions of the alternatives in a file. Each

alternative is described by partially filling the slots of the class. For the I3D+ simulation a

material description has the following form:

(SN of material_type
 (object_type alternative)
 (full_name “Silicon Nitride”)
 (thermal_cond 48)
 (wear_performance 4)
 (oxid_performance 4)
 (bend_strength 701 900)
 (unit_cost 2.25)
 (density 0.001)
)

All the material descriptions are stored in the materials.ins file.

Single Function Agents and their Negotiation Behavior in Expert Systems

149

B.3.5 Defining Routers

In order to print out the messages from the agents to individual windows, SINE imple-

ments an extension of the CLIPS I/O Routers. An agent sends its output to the ‘main’

router by default. This can be changed by the storing a different router name in the router

slot of the agent’s class or instance-declaration.

Whenever a new router name is introduced, the router has to be declared to CLIPS. The

InitRouter function in the file sifa.c performs this. Just add the new name to the exist-

ing list, by adding a line of the following form into the function:

if (strcmp (logicalName, “<router-name>”) == 0) return CLIPS_TRUE;

B.3.6 Configuring the Interface

In order to implement an additional window in the client, follow the instructions in

client_setup.txt in the client subdirectory.

B.4 Setup File

SINE automatically loads up a CLIPS batch file called system.bat. This file instructs

SINE what other files to load and what agents to generate. It should contain the instruc-

tions described in the following.

• A declaration of all the object names of the agents in the application:

(defglobal MAIN ?*agents* = (create$ mbs mts mce mcc mwv mov))

• Instructions for loading all the domain independent files:

(load “standard.clp”)
(load “sifa.cla”)
(load “sifa.clp”)
(load “agent.cla”)
(load “agenda.cla”)

Single Function Agents and their Negotiation Behavior in Expert Systems

150

(load “targets.cla”)
(load “povs.cla”)
(focus MAIN)
(load “selector.cla”)
(load “selector.clp”)
(focus MAIN)
(load “critic.cla”)
(load “critic.clp”)
(focus MAIN)
(load “estimator.cla”)
(load “estimator.clp”)
(focus MAIN)
(load “evaluator.cla”)
(load “evaluator.clp”)
(focus MAIN)

• Commands for initializing the agents’ knowledge bases (by loading the *.clp and

*.cla files) and routers:

(init-agent-routers ?*agents*)
(load-agent-kbs ?*agents*)
(reset)

• An instruction for loading the definition of the agenda entry types and their ranks:

(load-instances “agenda.ins”)

• Commands for loading the description of the applications design parameters and alter-

natives:

(load-instances “parameters.ins”)
(load-instances “materials.ins”)

• An instruction to load the file with the requirement specification:

(load-instances “requirements.ins”)

• And finally, the load command to load the agents knowledge bases (*.fac and *.ins

files)

(load-agent-wms ?*agents*)

Single Function Agents and their Negotiation Behavior in Expert Systems

151

B.5 Testing

After the developer has produced all the files that are needed for the application, the plat-

form can be loaded. Please refer to section A.5, “Starting the Design Expert System”, for

information about how to start the system. After the initializtion, the design process can be

initiated through the (Design) command, or individual agents can be started by using the

following instruction:

(send [<agent-name>] run)

For example to run the Material Thermal-Conductivity Selector only, you can type:

(send [mts] run)

Please refer to the README file in the SINE directory for further information and updates.

Single Function Agents and their Negotiation Behavior in Expert Systems 152

APPENDIX C Negotiation Output Traces

C.1 Introduction

The following sections present two kinds of traces. The first are selected annotated outputs

from both the simulation of I3D+ (from section 6.3) and the example with derived

attributes (from section 6.4).

The second section contains a full run performed with the I3D+ simulation with the origi-

nal material types. The third section contains the entire output of a run with the simulation,

using material choices that lack certain information attributes.

C.2 Annotated Conflicts

C.2.1 Selector-Selector Conflict

This trace offers a view into a typical conflict between two selectors. The current situation

is that the BendStrength Selector had previously selected a material. That selection had

already been revised once when the Thermal-Conductivity Selector ran for the first time.

In the meantime, the other selector had to revise its choice, due to constraints by other

agents. Now, MTS notices that the value has changed from its previous selection, so it

scheduled an agenda entry for ‘conflict’. It will now re-negotiate the new selection.

Single Function Agents and their Negotiation Behavior in Expert Systems

153

agenda: **** Schedule for Cycle 5 ****
agenda: Material Thermal-Conductivity Selector because of conflict, ranked at 100
agenda: Material Cost Estimator because of usage, ranked at 60
agenda: Material Wear-Performance Evaluator because of usage, ranked at 60
agenda: Material Oxidation-Performance Evaluator because of usage, ranked at 60
agenda: **** Executing Cycle 5 ****
agenda: Running Material Thermal-Conductivity Selector because of conflict
mts Starting cycle 5
mts: Additionals:()
mts: Forbiddens:()
mts: Alts+Adds-Forb= ([SC0] [SC1] [SC2] [SC] [SN0] [SN1] [SN2] [SN] [AL] [ZR]

[ZR0])
mts: Looking for best choice in:([SC0] [SC1] [SC2] [SC] [SN0] [SN1] [SN2] [SN] [AL]

[ZR] [ZR0])
mts: Selecting Silicon Carbide No-Cost [SC0] for Material Parameter
main: Material Thermal-Conductivity Selector cannot store Silicon Carbide No-Cost in

Material Parameter, because Material Bend-Strength Selector [MAIN::mts] had
already stored Silicon Carbide No-Wear.

mts: selection_selection conflict detected with Material Bend-Strength Selector
mts: Sending message to Material Bend-Strength Selector
mbs: Got asked by Material Thermal-Conductivity Selector for number of proposals,

replying with:3
mbs: Sending message to Material Thermal-Conductivity Selector
mts: Soliciting another proposal from Material Bend-Strength Selector
mts: Sending message to Material Bend-Strength Selector
mbs: Got asked by Material Thermal-Conductivity Selector for a different proposal,

replying with:[SC2]
mbs: Sending message to Material Thermal-Conductivity Selector
mts: Agreeing with alternate proposal [SC2] from agent Material Bend-Strength

Selector
mts: Sending message to Material Bend-Strength Selector
mbs: Modifying design value to accept proposed change from agent Material Ther-

mal-Conductivity Selector
main: Material Bend-Strength Selector overrides old value Silicon Carbide No-Wear in

Material Parameter with Silicon Carbide No-Oxid
mts: Finished cycle 5

C.2.2 Estimator-Selector Conflict

This is a typical case of an evaluator whose precondition constraints are not satisfied. Thus

it complains to the selector about the constraint failure and passes it the constraint for con-

sideration in future selections.

Single Function Agents and their Negotiation Behavior in Expert Systems

154

agenda: **** Schedule for Cycle 3 ****
agenda: Material Cost Estimator because of usage, ranked at 60
agenda: Material Wear-Performance Evaluator because of usage, ranked at 60
agenda: Material Oxidation-Performance Evaluator because of usage, ranked at 60
agenda: **** Executing Cycle 3 ****
agenda: Running Material Cost Estimator because of usage
mce: Starting cycle 3
mce: Constraint:Constraint for valid density satisfied.
mce: Constraint:Constraint for valid unit cost failed.
mce: selection_estimation conflict detected with Material Bend-Strength Selector
mce: Current material ‘Silicon Carbide No-Cost’ violated the Constraint for valid unit

cost
mce: Requesting Material Bend-Strength Selector to insert the [unit_cost_con] to his

list of constraints
mce: Sending message to Material Bend-Strength Selector
mbs: Got told by Material Cost Estimator to insert constraint [unit_cost_con], into his

list.
mbs: Adding Constraint for valid unit cost to Material Bend-Strength Selector
mbs: Changing state from waiting to ready
mce: The mass of the part made from Silicon Carbide No-Cost is 0.005 kg.
mce: The cost for the object made from Silicon Carbide No-Cost is 0.0 $ per part.
mce: Finished cycle 3
mce:
mce: Changing state from ready to waiting

C.2.3 Critic-Selector Conflict

In this trace the critic notices that the material cost is not low enough. After questioning

the MaterialCostEstimator to make sure that it uses the ‘detailed’ estimation process, it

proceeds to request that the selector not to use that particular choice anymore.

agenda: **** Schedule for Cycle 6 ****
agenda: Material Cost Critic because of usage, ranked at 60
agenda: Material Wear-Performance Evaluator because of usage, ranked at 60
agenda: Material Oxidation-Performance Evaluator because of usage, ranked at 60
agenda: **** Executing Cycle 6 ****
agenda: Running Material Cost Critic because of usage
mcc: Starting cycle 6
mcc: Constraint:Constraint on the Material Cost failed.
mcc: Requesting estimate process info from Material Cost Estimator
mcc: Sending message to Material Cost Estimator

Single Function Agents and their Negotiation Behavior in Expert Systems

155

mce: Got asked by Material Cost Critic for the name of its current process. Replying
with ‘detailed’

mce: Sending message to Material Cost Critic
mcc: Estimate quality of Material Cost Estimator is acceptable.
mcc: selection_criticism conflict detected with Material Bend-Strength Selector
mcc: Requesting Material Bend-Strength Selector not to use the [SN] alternative
mcc: Sending message to Material Bend-Strength Selector
mbs: Got told by Material Cost Critic to delete alternative [SN], from his list.
mbs: Removing alternative Silicon Nitride from Material Bend-Strength Selector
mbs: Changing state from waiting to ready
mcc: Finished cycle 6
mcc:
mcc: Changing state from ready to waiting

C.2.4 Critic-Estimator Conflict

This trace shows how the critic notices that the estimation process is not good enough. It

asks the estimator to use the more detailed process.

agenda: **** Schedule for Cycle 7 ****
agenda: Material Cost Critic because of usage, ranked at 60
agenda: Material Wear-Performance Evaluator because of usage, ranked at 60
agenda: Material Oxidation-Performance Evaluator because of usage, ranked at 60
agenda: **** Executing Cycle 7 ****
agenda: Running Material Cost Critic because of usage
mcc: Starting cycle 7
mcc: Constraint:Constraint on the Material Cost satisfied.
mcc: Requesting estimate process info from Material Cost Estimator
mcc: Sending message to Material Cost Estimator
mce: Got asked by Material Cost Critic for the name of its current process. Replying

with ‘rough’
mce: Sending message to Material Cost Critic
mcc: estimate_criticism conflict detected with Material Cost Estimator
mcc: Requesting Material Cost Estimator to use the detailed process.
mcc: Sending message to Material Cost Estimator
mce: Got asked by Material Cost Critic to change its current process to detailed
mce: Changing process for Material Cost Estimator to detailed
mce: Sending message to Material Cost Critic
mcc: Received acceptance from Material Cost Estimator to use the detailed process
mcc: Finished cycle 7
mcc:
mcc: Changing state from ready to waiting

Single Function Agents and their Negotiation Behavior in Expert Systems

156

C.2.5 Evaluator-Estimator Conflict

In this trace, an evaluator notices that one of the materials it is evaluating does not have

the needed information about reliabilty associated with it. It complains to the Material

Thermal-Conductivity Estimator and requests that it add a reliability attribute to the mate-

rials.

agenda: **** Schedule for Cycle 3 ****
agenda: Material Thermal-Conductivity-Evaluation Evaluator because of usage, ranked

at 60
agenda: **** Executing Cycle 3 ****
agenda: Running Material Thermal-Conductivity-Evaluation Evaluator because of usage
mev: Starting cycle 3
mev: Updating evaluations
mev: Preference:Quantified preference for high thermal conductivity evaluates to 0.0
mev: Material ‘Zirconia no-density’ has no reliability value.
mev: estimation_evaluation conflict detected with Material Thermal-Conductivity Esti-

mator
mev: Requesting Material Thermal-Conductivity Estimator to add the reliability value
mev: Sending message to Material Thermal-Conductivity Estimator
mte: Got asked by Material Thermal-Conductivity-Evaluation Evaluator to acquire

data about reliability
mte: Sending message to Material Thermal-Conductivity-Evaluation Evaluator
mte: Changing state from waiting to ready
mev: Received acceptance from Material Thermal-Conductivity Estimator to achieve

reliability -1
mev: Finished cycle 3
mev:
mev: Changing state from ready to waiting

In the next trace, from the same run, the evaluator requests the estimator to estimate with

an error value less than 10%. This prompts the estimator to change to a detailed process.

agenda: **** Schedule for Cycle 5 ****
agenda: Material Thermal-Conductivity-Evaluation Selector because of selection, ranked

at 50
agenda: Material Thermal-Conductivity-Evaluation Evaluator because of usage, ranked

at 60
agenda: **** Executing Cycle 5 ****
agenda: Running Material Thermal-Conductivity-Evaluation Evaluator because of usage
mev: Starting cycle 5

Single Function Agents and their Negotiation Behavior in Expert Systems

157

mev: Updating evaluations
mev: Preference: Quantified preference for high thermal conductivity evaluates to 0.0
mev: Material ‘Zirconia no-density’ has poor error value.
mev: estimation_evaluation conflict detected with Material Thermal-Conductivity Esti-

mator
mev: Requesting Material Thermal-Conductivity Estimator lower the error value
mev: Sending message to Material Thermal-Conductivity Estimator
mte: Got asked by Material Thermal-Conductivity-Evaluation Evaluator to achieve

10% error
mte: Removed old memo object
mte: Sending message to Material Thermal-Conductivity-Evaluation Evaluator
mte: Changing process for Material Thermal-Conductivity Estimator to detailed
mte: Got asked by Material Thermal-Conductivity-Evaluation Evaluator to acquire

data about error
mte: Sending message to Material Thermal-Conductivity-Evaluation Evaluator
mev: Received acceptance from Material Thermal-Conductivity Estimator to achieve

error 10
mev: Finished cycle 5
mev:
mev: Changing state from ready to waiting

C.3 I3D+ Conflict Simulation

The following trace is a simulation of a typical I3D+ task. The materials are identical in all

aspects to the materials used in I3D. The requirements are set up so that the two selectors

go into conflict and resolve their dispute. The cost maximum cannot be satisfied, which

leads the critic to request that the selector propose another material, which it cannot, since

the material requirements are too constrained.

(req_material of material_type
(object_type requirement)
(full_name “Requirement on Material”)
(bend_strength 800)
(wear_performance 1)
(oxid_performance 1)
(cost 17)
)

Single Function Agents and their Negotiation Behavior in Expert Systems

158

;; Material Objects
;; derived from I3D+
;; using very poor = 1, poor = 2, average = 3, good = 4, very good = 5

(SC of material_type
 (object_type alternative)
 (full_name “Silicon Carbide”)
 (thermal_cond 50)
 (bend_strength 401 700)
 (wear_performance 1)
 (oxid_performance 2)
 (unit_cost 2.35)
 (density 0.001)
)

(SN of material_type
 (object_type alternative)
 (full_name “Silicon Nitride”)
 (thermal_cond 48)
 (wear_performance 4)
 (oxid_performance 4)
 (bend_strength 701 900)
 (unit_cost 2.25)
 (density 0.001)
)

(AL of material_type
 (object_type alternative)
 (full_name “Alumina”)
 (thermal_cond 49)
 (wear_performance 5)
 (bend_strength 301 400)
 (unit_cost 2.55)
 (density 0.001)
)

(ZR of material_type
 (object_type alternative)
 (full_name “Zirconia”)
 (thermal_cond 49)
 (wear_performance 4)
 (oxid_performance 4)
 (bend_strength 901 1200)

Single Function Agents and their Negotiation Behavior in Expert Systems

159

 (unit_cost 2.45)
 (density 0.001)
)

agenda: **** Schedule for Cycle 1 ****
agenda: Material Bend-Strength Selector because of selection, ranked at 70
agenda: Material Thermal-Conductivity Selector because of selection, ranked at 70
agenda: **** Executing Cycle 1 ****
agenda: Running Material Bend-Strength Selector because of selection
mbs: Starting cycle 1
mbs: Changing state from ready to waiting
mbs: Additionals:()
mbs: Forbiddens:()
mbs: Alts+Adds-Forb= ([SC] [SN] [AL] [ZR])
mbs: Remaining:([SC] [SN] [AL] [ZR])
mbs: Checking constraint:[bendstrength_con]
mbs: Looking for best choice in:([SN])
mbs: Selecting Silicon Nitride [SN] for Material Parameter
main: Initializing Material Parameter with Silicon Nitride from Material Bend-Strength

Selector
mov: Changing state from waiting to ready
mwv: Changing state from waiting to ready
mce: Changing state from waiting to ready
mbs: Material Bend-Strength Selector was able to select his preferred value for Mate-

rial Parameter
mbs: Finished cycle 1
mbs:
Press <return> to continue, or ‘q’ <return> to quit.

agenda: **** Schedule for Cycle 2 ****
agenda: Material Thermal-Conductivity Selector because of selection, ranked at 70
agenda: Material Cost Estimator because of usage, ranked at 60
agenda: Material Wear-Performance Evaluator because of usage, ranked at 60
agenda: Material Oxidation-Performance Evaluator because of usage, ranked at 60
agenda: **** Executing Cycle 2 ****
agenda: Running Material Thermal-Conductivity Selector because of selection
mts: Starting cycle 2
mts: Changing state from ready to waiting
mts: Additionals:()
mts: Forbiddens:()
mts: Alts+Adds-Forb= ([SC] [SN] [AL] [ZR])
mts: Looking for best choice in:([SC] [AL] [ZR] [SN])
mts: Selecting Silicon Carbide [SC] for Material Parameter

Single Function Agents and their Negotiation Behavior in Expert Systems

160

main: Material Thermal-Conductivity Selector cannot store Silicon Carbide in Material
Parameter, because Material Bend-Strength Selector [MAIN::mts] had already
stored Silicon Nitride.

mts: selection_selection conflict detected with Material Bend-Strength Selector
mts: Sending message to Material Bend-Strength Selector
mbs: Got asked by Material Thermal-Conductivity Selector for number of proposals,

replying with:1
mbs: Sending message to Material Thermal-Conductivity Selector
mts: Adapting to the only proposal from Material Bend-Strength Selector
mts: Sending message to Material Bend-Strength Selector
mts: Finished cycle 2
mts:
Press <return> to continue, or ‘q’ <return> to quit.

agenda: **** Schedule for Cycle 3 ****
agenda: Material Cost Estimator because of usage, ranked at 60
agenda: Material Wear-Performance Evaluator because of usage, ranked at 60
agenda: Material Oxidation-Performance Evaluator because of usage, ranked at 60
agenda: **** Executing Cycle 3 ****
agenda: Running Material Cost Estimator because of usage
mce: Starting cycle 3
mce: Constraint:Constraint for valid density satisfied.
mce: Constraint:Constraint for valid unit cost satisfied.
mce: The mass of the part made from Silicon Nitride is 0.005 kg.
mce: The cost for the object made from Silicon Nitride is 0.01125 $ per part.
mce: The total material cost for Silicon Nitride is roughly $ 22.5 for a batch size of

2000.
mce: Finished cycle 3
mce:
mce: Changing state from ready to waiting
Press <return> to continue, or ‘q’ <return> to quit.

agenda: **** Schedule for Cycle 4 ****
agenda: Material Cost Critic because of usage, ranked at 60
agenda: Material Wear-Performance Evaluator because of usage, ranked at 60
agenda: Material Oxidation-Performance Evaluator because of usage, ranked at 60
agenda: **** Executing Cycle 4 ****
agenda: Running Material Cost Critic because of usage
mcc: Starting cycle 4
mcc: Constraint:Constraint on the Material Cost failed.
mcc: Requesting estimate process info from Material Cost Estimator
mcc: Sending message to Material Cost Estimator

Single Function Agents and their Negotiation Behavior in Expert Systems

161

mce: Got asked by Material Cost Critic for the name of its current process. Replying
with ‘rough’

mce: Sending message to Material Cost Critic
mcc: estimate_criticism conflict detected with Material Cost Estimator
mcc: Requesting Material Cost Estimator to use the detailed process.
mcc: Sending message to Material Cost Estimator
mce: Got asked by Material Cost Critic to change its current process to detailed
mce: Changing process for Material Cost Estimator to detailed
mce: Sending message to Material Cost Critic
mcc: Received acceptance from Material Cost Estimator to use the detailed process
mcc: Finished cycle 4
mcc:
mcc: Changing state from ready to waiting
Press <return> to continue, or ‘q’ <return> to quit.

agenda: **** Schedule for Cycle 5 ****
agenda: Material Cost Estimator because of usage, ranked at 60
agenda: Material Wear-Performance Evaluator because of usage, ranked at 60
agenda: Material Oxidation-Performance Evaluator because of usage, ranked at 60
agenda: **** Executing Cycle 5 ****
agenda: Running Material Cost Estimator because of usage
mce: Starting cycle 5
mce: Constraint:Constraint for valid density satisfied.
mce: Constraint:Constraint for valid unit cost satisfied.
mce: The mass of the part made from Silicon Nitride is 0.005 kg.
mce: The cost for the object made from Silicon Nitride is 0.01125 $ per part.
mce: The total material cost for Silicon Nitride is exactly $18.0 for a batch size of

2000.
mce: Finished cycle 5
mce:
mce: Changing state from ready to waiting
Press <return> to continue, or ‘q’ <return> to quit.

agenda: **** Schedule for Cycle 6 ****
agenda: Material Cost Critic because of usage, ranked at 60
agenda: Material Wear-Performance Evaluator because of usage, ranked at 60
agenda: Material Oxidation-Performance Evaluator because of usage, ranked at 60
agenda: **** Executing Cycle 6 ****
agenda: Running Material Cost Critic because of usage
mcc: Starting cycle 6
mcc: Constraint:Constraint on the Material Cost failed.
mcc: Requesting estimate process info from Material Cost Estimator
mcc: Sending message to Material Cost Estimator

Single Function Agents and their Negotiation Behavior in Expert Systems

162

mce: Got asked by Material Cost Critic for the name of its current process. Replying
with ‘detailed’

mce: Sending message to Material Cost Critic
mcc: Estimate quality of Material Cost Estimator is acceptable.
mcc: selection_criticism conflict detected with Material Bend-Strength Selector
mcc: Requesting Material Bend-Strength Selector not to use the [SN] alternative
mcc: Sending message to Material Bend-Strength Selector
mbs: Got told by Material Cost Critic to delete alternative [SN], from his list.
mbs: Removing alternative Silicon Nitride from Material Bend-Strength Selector
mbs: Changing state from waiting to ready
mcc: Finished cycle 6
mcc:
mcc: Changing state from ready to waiting
Press <return> to continue, or ‘q’ <return> to quit.

agenda: **** Schedule for Cycle 7 ****
agenda: Material Bend-Strength Selector because of selection, ranked at 70
agenda: Material Wear-Performance Evaluator because of usage, ranked at 60
agenda: Material Oxidation-Performance Evaluator because of usage, ranked at 60
agenda: **** Executing Cycle 7 ****
agenda: Running Material Bend-Strength Selector because of selection
mbs: Starting cycle 7
mbs: Changing state from ready to waiting
mbs: Additionals:()
mbs: Forbiddens:([SN])
mbs: Alts+Adds-Forb= ([SC] [AL] [ZR])
mbs: Remaining:([SC] [AL] [ZR])
mbs: Checking constraint:[bendstrength_con]
mbs: Selector Material Bend-Strength Selector out of choices.
Press <return> to continue, or ‘q’ <return> to quit.

agenda: **** Schedule for Cycle 8 ****
agenda: Material Wear-Performance Evaluator because of usage, ranked at 60
agenda: Material Oxidation-Performance Evaluator because of usage, ranked at 60
agenda: **** Executing Cycle 8 ****
agenda: Running Material Wear-Performance Evaluator because of usage
mwv: Starting cycle 8
mwv: Constraint:Constraint for valid wear_performance satisfied.
mwv: Preference:Preference for high wear-performance evaluates to 4.0
mce: Got asked by Material Cost Critic for the name of its current process. Replying

with ‘detailed’
mce: Sending message to Material Cost Critic

Single Function Agents and their Negotiation Behavior in Expert Systems

163

mce: Got asked by Material Cost Critic for the name of its current process. Replying
with ‘detailed’

mce: Sending message to Material Cost Critic
mwv: Finished cycle 8
mwv:
mwv: Changing state from ready to waiting
mbs: Finished cycle 8
mbs:
Press <return> to continue, or ‘q’ <return> to quit.

agenda: **** Schedule for Cycle 9 ****
agenda: Material Oxidation-Performance Evaluator because of usage, ranked at 60
agenda: **** Executing Cycle 9 ****
agenda: Running Material Oxidation-Performance Evaluator because of usage
mov: Starting cycle 9
mov: Constraint:Constraint for valid oxid_performance satisfied.
mov: Preference:Preference for high oxid-performance evaluates to 4.0
mov: Finished cycle 9
mov:
mov: Changing state from ready to waiting
Press <return> to continue, or ‘q’ <return> to quit.

agenda: **** Schedule for Cycle 10 ****
agenda: Main Agenda empty
agenda: **** AGENDA EMPTY ****
agenda: Main Agenda finished
agenda: **** Finished ****
agenda: Running time was 0 seconds.
0
CLIPS>

C.4 I3D+ Conflict Simulation with Information Gaps

For the next trace, more material types have been added to the database. These materials

are clones of I3D materials, but they are lacking some information, e.g., the

wear_performance, oxid_performance, unit_cost, or density attribute is not filled in. This

will lead to several conflicts between the selectors and estimators/evaluators, which will

eventually get solved.

Single Function Agents and their Negotiation Behavior in Expert Systems

164

(req_material of material_type
 (object_type requirement)
 (full_name “Requirement on Material”)
 (bend_strength 500)
 (wear_performance 2)
 (oxid_performance 4)
 (cost 50)
)

(SC0 of material_type
 (object_type alternative)
 (full_name “Silicon Carbide No-Cost”)
 (thermal_cond 51)
 (bend_strength 401 700)
 (density 0.001)
)

(SC1 of material_type
 (object_type alternative)
 (full_name “Silicon Carbide No-Wear”)
 (thermal_cond 52)
 (bend_strength 401 700)
 (unit_cost 2.35)
 (density 0.001)
)

(SC2 of material_type
 (object_type alternative)
 (full_name “Silicon Carbide No-Oxid”)
 (thermal_cond 52)
 (bend_strength 401 700)
 (wear_performance 1)
 (unit_cost 2.35)
 (density 0.001)
)

(SC of material_type
 (object_type alternative)
 (full_name “Silicon Carbide”)
 (thermal_cond 50)
 (bend_strength 401 700)
 (wear_performance 1)
 (oxid_performance 2)

Single Function Agents and their Negotiation Behavior in Expert Systems

165

 (unit_cost 2.35)
 (density 0.001)
)

(SN0 of material_type
 (object_type alternative)
 (full_name “Silicon Nitride - No Wear Info”)
 (thermal_cond 49)
 (oxid_performance 4)
 (bend_strength 701 900)
 (unit_cost 2.25)
 (density 0.001)
)

(SN1 of material_type
 (object_type alternative)
 (full_name “Silicon Nitride - No density info”)
 (thermal_cond 50)
 (wear_performance 1)
 (oxid_performance 4)
 (bend_strength 701 900)
 (unit_cost 0.001)
)

(SN2 of material_type
 (object_type alternative)
 (full_name “Silicon Nitride - No unit cost”)
 (thermal_cond 50)
 (wear_performance 0)
 (oxid_performance 4)
 (bend_strength 701 900)
 (density 0.001)
)

(SN of material_type
 (object_type alternative)
 (full_name “Silicon Nitride”)
 (thermal_cond 48)
 (wear_performance 4)
 (oxid_performance 4)
 (bend_strength 701 900)
 (unit_cost 2.25)
 (density 0.001)

Single Function Agents and their Negotiation Behavior in Expert Systems

166

)

(AL of material_type
 (object_type alternative)
 (full_name “Alumina”)
 (thermal_cond 49)
 (wear_performance 5)
 (bend_strength 301 400)
 (unit_cost 2.55)
 (density 0.003) ;; fake
)

(ZR of material_type
 (object_type alternative)
 (full_name “Zirconia”)
 (thermal_cond 49)
 (wear_performance 4)
 (oxid_performance 4)
 (bend_strength 901 1200)
 (unit_cost 2.45)
 (density 0.002) ;; fake
)

(ZR0 of material_type
 (object_type alternative)
 (full_name “Zirconia no-density”)
 (thermal_cond 49)
 (wear_performance 4)
 (oxid_performance 4)
 (bend_strength 901 1200)
 (unit_cost 2.45)
)

agenda: **** Schedule for Cycle 1 ****
agenda: Material Bend-Strength Selector because of selection, ranked at 70
agenda: Material Thermal-Conductivity Selector because of selection, ranked at 70
agenda: **** Executing Cycle 1 ****
agenda: Running Material Bend-Strength Selector because of selection
mbs: Starting cycle 1
mbs: Changing state from ready to waiting
mbs: Additionals:()
mbs: Forbiddens:()

Single Function Agents and their Negotiation Behavior in Expert Systems

167

mbs: Alts+Adds-Forb= ([SC0] [SC1] [SC2] [SC] [SN0] [SN1] [SN2] [SN] [AL] [ZR]
[ZR0])

mbs: Remaining:([SC0] [SC1] [SC2] [SC] [SN0] [SN1] [SN2] [SN] [AL] [ZR] [ZR0])
mbs: Checking constraint:[bendstrength_con]
mbs: Looking for best choice in:([SC0] [SC1] [SC2] [SC])
mbs: Selecting Silicon Carbide No-Cost [SC0] for Material Parameter
main: Initializing Material Parameter with Silicon Carbide No-Cost from Material Bend-

Strength Selector
mov: Changing state from waiting to ready
mwv: Changing state from waiting to ready
mce: Changing state from waiting to ready
mbs: Material Bend-Strength Selector was able to select his preferred value for Mate-

rial Parameter
mbs: Finished cycle 1
mbs:
Press <return> to continue, or ‘q’ <return> to quit.

agenda: **** Schedule for Cycle 2 ****
agenda: Material Thermal-Conductivity Selector because of selection, ranked at 70
agenda: Material Cost Estimator because of usage, ranked at 60
agenda: Material Wear-Performance Evaluator because of usage, ranked at 60
agenda: Material Oxidation-Performance Evaluator because of usage, ranked at 60
agenda: **** Executing Cycle 2 ****
agenda: Running Material Thermal-Conductivity Selector because of selection
mts: Starting cycle 2
mts: Changing state from ready to waiting
mts: Additionals:()
mts: Forbiddens:()
mts: Alts+Adds-Forb= ([SC0] [SC1] [SC2] [SC] [SN0] [SN1] [SN2] [SN] [AL] [ZR]

[ZR0])
mts: Looking for best choice in:([SC0] [SC1] [SC2] [SC] [SN0] [SN1] [SN2] [SN] [AL]

[ZR] [ZR0])
mts: Selecting Silicon Carbide No-Cost [SC0] for Material Parameter
main: Material Thermal-Conductivity Selector agrees with Material Bend-Strength

Selector about value in object Material Parameter
mts: Material Thermal-Conductivity Selector was able to select his preferred value for

Material Parameter
mts: Finished cycle 2
mts:
Press <return> to continue, or ‘q’ <return> to quit.

agenda: **** Schedule for Cycle 3 ****
agenda: Material Cost Estimator because of usage, ranked at 60

Single Function Agents and their Negotiation Behavior in Expert Systems

168

agenda: Material Wear-Performance Evaluator because of usage, ranked at 60
agenda: Material Oxidation-Performance Evaluator because of usage, ranked at 60
agenda: **** Executing Cycle 3 ****
agenda: Running Material Cost Estimator because of usage
mce: Starting cycle 3
mce: Constraint:Constraint for valid density satisfied.
mce: Constraint:Constraint for valid unit cost failed.
mce: selection_estimation conflict detected with Material Bend-Strength Selector
mce: Current material ‘Silicon Carbide No-Cost’ violated the Constraint for valid unit

cost
mce: Requesting Material Bend-Strength Selector to insert the [unit_cost_con] to his

list of constraints
mce: Sending message to Material Bend-Strength Selector
mbs: Got told by Material Cost Estimator to insert constraint [unit_cost_con], into his

list.
mbs: Adding Constraint for valid unit cost to Material Bend-Strength Selector
mbs: Changing state from waiting to ready
mce: The mass of the part made from Silicon Carbide No-Cost is 0.005 kg.
mce: The cost for the object made from Silicon Carbide No-Cost is 0.0 $ per part.
mce: Finished cycle 3
mce:
mce: Changing state from ready to waiting
Press <return> to continue, or ‘q’ <return> to quit.

agenda: **** Schedule for Cycle 4 ****
agenda: Material Bend-Strength Selector because of selection, ranked at 70
agenda: Material Wear-Performance Evaluator because of usage, ranked at 60
agenda: Material Oxidation-Performance Evaluator because of usage, ranked at 60
agenda: **** Executing Cycle 4 ****
agenda: Running Material Bend-Strength Selector because of selection
mbs: Starting cycle 4
mbs: Changing state from ready to waiting
mbs: Additionals:()
mbs: Forbiddens:()
mbs: Alts+Adds-Forb= ([SC0] [SC1] [SC2] [SC] [SN0] [SN1] [SN2] [SN] [AL] [ZR]

[ZR0])
mbs: Remaining:([SC0] [SC1] [SC2] [SC] [SN0] [SN1] [SN2] [SN] [AL] [ZR] [ZR0])
mbs: Checking constraint:[unit_cost_con]
mbs: Remaining:([SC1] [SC2] [SC] [SN0] [SN1] [SN] [AL] [ZR] [ZR0])
mbs: Checking constraint:[bendstrength_con]
mbs: Looking for best choice in:([SC1] [SC2] [SC])
mbs: Selecting Silicon Carbide No-Wear [SC1] for Material Parameter

Single Function Agents and their Negotiation Behavior in Expert Systems

169

main: Material Bend-Strength Selector overrides old value Silicon Carbide No-Cost in
Material Parameter with Silicon Carbide No-Wear

mce: Changing state from waiting to ready
mts: Current value Silicon Carbide No-Wear for target is different from preferred

choice Silicon Carbide No-Cost, scheduling mts for conflict resolution.
mbs: Material Bend-Strength Selector was able to select his preferred value for Mate-

rial Parameter
mbs: Finished cycle 4
mbs:
Press <return> to continue, or ‘q’ <return> to quit.

agenda: **** Schedule for Cycle 5 ****
agenda: Material Thermal-Conductivity Selector because of conflict, ranked at 100
agenda: Material Cost Estimator because of usage, ranked at 60
agenda: Material Wear-Performance Evaluator because of usage, ranked at 60
agenda: Material Oxidation-Performance Evaluator because of usage, ranked at 60
agenda: **** Executing Cycle 5 ****
agenda: Running Material Thermal-Conductivity Selector because of conflict
mts: Starting cycle 5
mts: Additionals:()
mts: Forbiddens:()
mts: Alts+Adds-Forb= ([SC0] [SC1] [SC2] [SC] [SN0] [SN1] [SN2] [SN] [AL] [ZR]

[ZR0])
mts: Looking for best choice in:([SC0] [SC1] [SC2] [SC] [SN0] [SN1] [SN2] [SN] [AL]

[ZR] [ZR0])
mts: Selecting Silicon Carbide No-Cost [SC0] for Material Parameter
main: Material Thermal-Conductivity Selector cannot store Silicon Carbide No-Cost in

Material Parameter, because Material Bend-Strength Selector [MAIN::mts] had
already stored Silicon Carbide No-Wear.

mts: selection_selection conflict detected with Material Bend-Strength Selector
mts: Sending message to Material Bend-Strength Selector
mbs: Got asked by Material Thermal-Conductivity Selector for number of proposals,

replying with:3
mbs: Sending message to Material Thermal-Conductivity Selector
mts: Soliciting another proposal from Material Bend-Strength Selector
mts: Sending message to Material Bend-Strength Selector
mbs: Got asked by Material Thermal-Conductivity Selector for a different proposal,

replying with:[SC2]
mbs: Sending message to Material Thermal-Conductivity Selector
mts: Agreeing with alternate proposal [SC2] from agent Material Bend-Strength

Selector
mts: Sending message to Material Bend-Strength Selector

Single Function Agents and their Negotiation Behavior in Expert Systems

170

mbs: Modifying design value to accept proposed change from agent Material Ther-
mal-Conductivity Selector

main: Material Bend-Strength Selector overrides old value Silicon Carbide No-Wear in
Material Parameter with Silicon Carbide No-Oxid

mts: Finished cycle 5
mts:
Press <return> to continue, or ‘q’ <return> to quit.

agenda: **** Schedule for Cycle 6 ****
agenda: Material Cost Estimator because of usage, ranked at 60
agenda: Material Wear-Performance Evaluator because of usage, ranked at 60
agenda: Material Oxidation-Performance Evaluator because of usage, ranked at 60
agenda: **** Executing Cycle 6 ****
agenda: Running Material Cost Estimator because of usage
mce: Starting cycle 6
mce: Constraint:Constraint for valid density satisfied.
mce: Constraint:Constraint for valid unit cost satisfied.
mce: The mass of the part made from Silicon Carbide No-Oxid is 0.005 kg.
mce: The cost for the object made from Silicon Carbide No-Oxid is 0.01175 $ per part.
mce: The total material cost for Silicon Carbide No-Oxid is roughly $ 23.5 for a batch

size of 2000.
mce: Finished cycle 6
mce:
mce: Changing state from ready to waiting
Press <return> to continue, or ‘q’ <return> to quit.

agenda: **** Schedule for Cycle 7 ****
agenda: Material Cost Critic because of usage, ranked at 60
agenda: Material Wear-Performance Evaluator because of usage, ranked at 60
agenda: Material Oxidation-Performance Evaluator because of usage, ranked at 60
agenda: **** Executing Cycle 7 ****
agenda: Running Material Cost Critic because of usage
mcc: Starting cycle 7
mcc: Constraint:Constraint on the Material Cost satisfied.
mcc: Requesting estimate process info from Material Cost Estimator
mcc: Sending message to Material Cost Estimator
mce: Got asked by Material Cost Critic for the name of its current process. Replying

with ‘rough’
mce: Sending message to Material Cost Critic
mcc: estimate_criticism conflict detected with Material Cost Estimator
mcc: Requesting Material Cost Estimator to use the detailed process.
mcc: Sending message to Material Cost Estimator
mce: Got asked by Material Cost Critic to change its current process to detailed

Single Function Agents and their Negotiation Behavior in Expert Systems

171

mce: Changing process for Material Cost Estimator to detailed
mce: Sending message to Material Cost Critic
mcc: Received acceptance from Material Cost Estimator to use the detailed process
mcc: Finished cycle 7
mcc:
mcc: Changing state from ready to waiting
Press <return> to continue, or ‘q’ <return> to quit.

agenda: **** Schedule for Cycle 8 ****
agenda: Material Cost Estimator because of usage, ranked at 60
agenda: Material Wear-Performance Evaluator because of usage, ranked at 60
agenda: Material Oxidation-Performance Evaluator because of usage, ranked at 60
agenda: **** Executing Cycle 8 ****
agenda: Running Material Cost Estimator because of usage
mce: Starting cycle 8
mce: Constraint:Constraint for valid density satisfied.
mce: Constraint:Constraint for valid unit cost satisfied.
mce: The mass of the part made from Silicon Carbide No-Oxid is 0.005 kg.
mce: The cost for the object made from Silicon Carbide No-Oxid is 0.01175 $ per part.
mce: The total material cost for Silicon Carbide No-Oxid is exactly $18.8 for a batch

size of 2000.
mce: Finished cycle 8
mce:
mce: Changing state from ready to waiting
Press <return> to continue, or ‘q’ <return> to quit.

agenda: **** Schedule for Cycle 9 ****
agenda: Material Cost Critic because of usage, ranked at 60
agenda: Material Wear-Performance Evaluator because of usage, ranked at 60
agenda: Material Oxidation-Performance Evaluator because of usage, ranked at 60
agenda: **** Executing Cycle 9 ****
agenda: Running Material Cost Critic because of usage
mcc: Starting cycle 9
mcc: Constraint:Constraint on the Material Cost satisfied.
mcc: Requesting estimate process info from Material Cost Estimator
mcc: Sending message to Material Cost Estimator
mce: Got asked by Material Cost Critic for the name of its current process. Replying

with ‘detailed’
mce: Sending message to Material Cost Critic
mcc: Estimate quality of Material Cost Estimator is acceptable.
mcc: Finished cycle 9
mcc:
mcc: Changing state from ready to waiting

Single Function Agents and their Negotiation Behavior in Expert Systems

172

Press <return> to continue, or ‘q’ <return> to quit.

agenda: **** Schedule for Cycle 10 ****
agenda: Material Wear-Performance Evaluator because of usage, ranked at 60
agenda: Material Oxidation-Performance Evaluator because of usage, ranked at 60
agenda: **** Executing Cycle 10 ****
agenda: Running Material Wear-Performance Evaluator because of usage
mwv: Starting cycle 10
mwv: Constraint:Constraint for valid wear_performance satisfied.
mwv: Preference:Preference for high wear-performance evaluates to 0.5
mce: Got asked by Material Cost Critic for the name of its current process. Replying

with ‘detailed’
mce: Sending message to Material Cost Critic
mce: Got asked by Material Cost Critic for the name of its current process. Replying

with ‘detailed’
mce: Sending message to Material Cost Critic
mwv: Finished cycle 10
mwv:
mwv: Changing state from ready to waiting
Press <return> to continue, or ‘q’ <return> to quit.

agenda: **** Schedule for Cycle 11 ****
agenda: Material Oxidation-Performance Evaluator because of usage, ranked at 60
agenda: **** Executing Cycle 11 ****
agenda: Running Material Oxidation-Performance Evaluator because of usage
mov: Starting cycle 11
mov: Constraint:Constraint for valid oxid_performance failed.
mov: selection_evaluation conflict detected with Material Bend-Strength Selector
mov: Current material ‘Silicon Carbide No-Oxid’ violated the Constraint for valid

oxid_performance
mov: Requesting Material Bend-Strength Selector to insert the

[oxid_performance_con] to his list of constraints
mov: Sending message to Material Bend-Strength Selector
mbs: Got told by Material Oxidation-Performance Evaluator to insert constraint

[oxid_performance_con], into his list.
mbs: Adding Constraint for valid oxid_performance to Material Bend-Strength Selec-

tor
mbs: Changing state from waiting to ready
mov: Preference:Preference for high oxid-performance evaluates to 0.0
mov: Finished cycle 11
mov:
mov: Changing state from ready to waiting
Press <return> to continue, or ‘q’ <return> to quit.

Single Function Agents and their Negotiation Behavior in Expert Systems

173

agenda: **** Schedule for Cycle 12 ****
agenda: Material Bend-Strength Selector because of selection, ranked at 70
agenda: **** Executing Cycle 12 ****
agenda: Running Material Bend-Strength Selector because of selection
mbs: Starting cycle 12
mbs: Changing state from ready to waiting
mbs: Additionals:()
mbs: Forbiddens:()
mbs: Alts+Adds-Forb= ([SC0] [SC1] [SC2] [SC] [SN0] [SN1] [SN2] [SN] [AL] [ZR]

[ZR0])
mbs: Remaining:([SC0] [SC1] [SC2] [SC] [SN0] [SN1] [SN2] [SN] [AL] [ZR] [ZR0])
mbs: Checking constraint:[oxid_performance_con]
mbs: Remaining:([SC] [SN0] [SN1] [SN2] [SN] [ZR] [ZR0])
mbs: Checking constraint:[unit_cost_con]
mbs: Remaining:([SC] [SN0] [SN1] [SN] [ZR] [ZR0])
mbs: Checking constraint:[bendstrength_con]
mbs: Looking for best choice in:([SC])
mbs: Selecting Silicon Carbide [SC] for Material Parameter
main: Material Bend-Strength Selector overrides old value Silicon Carbide No-Oxid in

Material Parameter with Silicon Carbide
mov: Changing state from waiting to ready
mwv: Changing state from waiting to ready
mce: Changing state from waiting to ready
mts: Current value Silicon Carbide for target is different from preferred choice Silicon

Carbide No-Oxid, scheduling mts for conflict resolution.
mbs: Material Bend-Strength Selector was able to select his preferred value for Mate-

rial Parameter
mbs: Finished cycle 12
mbs:
Press <return> to continue, or ‘q’ <return> to quit.

agenda: **** Schedule for Cycle 13 ****
agenda: Material Thermal-Conductivity Selector because of conflict, ranked at 100
agenda: Material Cost Estimator because of usage, ranked at 60
agenda: Material Wear-Performance Evaluator because of usage, ranked at 60
agenda: Material Oxidation-Performance Evaluator because of usage, ranked at 60
agenda: **** Executing Cycle 13 ****
agenda: Running Material Thermal-Conductivity Selector because of conflict
mts: Starting cycle 13
mts: Additionals:()
mts: Forbiddens:()

Single Function Agents and their Negotiation Behavior in Expert Systems

174

mts: Alts+Adds-Forb= ([SC0] [SC1] [SC2] [SC] [SN0] [SN1] [SN2] [SN] [AL] [ZR]
[ZR0])

mts: Looking for best choice in:([SC0] [SC1] [SC2] [SC] [SN0] [SN1] [SN2] [SN] [AL]
[ZR] [ZR0])

mts: Selecting Silicon Carbide No-Cost [SC0] for Material Parameter
main: Material Thermal-Conductivity Selector cannot store Silicon Carbide No-Cost in

Material Parameter, because Material Bend-Strength Selector [MAIN::mts] had
already stored Silicon Carbide.

mts: selection_selection conflict detected with Material Bend-Strength Selector
mts: Sending message to Material Bend-Strength Selector
mbs: Got asked by Material Thermal-Conductivity Selector for number of proposals,

replying with:1
mbs: Sending message to Material Thermal-Conductivity Selector
mts: Adapting to the only proposal from Material Bend-Strength Selector
mts: Sending message to Material Bend-Strength Selector
mts: Finished cycle 13
mts:
Press <return> to continue, or ‘q’ <return> to quit.

agenda: **** Schedule for Cycle 14 ****
agenda: Material Cost Estimator because of usage, ranked at 60
agenda: Material Wear-Performance Evaluator because of usage, ranked at 60
agenda: Material Oxidation-Performance Evaluator because of usage, ranked at 60
agenda: **** Executing Cycle 14 ****
agenda: Running Material Cost Estimator because of usage
mce: Starting cycle 14
mce: Constraint:Constraint for valid density satisfied.
mce: Constraint:Constraint for valid unit cost satisfied.
mce: The mass of the part made from Silicon Carbide is 0.005 kg.
mce: The cost for the object made from Silicon Carbide is 0.01175 $ per part.
mce: The total material cost for Silicon Carbide is exactly $18.8 for a batch size of

2000.
mce: Finished cycle 14
mce:
mce: Changing state from ready to waiting
Press <return> to continue, or ‘q’ <return> to quit.

agenda: **** Schedule for Cycle 15 ****
agenda: Material Wear-Performance Evaluator because of usage, ranked at 60
agenda: Material Oxidation-Performance Evaluator because of usage, ranked at 60
agenda: **** Executing Cycle 15 ****
agenda: Running Material Wear-Performance Evaluator because of usage
mwv: Starting cycle 15

Single Function Agents and their Negotiation Behavior in Expert Systems

175

mwv: Constraint:Constraint for valid wear_performance satisfied.
mwv: Preference:Preference for high wear-performance evaluates to 0.5
mwv: Finished cycle 15
mwv:
mwv: Changing state from ready to waiting
Press <return> to continue, or ‘q’ <return> to quit.

agenda: **** Schedule for Cycle 16 ****
agenda: Material Oxidation-Performance Evaluator because of usage, ranked at 60
agenda: **** Executing Cycle 16 ****
agenda: Running Material Oxidation-Performance Evaluator because of usage
mov: Starting cycle 16
mov: Constraint:Constraint for valid oxid_performance satisfied.
mov: Preference:Preference for high oxid-performance evaluates to 0.5
mov: Finished cycle 16
mov:
mov: Changing state from ready to waiting
Press <return> to continue, or ‘q’ <return> to quit.

agenda: **** Schedule for Cycle 17 ****
agenda: Main Agenda empty
agenda: **** AGENDA EMPTY ****
agenda: Main Agenda finished
agenda: **** Finished ****
agenda: Running time was 0 seconds.
0
CLIPS>

Single Function Agents and their Negotiation Behavior in Expert Systems 176

Bibliography

Austin 1962 J. L. Austin. How to do Things with Words. Harvard

University Press and Cambridge, MA, and Clarendon

Press, London, 1962. Reprinted in Readings in the Phi-

losophy of Language. J. F. Rosenberg & C. Travis eds.,

Prentice-Hall Inc., New Jersey 1971

Agha & Hewitt 1985 G. Agha & C. Hewitt. “Concurrent Programming using

Actors, Exploiting Large Scale Parallelism” Proceed-

ings of the 5th Conference on Foundations of Software

Technology and Theoretical Computer Science,

Springer Verlag, 1985. Reprinted in Readings in Dis-

tributed Artificial Intelligence, A. H. Bond and L. Gas-

ser (eds.), Morgan Kaufmann Publishers, Inc. San

Mateo, California, 1988

Bond & Gasser 1988 A. H. Bond and L. Gasser (eds.) Readings in Distributed

Artificial Intelligence. Morgan Kaufmann Publishers,

Inc. San Mateo, California, 1988

Single Function Agents and their Negotiation Behavior in Expert Systems

177

Brown 1992 a D. C. Brown. “Design”. Encyclopedia of AI, 2nd edi-

tion, S. Shapiro, ed., J. Wiley, New York, NY, 1992

Brown 1992 b D. C. Brown. “The Reusability of DSPL Systems”. Pre-

prints ot the Workshop on Reusable Design Systems:

Understanding the Role of Knowledge. Second Interna-

tional Conference on Artificial Intelligence in Design,

Carnegie-Mellon University, Pittsburgh, USA

Brown 1994 D. C. Brown. “Types of Theories and their Roles” in

AID-94 Workshop on Nature & Role of Theory in

Design, 1994

Brown & Chandrasekaran
1989

D. C. Brown, B. Chandrasekaran. “Design Problem

Solving: Knowledge Structures and Control Strategies”.

Research Notes in Artificial Intelligence Series, Pitman

Publishing, Ltd., London, England, May 1989

Bussmann & Mueller 1993 S. Bussmann & J. Mueller. Bargaining Agents. Submit-

ted to IJCAI, 1993

Cohen & Perrault 1979 P. R. Cohen & C. R. Perrault. “Elements of a Plan-

Based Theory of Speech Acts”, in Cognitive Science 3:

pp. 177 - 212, 1979. Ablex Publishing Corp., 1985.

Reprinted in Readings in Distributed Artificial Intelli-

gence, A. H. Bond and L. Gasser (eds.), Morgan Kauf-

mann Publishers, Inc. San Mateo, California, 1988

Single Function Agents and their Negotiation Behavior in Expert Systems

178

Connah et al. Connah, Shiels & Wavish. A Testbed for Research on

Cooperating Agents

Cromarty 1987 A. S. Cromarty. “Control of Processes by Communica-

tion over Ports as a Paradigm for Distributed Knowl-

edge-Based System Design” in Expert Database

Systems. L. Kerschberg, ed. The Benjamin Cummings

Publishing Co. Inc. 1987. Reprinted in Readings in Dis-

tributed Artificial Intelligence, A. H. Bond and L. Gas-

ser (eds.), Morgan Kaufmann Publishers, Inc. San

Mateo, California, 1988

Davis & Smith 1981 R. Davis & R. G. Smith. “Negotiation as a Metaphor for

Distributed Problem Solving” in Artificial Intelligence

20, pp. 63 - 100, 1983. North Holland. Reprinted in

Readings in Distributed Artificial Intelligence, A. H.

Bond and L. Gasser (eds.), Morgan Kaufmann Publish-

ers, Inc. San Mateo, California, 1988

Douglas 1992 R. E. Douglas Jr.. SNEAKERS: A Concurrent Engineer-

ing Demonstration System. Masters Thesis, Worcester

Polytechnic Institute, 1992

Douglas et al. 1993 R. E. Douglas, D. C. Brown, D. C. Zenger. “A Concur-

rent Engineering Demonstration & Training System for

Engineers and Managers” in Revue Internationale de

CFAO et d’Infographie” (International Journal of CAD/

CAM and Computer Graphics) special issue on “AI and

Single Function Agents and their Negotiation Behavior in Expert Systems

179

Computer Graphics”, (Ed.) I. Costea, Hermes, Vol.8,

No.3, pp. 263-301.

Garvey et al. 1994 A. Garvey, K. Decker & V. Lesser. A Negotiation based

Interface between a Real-time Scheduler and a Deci-

sion-Maker. Technical Report, CS Dept. UMass

Amherst. 1994

Giarratano & Riley 1993 J. C. Giarratano & G. Riley. CLIPS Reference Manual.

Volumes 1 & 2. NASA Lyndon B. Johnson Space Center

Information Systems Directorate, Software Technology

Branch, Version 6.0, June 2nd 1993

Giarratano & Riley 1994 J. C. Giarratano & G. Riley. Expert Systems: Principles

and Programming, 2nd ed.. PWS Publishing CO, Bos-

ton, MA.1994

Grosz & Sidner 1990 B. J. Grosz & C. L. Sidner. “Plans for Discourse” in

Intensions & Communication. Cohen, Morgan & Pol-

lack (eds.) MIT Press, Cambridge, MA. 1990

Gruber 1993 T. H. Gruber. Toward Principles for the Design of

Ontologies Used for Knowledge Sharing. Rev. August

23, 1993. Substantial revision of a paper presented at the

International Workshop on Formal Ontology, March,

1993, Padova, Italy. To appear in a collection edited by

Nicola Guarino. Available as Technical Report KSL 93-

04, Knowledge Systems Laboratory, Stanford Univer-

sity.

Single Function Agents and their Negotiation Behavior in Expert Systems

180

Finin et al. 1993 T. Finin, J. Weber, G. Wiederhold, M. Genesereth, R.

Fritzon, D. McKay, J. McGuire, R. Pelavin, S. Shapiro

& C. Beck. DRAFT Specification of the KQML Agent-

Communication Language. The DARPA Knowledge

Sharing Initiative External Interfaces Working Group,

1993. More information can be received through ftp

from ksl.stanford.edu

Genesereth & Fikes 1992 M. R. Genesereth & R. E. Fikes. Knowledge Inter-

change Format Version 3.0 Reference Manual. Com-

puter Science Dept., Stanford University, CA, 1992.

More information can be received through ftp from

ksl.stanford.edu

Huhns 1987 M. N. Huhns (ed.). Distributed Artificial Intelligence

Vol. 1, Pitman Publishing, London, and Morgan Kauf-

mann Publishers, San Mateo, CA, 1987

Huhns & Gasser 1989 M. N. Huhns, L. Gasser (eds.). Distributed Artificial

Intelligence Vol. 2, Pitman Publishing, London, and

Morgan Kaufmann Publishers, San Mateo, CA, 1989

Khedro & Genesereth 1994 T. Khedro & M. Genesereth. “Solution Consistency and

Convergence in Cooperative Distributed Problem Solv-

ing”. Proceedings of the AAAI ‘94 Conference, 1994

Klein 1991 M. Klein. “Supporting Conflict Resolution in Coopera-

tive Design Systems” in IEEE Transactions on Systems,

Single Function Agents and their Negotiation Behavior in Expert Systems

181

Man, and Cybernetics, Vol. 21, No. 6, November/

December 1991

Klein & Lu 1990 M. Klein & C.-Y. Lu. “Conflict Resolution in Coopera-

tive Design” in The International Journal for AI in

Engineering. No. 4, pgs. 168 - 180. 1990

Klein & Lu 1991 M. Klein & C.-Y. Lu. “Insights into Cooperative Group

Design: Experience with the LAN Designer System” in

Proceedings of the AIENG Conference. 1991

Laasri et al. 1992 B. Laasri, H. Laasri, S. Lander & V. Lesser. “A Generic

Model for Intelligent Negotiating Agents” in Interna-

tional Journal on Intelligent Cooperative Information

Systems, pgs. 291 - 317. World Scientific Publishing

Company, 1992

Lander & Lesser 1991 S. E. Lander & V. R. Lesser. “Customizing Distributed

Search Among Agents with Heterogeneous Knowl-

edge” in Proceedings of the 5th International Sympo-

sium on AI Applications in Manufacturing & Robotics,

Cancun, Mexico. Dec 1991

Lochbaum et al. 1990 K. E. Lochbaum, B. J. Grosz & C. L. Sidner. “Models of

Plans to Support Communication” in Proceedings of the

AAAE ‘90 Conference, Boston, MA, July 1990

Single Function Agents and their Negotiation Behavior in Expert Systems

182

Liu & Sycara 1993 J. Liu & K. P. Sycara. “Emergent Constraint Satisfaction

through Multi-Agent Coordinated Interaction”. Pro-

ceedings of MAAMAW. 1993

Kuokka et al. 1993 D. R. Kuokka, J. G. McGuire, R. N. Pelavin, H. C.

Weber. H. M Tenenbaum, T. Gruber and G. Olsen.

“SHADE: Technology for Knowledge-Based Collabora-

tive Engineering” in AAAI Wkshp. on Collaborative

Design 1993, as well as Concurrent Engineering:

Research and Applications, Vol 1, pp. 137 - 146, 1993

Searle 1965 J. Searle. “What is a Speech Act” in Philosophy in

America. Max Black, ed. George Allen & Unwin Ltd.,

London, 1965. Reprinted in Readings in the Philosophy

of Language. J. F. Rosenberg & C. Travis (eds.), Pren-

tice-Hall Inc., New Jersey 1971

Sidner 1992 C. L. Sidner. Using Discourse to Negotiate in Collabo-

rative Activity: An Artificial Language. Technical

Report, DEC Cambridge Research Lab, Cambridge,

MA, 1992

Smith 1980 R. G. Smith. “The Contract Net Protocol: High-Level

Communication and Control in Distributed Problem

Solver” in Proceedings AAAI-86, pp. 51 - 57, 1986.

Reprinted in Readings in Distributed Artificial Intelli-

gence, A. H. Bond and L. Gasser (eds.), Morgan Kauf-

mann Publishers, Inc. San Mateo, California, 1988

Single Function Agents and their Negotiation Behavior in Expert Systems

183

Sycara 1987 K. P. Sycara. “Finding Creative Solutions in Adversarial

Impasses” in Proceedings of the Ninth Annual Confer-

ence of the Cognitive Science Society, Seattle, WA. July

1987

Sycara 1990 K. P. Sycara. “Cooperative Negotiation in Concurrent

Engineering Design” in Cooperative Engineering

Design, Springer Verlag Publications, 1990

Taleb-Bendiab & Oh 1993 A. Taleb-Bendiab & V. Oh. “Speech-Act based Commu-

nication Protocol to support Multi-Agent Cooperative

Design Systems”. Proceedings of the 1993 AI in Engi-

neering Conference, p. 107, Computational Mechanics

Inc., 1993

Victor 1993 S. K. Victor. Negotiation Between Distributed Agents in

a Concurrent Engineering System. Masters Thesis,

Worcester Polytechnic Institute, 1993

Victor et al. 1993 S. K. Victor, D. C. Brown, J. J. Bausch, D. C. Zenger, R.

Ludwig, R. D. Sisson. “Using Multiple Expert Systems

with Distinct Roles in a Concurrent Engineering System

for Powder Ceramic Components” in International

Conference on Artificial Engineering, Tolouse, France,

July 1993

Victor & Brown 1994 S. K. Victor, D. C. Brown. “Designing with Negotiation

using Single Function Agents”. Applications of Artifi-

cial Intelligence in Engineering IX, G. Rzevski, R. A.

Single Function Agents and their Negotiation Behavior in Expert Systems

184

Adey, D. W. Russell (eds.), Proc. AIENG’94, 9th Int. AI

in Engineering Conf., Pennsylvania, USA. Computa-

tional Mechanics Publications, pp. 173-179.

Werkman & Barone 1991 K. J. Werkman & M. Barone. “Evaluating Alternative

Connection Designs Through Multiagent Neogiation”

Computer Aided Cooperative Product Development, D.

Sriram, R. Logcher, S. Fukuda (eds.), Lecture Notes

Series, No. 492, pp. 298 - 333, Springer Verlag, 1992

Werner 1989 E. Werner. “Cooperating Agents: A unified Theory of

Communication and Social Structure” in Distributed

Artificial Intelligence Vol. 2, M. N. Huhns, L. Gasser

(eds.) Pitman Publishing, London, and Morgan Kauf-

mann Publishers, San Mateo, CA, 1989

Wong 1992 S. T. C. Wong. Cooperative Decision Making based on

Preferences. Technical Report, Institute for New Gener-

ation Computer Technology, Tokyo, Japan 1993, also

accepted for publication in ACM Transactions on Infor-

mation Systems, 1994

Wong 1993 S. T. C. Wong. Coping with Conflict in Cooperative

Information Systems Technical Report, Institute for New

Generation Computer Technology, Tokyo, Japan 1993

	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1 Introduction
	1.1 Overview
	1.2 Goals of the Thesis
	1.2.1 Basic Assumptions
	1.2.2 Exploration of the SiFA Paradigm
	1.2.3 Building and Using a Prototype System

	1.3 Motivation
	1.3.1 Practical Motivation
	1.3.2 Theoretical Motivation

	1.4 Negotiation
	1.5 Single Function Agents
	1.6 Conventions
	1.7 Summary

	Chapter 2 Previous Work
	2.1 Introduction
	2.2 Cooperation
	2.3 Conflict Resolution
	2.3.1 General Systems
	2.3.2 Design Systems with Conflict Resolution

	2.4 Negotiation
	2.4.1 Generic Negotiation Systems
	2.4.2 Negotiating Systems in the Design Domain

	2.5 Communication
	2.5.1 Internal-only Communication
	2.5.2 Speech Acts
	2.5.3 Hybrid Communication Architectures
	2.5.4 KQML Knowledge Query and Manipulation Language
	2.5.5 KIF
	2.5.6 SHADE

	2.6 SiFA Systems
	2.6.1 Sneakers
	2.6.2 I3D
	2.6.3 I3D+

	2.7 Summary

	Chapter 3 SiFAs and Negotiation
	3.1 Introduction
	3.2 Agent Types
	3.2.1 Selector/Advisor
	3.2.2 Estimator
	3.2.3 Evaluator
	3.2.4 Critic/Praiser
	3.2.5 Suggestor

	3.3 Conflict Occurrences
	3.3.1 Estimator related Conflicts
	3.3.2 Evaluator related Conflicts
	3.3.3 Selector related Conflicts
	3.3.4 Critic/Praiser related Conflicts
	3.3.5 Suggestor related Conflicts

	3.4 Conflict Types
	3.5 Conflict Resolution
	3.6 Negotiation Strategies
	3.7 Knowledge Requirements
	3.8 Functional Requirements
	3.9 Summary

	Chapter 4 SINE: A Platform for Negotiating SiFAs
	4.1 Introduction
	4.2 Goals
	4.3 Architecture
	4.3.1 Agent Topology
	4.3.2 Data Flow and Negotiation Links
	4.3.3 Knowledge Representation
	4.3.4 Communication
	4.3.5 Conflict Detection and Notification
	4.3.6 Conflict Resolution
	4.3.7 Agent Scheduling and Control Flow

	4.4 Agent Design
	4.4.1 Selector/Advisor
	4.4.2 Estimator
	4.4.3 Evaluator
	4.4.4 Critic
	4.4.5 Suggestor

	4.5 Summary

	Chapter 5 Implementation of SINE
	5.1 Introduction
	5.2 Programming Environment
	5.3 Classes and Inheritance
	5.3.1 History Class
	5.3.2 Message Class
	5.3.3 Design Object Class
	5.3.4 Target-Type Class

	5.4 Agent Implementation
	5.5 User Interface
	5.6 Summary

	Chapter 6 Evaluation
	6.1 Introduction
	6.2 Theoretical Achievements
	6.3 Simulation of I3D+ Conflicts
	6.3.1 Selectors
	6.3.2 Estimators
	6.3.3 Evaluators
	6.3.4 Critics
	6.3.5 Design Process

	6.4 Design System Example with derived Attributes
	6.4.1 Selector
	6.4.2 Estimator
	6.4.3 Evaluator
	6.4.4 Negotiation
	6.4.5 Conclusion

	6.5 Adaptation to new Domain — Sailboat Design
	6.5.1 Design Parameters and Attributes
	6.5.2 Conflicts
	6.5.3 State of the Implementation
	6.5.4 Impressions from the Sailboat Designer Developer

	6.6 Comparison to other SiFA Systems
	6.6.1 General Aspects
	6.6.2 Development and Implementation

	6.7 Comparison to Systems with larger Agents
	6.8 System Performance
	6.8.1 Development Process
	6.8.2 Runtime Performance
	6.8.3 System Maintenance

	6.9 Understandability
	6.10 Summary

	Chapter 7 Conclusions
	7.1 Results of the Research into SiFA Negotiation
	7.2 Results of Design and Use of the SINE Platform
	7.3 Future Work
	7.4 Summary

	Appendix A Users’ Guide
	A.1 Introduction
	A.2 Components of a SINE-based Design Expert System
	A.3 Requirement Specification
	A.4 Changing the Data Files
	A.5 Starting the Design Expert System
	A.6 Activating the Design Process
	A.7 Using the SINE Multiwindow Interface

	Appendix B Developers’ Guide
	B.1 Introduction
	B.2 Problem Definition
	B.2.1 Problem Analysis
	B.2.2 Specification of Functions, Targets and Points of View
	B.2.3 Design Parameter Definition

	B.3 Implementation
	B.3.1 Building Agents
	B.3.2 Design Knowledge
	B.3.3 Negotiation Knowledge
	B.3.4 Building the Data Base
	B.3.5 Defining Routers
	B.3.6 Configuring the Interface

	B.4 Setup File
	B.5 Testing

	Appendix C Negotiation Output Traces
	C.1 Introduction
	C.2 Annotated Conflicts
	C.2.1 Selector-Selector Conflict
	C.2.2 Estimator-Selector Conflict
	C.2.3 Critic-Selector Conflict
	C.2.4 Critic-Estimator Conflict
	C.2.5 Evaluator-Estimator Conflict

	C.3 I3D+ Conflict Simulation
	C.4 I3D+ Conflict Simulation with Information Gaps

	Bibliography

