
Inspection-Friendly TLS/HTTPS

by

Joseph Turcotte and Eda Zhou

A Major Qualifying Project

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Bachelor of Science

in Computer Science

by

Joseph Turcotte

Eda Zhou

March 2020

APPROVED:

Lorenzo De Carli

Abstract

As the Internet grows, Transport Layer Security (TLS) is becoming the standard to

secure, end-to-end encryption. Compared to plaintext communication, TLS offers

increased privacy to communicating parties because other parties cannot understand

or manipulate the data being sent. However, end-to-end encryption can detract from

user privacy; many Internet of Things (IoT) devices have been revealed to track

excessive user data that is not required for their function. With their manufacturers’

collecting data through an encrypted connection, users cannot see or control what

information is being sent. Thus, a new approach is needed to address growing

concerns over violations of user privacy by smart devices while inheriting the security

properties of TLS.

In this project, we propose Inspection-Friendly TLS (IF-TLS), a TLS-based pro-

tocol that preserves the encryption offered by TLS while allowing middleboxes to

observe traffic. We delegate control to the user to decide which devices should be

inspected and what middleboxes have decryption capabilities through an access con-

trol list (ACL). The IF-TLS manager uses the ACL to obtain and share devices’

session keys with trusted middleboxes. Additionally, we allow multiple middleboxes

to be involved in the decryption process from anywhere in the network, including

the cloud and the local area network.

We created a stable, comprehensive implementation of the IF-TLS protocol using

Python. We included features such as session key establishment and sharing, lookups

in an access control list that specifies decryption privileges for middleboxes, and

tunneling traffic through middleboxes between a client and server. Additionally,

we developed a working test bed to collect performance data for different IF-TLS

scenarios, such as comparing IF-TLS with middleboxes in the local network versus

in the cloud. The data we collected shows that IF-TLS can perform reasonably for

IoT devices in residential networks. Without a middlebox in the connection, we

observed a 21 percent increase in the total IF-TLS initialization time compared to

TLS 1.3, as well as similar data round-trip times compared to TLS 1.3. Finally, we

conducted a qualitative security analysis of the IF-TLS protocol using the STRIDE

and DREAD threat models; since the protocol’s security depends on the devices

running IF-TLS themselves, we claim that IF-TLS generally preserves the security

properties of TLS 1.3.

2

Acknowledgements

We would like to thank our advisor, Professor Lorenzo De Carli, for his unwa-

vering support and guidance. We would also like to thank Vishwajeet Bhosale of

Colorado State University for providing us with traffic captures that we used for

experiments.

i

Contents

1 Introduction 1

2 Background 4

2.1 TLS . 4

2.2 IoT Devices . 7

2.3 Middleboxes . 9

2.4 Related Work . 11

3 Implementation Plan 13

3.1 System Design . 13

3.1.1 User Initialization . 15

3.1.2 Key Sharing . 18

3.1.3 Data Sending Procedure . 22

3.2 Software Implementation . 23

3.3 Tools and Devices . 26

4 Evaluation Plan 27

4.1 Metrics for Evaluation . 27

4.1.1 IF-TLS Performance . 27

4.1.2 IF-TLS Security . 28

ii

4.2 Experimental Setup . 30

5 Results and Discussion 32

5.1 Performance Results . 33

5.1.1 Total Initialization Time . 33

5.1.2 IF-TLS Initialization Components 35

5.1.3 Round-Trip Time . 36

5.1.4 IF-TLS with Cloud-Based Middleboxes 37

5.2 Security Analysis . 38

5.2.1 (S)poofing . 39

5.2.2 (T)ampering . 41

5.2.3 (R)epudiation . 43

5.2.4 (I)nformation Disclosure . 43

5.2.5 (D)enial of Service . 45

5.2.6 (E)levation of Privilege . 45

6 Future Work 47

6.1 Implementation Challenges . 47

6.2 Extensions to IF-TLS . 48

6.3 Additional Performance Measures . 49

6.4 Formal Methods for Security Verification 50

7 Conclusion 52

Appendix A: IF-TLS Setup Instructions 60

iii

List of Figures

2.1 TLS Handshake . 5

2.2 MITM Proxy . 7

3.1 IF-TLS System Vision . 15

3.2 IF-TLS Key Sharing Procedure . 17

3.3 Sequence Diagram of API Calls . 24

4.1 Experimental Setup . 30

5.1 Initialization Time . 33

5.2 Initialization Components . 35

5.3 Data Round-Trip Times . 36

7.1 TinyCore Virtual Machine Settings 61

7.2 Port Forwarding on TinyCore VM . 61

iv

List of Tables

3.1 Example Access Control List . 16

4.1 Delay Components . 29

4.2 Testing Samples . 31

5.1 Client-Manager Initialization Components 34

v

Chapter 1

Introduction

The total number of Internet-connected devices is expected to reach 20 billion by

2020 [1]. The growing number of available, connected devices means an even greater

abundance of data that these devices generate and send to each other. Although

the growing interconnectedness of the world’s technology presents opportunities for

rapid development and improvement of the quality of life, it also presents issues re-

lated to privacy. Personally identifiable information, such as usernames, passwords,

locations, and addresses, is not only found on the devices themselves, but also in

the streams of data these devices transmit. If there is no protection or security on

the data transmitted, this information can be used to harm individuals, families,

and organizations.

Fortunately, the network security community has developed feasible and secure

methods for protecting data in transit. The Transport Layer Security (TLS) protocol

provides security for “Internet of Things” (IoT) communications. With end-to-

end data encryption and authentication, it becomes much more difficult to extract

personally identifiable information from transmitted data, and thus owners of IoT

devices face lower risks of having their information compromised while the devices

1

are in use. The assurance of data security is especially important for IoT streaming

devices used in households, such as smart home cameras and smart baby monitors,

that continuously transmit photos or videos of a user’s home or family members

with the expectation that other parties cannot access or manipulate the streams.

In some cases, however, the cryptographic mechanisms intended to protect user

privacy can have the opposite effect. Although end-to-end encryption protects data

while it is in transit, this data is not being inspected by any entities other than the

two communicating endpoints. Therefore, it is not only possible, but likely that the

IoT devices users keep in their homes are transmitting excessive data containing per-

sonal information; in many cases, this behavior would qualify as a privacy violation.

It has been shown that streaming services utilize device tracking for advertising [2],

and that home security systems contain hidden microphones for recording [3]. Un-

fortunately, end-to-end encryption cannot detect these violations because no other

entity has access to the unencrypted data for inspection and detection purposes.

Currently, the commonly accepted approach is to sacrifice potential user privacy

violations in favor of data security. Some approaches, such as BlindBox [4] and

Multi-Context TLS [5], provide middlebox decryption capabilities in a secure man-

ner but introduce infeasible overhead for IoT devices. Other approaches, such as

man-in-the-middle proxies [6], use risky workarounds to give middleboxes decryp-

tion privileges; these approaches often introduce new security risks and challenges

that outweigh the benefits of traffic inspection. Given the significant limitations and

risks of current approaches, one idea is to rethink the TLS protocol in a way that

specifies middleboxes as secure entities in IoT communication.

Inspection-Friendly TLS (IF-TLS) is a TLS-based protocol that preserves the

secure data transit property from TLS, but also allows authenticated entities called

middleboxes to inspect the data while it is in transit. Most importantly, the user

2

has control over which middleboxes have the ability to inspect traffic from each of

their devices. Furthermore, these middleboxes can be located anywhere, including

the local area network and the cloud.

Some of the challenges we faced were related to the protocol design; these chal-

lenges included determining efficient methods to share keys, generate and store

access control rules, and transmit data. We often referred to our use case—IoT

devices in a household—to make the most rational design choices. Other challenges

involved implementation and testing details, including configuring routing rules and

incorporating a cloud-based middlebox into the communication. We simplified some

implementation and testing aspects and left those details for future work.

We built a proof-of-concept and ran performance experiments to see if the bal-

ance between security and user privacy could be feasibly obtained. Additionally,

we conducted a security analysis of the protocol’s design and identified potential

attacks and countermeasures. We observed that, compared to TLS 1.3, IF-TLS per-

forms reasonably for IoT devices in residential networks. Without a middlebox in

the connection, we observed a 21 percent increase in the total IF-TLS initialization

time compared to TLS 1.3, as well as similar data round-trip times compared to TLS

1.3. Additionally, we claim that IF-TLS generally preserves the security properties

of TLS 1.3 while also benefiting from increased user privacy.

We outline the rest of the report in the following manner. Chapter 2 provides a

summary of the background concepts and related work we reviewed to inform our

protocol design. Chapter 3 provides a detailed discussion of the protocol design and

implementation. Chapter 4 outlines our two-part evaluation plan that focuses on

the performance and security of IF-TLS. In Chapter 5, we present and discuss our

performance and security results. Chapter 6 describes opportunities for future work

related to IF-TLS. Finally, we offer concluding remarks in Chapter 7.

3

Chapter 2

Background

2.1 TLS

Transport Layer Security (TLS) is the standard protocol for creating an end-to-end

secure connection using encryption. It is built on top of the TCP/IP protocol suite

that provides data transport services used on the Internet. Web applications and

services use HTTPS, or HTTP web traffic encrypted with TLS, to protect plaintext

data and avoid revealing sensitive user data to unauthorized parties. In 2018, 72.2%

of all network traffic used HTTPS; this reflects an increase of nearly 20 percent from

2016 [7]. TLS/HTTPS provides secure communication in a variety of contexts, such

as online banking, web browsing, and email, that rely on TLS to encrypt data

intended to be private.

From 2008 to 2018, TLS 1.2 was the default standard for secure communica-

tions over the Internet [8]. According to RFC 5246, TLS 1.2 “allows client/server

applications to communicate in a way that is designed to prevent eavesdropping,

tampering, or message forgery” [8]. Figure 2.1 shows how a TLS connection is ini-

tiated; a client and server first perform the TCP handshake, and then exchange a

4

Figure 2.1: In the TLS Handshake Protocol, a client and server must agree on an
encryption cipher suite and successfully establish a session to exchange encrypted
data using TLS. Adapted from [9].

series of messages that are used to authenticate the entities and establish session

keys to be used for the secure communication. The session keys are directly derived

from a pre-master secret hash that is shared by the client and encrypted with the

server’s public key. Once the connection is initiated, the client and server exchange

encrypted data for the duration of the session; RFC 5246 recommends an upper

limit of 24 hours per session. TLS 1.2 provides authentication through the key ex-

change handshake, confidentiality with encryption of session data, and integrity by

including a message authentication code (MAC).

In August 2018, RFC 8446 specified the latest version of TLS, known as TLS

1.3 [10]. TLS 1.3 introduced a number of changes from TLS 1.2; the most notable

is the removal of legacy symmetric encryption algorithms that no longer provided a

sufficient level of security. As a part of this, TLS 1.3 removed support for algorithms

that do not provide forward secrecy, or the property that a compromised key cannot

5

be used to decrypt past or future traffic. This change removed static RSA and Diffie-

Hellman cipher suites from the set of encryption algorithms that a client and server

can agree to use when conducting the TLS Handshake Protocol.

The changes in TLS 1.3 were intended to create a more secure Internet by remov-

ing algorithms that undermined the power of encrypting connections at the network

endpoints. However, it also introduced new challenges for network-based security

solutions. For example, the static RSA and Diffie-Hellman suites allowed a server

to pre-share its private key with network-based services that relied on inspecting

un-encrypted data [11]; in TLS 1.3, this is no longer possible. Scenarios such as

troubleshooting and malware protection become more difficult to handle when only

the endpoints have access to plaintext. It is also possible that attacks could go unde-

tected by allowing encrypted data to pass through the network without inspection.

Enterprise and university networks have developed workarounds to include network-

based services in a TLS session, but they often undermine the security that TLS

1.3 was designed to provide. The most common workaround is a man-in-the-middle

(MITM) proxy (Figure 2.2). A MITM proxy works by masquerading as the client

and server, terminating the original TLS connection, and creating a new one with

the receiving entity [6]. This process requires manually registering the MITM as a

trusted authority with the client by installing the MITM’s certificate. If the proxy

were to misbehave or be compromised, the client would still be forced to trust the

proxy instead of the real server; thus, adopting this workaround sacrifices authenti-

cation for decryption capabilities. In spite of this trade-off, an estimated 5-10% of

all traffic is intercepted [12], and the network security community is often at odds

with enterprise networks and Internet Service Providers with respect to this issue.

6

Figure 2.2: A MITM proxy pretends to be the client when interacting with the
server so it can decrypt the traffic between the two entities. Adapted from [13].

2.2 IoT Devices

Internet of Things (IoT or “smart”) devices are generally characterized by three

qualities: 1) their ability to be controlled remotely; 2) their ability to communicate

sensor data, such as the weather or heart rate, to users; and 3) their ability to

connect to other devices over the Internet [14]. For example, smart speakers use

voice recognition systems such as Amazon’s Alexa or Apple’s Siri to listen and

respond to user requests using remote search engines. Additionally, smart cameras

can extract information from images and send this information off to remote systems

that can detect and raise warnings if anomalous behavior is detected. Recently, IoT

devices have emerged in consumer markets as appliances that users can program to

fit their personal needs. The diversity of IoT devices has appealed to homeowners

who can utilize these devices to increase home security and make some aspects of

domestic life more convenient. Even a smart egg tray, a device that tells a user

when eggs in the fridge are going bad, can make day-to-day tasks simpler. However,

networked IoT devices behave differently from web browsers in the context of TLS.

IoT devices contain “always-on” sensors that transmit information to the Internet,

regardless of whether the device is actively being used.

7

Researchers have raised multiple concerns about the potential for smart devices

to violate user privacy because of their constant monitoring and transmitting of

data. Apthorpe et al. [15] present a variety of case studies to explore how traffic

send and receive rates from smart devices can be used to identify user behaviors.

For example, analyzing peaks in traffic from the Sense sleep monitor allowed the

researchers to correctly identify when the user got into and out of bed. Ren et al.

[16] analyzed 81 IoT devices for exposure of personally identifiable information and

found that some devices exposed their device IDs, locations at the city level, and

user-specified or related device names, both in encrypted and un-encrypted traffic.

Given that this information is transmitted frequently, an Internet Service Provider

has the capability to track a device and see where and how often it is being used.

Moghaddam et al. [2] developed a smart device crawler to intercept TLS traffic from

TV streaming devices; they discovered that many streaming services, such as Roku

and Amazon Fire, employ device tracking for advertising purposes, and that unique

identifiers are often collected and transmitted over un-encrypted communications.

Finally, Google revealed in February 2019 that its Nest home security system was

equipped with a microphone that was responsive to voice commands; users did not

know about this microphone and expressed concerns that they were being recorded

without consent [3].

The case studies above represent significant IoT privacy vulnerabilities and po-

tential violations. The pervasive nature of these vulnerabilities requires a new ap-

proach to protect user privacy while also allowing the users to enjoy the benefits of

smart devices.

8

2.3 Middleboxes

The term middlebox refers to any device that intercepts traffic for purposes other

than forwarding, such as inspecting or filtering traffic. When endpoints communi-

cate, the traffic is often sent through user-owned, Internet Service Provider-owned,

or company-owned devices. Common examples of middleboxes include firewalls,

load balancers, network address translators, and intrusion detection systems. These

middleboxes can be placed in the network, rather than at the endpoints, to aug-

ment security and performance by inspecting the data sent between the endpoints.

In some cases, however, deploying middleboxes can introduce unneeded complexity

in the network topology; additionally, middleboxes can exhibit high failure rates

in larger networks, such as data center networks [17]. Several research efforts have

explored methods to maximize the effectiveness of middleboxes while avoiding ad-

ditional network complexity and failure management.

One effort involves cloud computing. Sherry et al. [18] explore services that

outsource enterprise middlebox data processing to the cloud. The APLOMB sys-

tem consists of a cloud provider that holds the enterprise’s middleboxes and the

APLOMB gateway that redirects traffic to the cloud for processing. The system is

able to outsource over 90% of middlebox hardware to the cloud while only imposing

1.1ms of latency penalty on average. Additionally, Sherry et al. propose Embark

[19], a system that also outsources middlebox processing with the goal of protecting

the client’s confidentiality. Embark augments the APLOMB architecture by en-

crypting the traffic as it passes through the cloud; the cloud provider processes the

encrypted traffic using a set of keyword and prefix matching rules so that it never

has access to the client’s plaintext data. This helps protect the client in the event of

unintentional or purposeful data leaks while still benefiting from cloud computing.

9

Another effort involves software-defined networking (SDN), a methodology that

makes a network flexible and configurable through a series of programmable con-

trollers [20]. Taylor et al. propose TLSDeputy [21], a system that incorporates

middleboxes to augment security in residential networks by protecting clients from

spoofed TLS servers. TLSDeputy monitors the TLS handshake process described in

Section 2.1 by checking TLS certificates and verifying that these certificates have not

been revoked. Compared to APLOMB and Embark, SDN offers a simpler approach

to outsourcing middleboxes in residential networks because SDN only requires soft-

ware modifications, rather than requiring a specialized network gateway in the case

of APLOMB and Embark. Additionally, Taylor et al. address the feasibility of

combining SDN controllers with cloud computing in residential networks [22]. The

researchers considered the impacts of placing SDN controllers in the cloud with re-

spect to page load times and latency for residential networks. In a study of 270

residential users across the U.S., the controllers provided 90% of the users with

acceptable performance. By combining the decreased costs associated with cloud

computing and the increased network flexibility associated with SDN, the system

was able to achieve a higher level of security without sacrificing performance.

End-to-end encryption offered by TLS can hinder user privacy because it is

impossible for any other party to ensure that unnecessary traffic or personally iden-

tifiable information is not being transmitted. With end-to-end encryption, it is even

simpler for IoT device manufacturers to covertly collect user data. Thus, a new ap-

proach is needed to balance the encryption benefits offered by TLS and the privacy

benefits offered by a trusted detection system. While TLS 1.3 is meant to protect

the end-points, our goal is to protect the user. As we discuss in Chapter 3, our pro-

posed design inherits the properties of TLS while also enabling trusted middleboxes

to decrypt and filter data from the user’s IoT devices.

10

2.4 Related Work

In Chapter 3 we discuss our proposed design for a new version of the TLS protocol

that balances encryption and privacy benefits for IoT devices in residential networks.

In this section we discuss efforts related to key points of our design, including access

control and local key sharing.

Naylor et al. [5] propose Multi-Context TLS (mcTLS) to provide decryption

capabilities to middleboxes without requiring the client to install a root certificate.

The notion of an encryption “context”, or a set of symmetric encryption and message

authentication code (MAC) keys, functions as an access control mechanism that

allows for flexible configuration of middlebox decryption capabilities. Endpoints

can limit the kinds of data to which a middlebox has decryption access and restrict

permissions to read-only for the purpose of preventing illegal data modifications. We

omit some details from mcTLS in our approach because of our application. Since

the middleboxes that are used with IF-TLS are intended to perform inspection

(reads) on IoT device traffic and not modification (writes), we do not provide write

permission and individual flow decryption to middleboxes. Instead, we specify the

granularity of the IF-TLS protocol at the device level and route all flows from a

device through the specified middleboxes.

Bierma et al. [13] discuss Locally Operated Cooperative Key Sharing (LOCKS),

a mechanism that allows clients to share TLS session keys with a trusted agent, such

as a security monitoring system, inside an enterprise network. The trusted agent

stores these keys and forwards them to middleboxes as needed. Thus, LOCKS al-

lows deep packet inspection (DPI) to be performed on traffic entering and exiting an

enterprise network without introducing authentication risks associated with MITM

proxies. However, this approach has only been demonstrated for enterprise environ-

11

ments and would not work with middleboxes in the cloud. We still use the idea of

sharing session keys in our proposal.

Sherry et al. [4] propose BlindBox, a system that combines the benefits of middle-

boxes and encryption by allowing DPI on encrypted traffic. Rather than providing

decryption capabilities to middleboxes, BlindBox utilizes searchable encryption to

inspect encrypted traffic using keywords or according to pre-defined rules, much like

an IDS such as Bro or Snort. This mechanism restricts the capabilities of middle-

boxes to inspect and analyze user data, which may make users more comfortable

trusting the services that would ordinarily have access to plaintext emails or search

history. However, the connection setup happens on the order of minutes for large

IDS systems with thousands of search rules and thus is impractical for configuration

on smart devices. In our approach, we give full, unconditional decryption access to

middleboxes; this feature is the main difference between IF-TLS and TLS 1.3.

Wilson et al. [23] propose TLS-Rotate and Release (TLS-RaR), a system that

allows device owners to decrypt and audit TLS traffic using a key rotation mech-

anism for middleboxes. The user can request that the TLS connection keys are

rotated and released to an in-network middlebox that decrypts and analyzes past

communications under that set of connection keys. Like other implementations that

enable middlebox decryption capabilities, this prevents an IoT vendor from having

complete control of TLS communications. We use the notion of short-lived session

keys in our approach, and we allow middleboxes to decrypt traffic in real time with

a short transition period to re-establish session keys.

Our approach draws on the related work by taking the beneficial aspects of each

work and applying them to the IF-TLS protocol design. Like the other works, we

also use delay as a metric to evaluate our protocol; we discuss this in Chapters 4

and 5.

12

Chapter 3

Implementation Plan

3.1 System Design

In this section, we explain the design of IF-TLS, the assumptions we make, and

the novel contributions of our protocol. At a high level, IF-TLS works by sharing

the IoT device and server session keys with authorized and trusted middleboxes

defined in an access control list (ACL). These middleboxes are permitted to inspect

all traffic from a device. The user first provides an ACL file that designates which

middleboxes will be able to inspect traffic from their IoT devices. Each IoT device

using IF-TLS will share its client-server session key with the IF-TLS manager. The

IF-TLS manager then reads the ACL file and shares the device’s session key with

each authorized middlebox. Finally, all traffic from the IoT device will be routed

through the middleboxes by the manager (Figure 3.1). These steps can be broken

into three phases: (1) user initialization where trusted middleboxes are identified

and assigned to IoT devices; (2) key sharing, the core of IF-TLS, where session keys

are established and shared; (3) data sending where packets from the client to the

server are redirected through the middlebox. The server’s traffic to the client is also

13

sent using IF-TLS, but it is not rerouted. This is intentional because the purpose

of IF-TLS is to enable users to view data from their IoT devices. The server’s

commands to the client are outside the scope of this project; however, we discuss

this possible extension in Chapter 6.

Before we detail the protocol, we need to establish what systems need to run

IF-TLS:

1. IoT devices: The smart devices we want to examine traffic from. We will refer

to these as the clients who will share their session keys with the manager.

These could be Google Nests, Echo Dots, smart egg trays, etc.

2. Manager: The device that runs the IF-TLS manager. The manager is respon-

sible for configuring the middleboxes and the client. While we assume the

application is on a local router, it can be put anywhere where all local area

network traffic can be processed (such as on a specialized hardware device).

3. Middleboxes: The trusted middleboxes that the user wants to inspect their

IoT device traffic. The middleboxes will receive the decryption (session) key

from the manager. We expect the middleboxes to run intrusion detection or

prevention systems; these systems can look for anomalies in network traffic.

More advanced systems could also detect undesired privacy leaks. However,

the specific function of the middlebox beyond being able to decrypt data is

outside the scope of our project.

The following subsections expand on the three steps in IF-TLS: user initializa-

tion, key sharing, and data sending.

14

Figure 3.1: High-level system vision of IF-TLS protocol

3.1.1 User Initialization

The first step in IF-TLS is providing the access rules that determine which middle-

boxes will be able to decrypt which IoT devices’ traffic. As mentioned in Section 2.4,

the granularity for our protocol is at the IoT device level. This information is sup-

plied as an Access Control List (ACL) by the user. The ACL is a dictionary where

the keys are IoT device media access control (MAC) addresses and the values are a

list of middlebox IPs as seen in Table 3.1. This way we can efficiently determine the

order in which the middleboxes will inspect traffic. The device traffic will be sent

to the middleboxes in the same order as they appear in the list. For example, the

first device, 00:11:22:33:44:55, in Table 3.1 will have its traffic routed to middlebox

1.1.1.1, followed by 1.1.1.2, and finally to the server. The ACL also incorporates

our two access levels: no access or full decryption access. The access level depends

on whether the IP is in the device’s list. We chose this design because it is the job

of the middlebox to analyze packets. If we were to enable partial decryption, we

would have to pre-process a device’s traffic to determine what is suspicious enough

to allow a middlebox to inspect. This technique is used by [4], but we determined

15

Key: Device MAC Value: List of Middlebox IPs

00:11:22:33:44:55 [1.1.1.1, 1.1.1.2]
11:22:33:44:55:66 [1.1.1.2]
22:33:44:55:66:77 [1.1.1.2, 1.1.1.3]

Table 3.1: Example Access Control List

for our project that the inspection is the task of a middlebox. The middlebox may

need access to entire flows in order to classify what is suspicious or unnecessary.

The purpose of our protocol is to allow middleboxes to decrypt TLS traffic and not

to detect misbehaving IoT devices; we leave that for future work.

We use IP addresses as unique identifiers for middleboxes in the ACL because

we need the network layer IP for packet forwarding to middleboxes outside the local

network. These IP addresses need to be updated when they are changed. However,

we expect middleboxes to be constantly running on a cloud instance or within the

user’s private network; therefore, they are less prone to being assigned new IP

addresses. If a middlebox IP is not updated in the ACL when it changes, the old

IP will receive the initialization requests from the IF-TLS manager. If the old IP is

not configured to use IF-TLS, then the manager will terminate the connection and

return an error. However, if the old IP becomes owned by an entity using IF-TLS,

the entity will be able to decrypt the device traffic, given that there is no middlebox

authentication. We further discuss this attack vector and its countermeasure in

Section 5.2.

Since IoT devices are on the local area network, we can use the more stable media

access control (MAC) addresses in our ACL. MACs are locally unique to each device

and we assume that they are immutable. Since the MAC address is assigned when

a device is made, an access rule can be set for a device even before it is installed.

This enables the user to have all traffic, including setup, from a device inspected.

We discuss the possibility and implications of MAC spoofing in Section 5.2.

16

Figure 3.2: IF-TLS session and MAC keys are established and shared between the
network entities.

The initialization process requires that the user defines an ACL for their cur-

rent configuration. They can locate their devices’ MAC addresses on the products

themselves or through the devices’ applications. The middlebox IPs will be pro-

vided once a service has been setup with their provider. The ACL is never final;

once created, its rules can be altered as needed to include new devices or change

middlebox permissions. Modifying access control rules requires modifying the ACL

file and resetting the updated IF-TLS connections. Allowing modifications to the

ACL enables the user to control their data and thus achieves one of the core goals of

IF-TLS. If the user has a device they do not want to be inspected, they can simply

exclude it. Any traffic that does not match a MAC address in the dictionary will

be processed as normal and forwarded towards its destination. Once an ACL is

provided, IF-TLS will function according to the ACL. We discuss changing access

control rules dynamically in Section 6.1.

17

3.1.2 Key Sharing

Another technique IF-TLS introduces is key sharing. To prepare for data sending,

each participating entity needs the IF-TLS session key. There are three initializa-

tions that need to occur: the client/server, client/manager, and manager/middlebox

initializations. These are shown in Figure 3.2 as connections 1 & 2, 3 & 8, and 4-7,

respectively. The client/server initialization establishes the cipher suites and keys for

the IF-TLS session. Then, during the client/manager initialization, the client shares

its session key pre-master secret with the manager. Finally, the manager/middlebox

initialization is when the pre-master secret is distributed to the middleboxes. At

the end of the initialization procedures, the client, server, and middlebox will have

the session key. The manager does not store the session key since it does not need

to inspect the client/server traffic.

Client/Server Initialization

The first connection to be established is the client/server connection. This is the

base connection that determines the cipher suites and keys used. An IoT device,

which we will refer to as the client, first establishes a TCP connection with the server.

It then performs a series of exchanges similar to TLS to negotiate the cipher suites

and share the pre-master secret. The following is an outline of the client/server

IF-TLS handshake:

1. Client Hello: The client sends the cipher suites it wants to use (for encryption

and the MAC) along with the length of the pre-master secret.

2. Server Hello: The server responds to the client if it agrees on the cipher suites;

otherwise, the connection is closed. The server sends its certificate, its public

key, and the asymmetric cipher suite used to the client.

18

3. Client Pre-master: The client responds to the server if it agrees on the cipher

suite and verifies the server; otherwise, the connection is closed. The client

then creates a pre-master secret, encrypts it with the server’s public key, and

sends it to the server.

4. Server Receive Pre-master, Server ACK: The server receives, decrypts, and

computes the pre-master message from the client to create the session and

MAC keys; this is explained in detail in Section 3.2. Finally, the server sends

an acknowledgement (ACK) message encrypted using the session key and MAC

key to the client. The server is now ready to send and receive data through

IF-TLS.

5. Client Receive ACK: The client computes the session and MAC keys from the

pre-master and receives the ACK message from the server. Then, the client

decrypts the message and verifies the message and is now ready to send and

receive data through IF-TLS.

The client/server initialization establishes the ciphers and keys the client and

server use for IF-TLS. The user determines for how long the session keys last. Once

that threshold is met, the manager sends a message to the client to reset its IF-

TLS session; TLS 1.2 has a recommended upper limit of 24 hours per session [8].

Once the session and MAC keys have been computed, the client needs to share that

session key with the manager to distribute to the trusted middleboxes.

The pre-master secret is a string of random bytes generated using os.urandom(),

a cryptographically secure number generator. Half of the characters are used to

generate the session key, whereas the other half is used to generate the MAC key.

They are separately generated because we only want to share the session key with

the middleboxes. If the keys were derived from the same hash, then the middleboxes

19

could generate the MAC key by guessing the cipher and gain write capabilities. Each

half is then split again to be used for the key’s generation and the salt. For example,

a 64 byte (128 hexadecimal character) pre-master would be split as follows: the first

32 characters are used for the session key, the following 32 are for the session key

salt, the next 32 are for the MAC key, and the final 32 are for the MAC key salt.

The user can set the pre-master length to be compatible with the chosen ciphers.

More details about our specific implementation are explained in Section 3.2.

Client/Manager Initialization

The IoT device shares its session key, an idea drawn from [13], with the manager

during the client/manager initialization. This process is done over a TLS session to

securely transfer the key and cipher information. Since a device needs to resend its

session key to the manager with every new generation, this connection may remain

open between IF-TLS sessions depending on the time-to-live set by the user on the

TLS session.

In order to keep the packet length consistent, the client sends a portion of the

pre-master secret to the manager, rather than the computed key itself. As explained

in the client/server initialization section, the sent segment is used to generate the

session key. The remaining portion of the pre-master secret is used to generate the

client/server MAC key and is not shared because we only want the middlebox to have

decryption capabilities, not writing capabilities. If a device fails to send a session

key, the user can decide if the packets should still be forwarded to a middlebox,

such as one that works on encrypted traffic or if all communications from the device

should be dropped until the device complies. The manager does not compute the

session key, but simply forwards the pre-master session key and cipher used to the

middleboxes.

20

The manager/middlebox initialization is encapsulated within the client/manager

initialization. Once the manager finishes sharing the pre-master session key with

the specified middleboxes, the manager sends an ACK or NACK to the client. The

acknowledgement message from the manager completes the client/manager initial-

ization as well as the IF-TLS initialization process.

Manager/Middlebox Initialization

The final initialization is between the manager and the middleboxes. The manager

consults the ACL to determine which middleboxes need a device’s session key. Then,

the manager initializes each middlebox listed in sequence by creating a TLS session

with that middlebox and sharing the device’s information (MAC address, cipher

used) and pre-master session key. The middlebox computes the session key and

respond with an ACK message if the calculation is successful. If any of the middle-

boxes responds with a NACK (i.e. because of an unsupported cipher), the manager

stops its manager/middlebox initialization and sends a NACK to the client. The

user can decide whether to remove the middlebox from the ACL or require the client

to use a supported cipher suite. Additional security checks could also be added to

ensure the authenticity of a middlebox, this is discussed in Chapter 6.

If all middleboxes respond with ACKs, the manager sends an ACK to the client

and complete the IF-TLS initialization procedure. By sharing session keys, IF-TLS

gives the middleboxes the ability to perform their inspections without giving them

write abilities since they cannot create MACs. The delegated middleboxes now have

the ability to inspect traffic.

21

3.1.3 Data Sending Procedure

The final step in IF-TLS is traffic forwarding. Once the ACL has been configured

and the device’s session key has been shared, packets can be redirected through

the middleboxes (Figure 3.1). When a packet arrives at the manager running on

the local router, the packet’s source MAC address can be found in the data link

layer. The MAC address is used to identify the originating IoT device and look it

up in the ACL. If there is no match, then the packets are forwarded as usual. If

there is a match, the corresponding dictionary value is retrieved. The packet is then

forwarded to the middlebox(es) in the order they appear in the retrieved list. If there

are multiple middleboxes, then they receive the traffic in sequential order according

to their value (see Table 3.1). The destination of the packets is not checked, so all

traffic from a matched device is re-routed.

A device’s flows are inspected in sequence by middleboxes to reduce overhead.

We considered having the data processed in parallel; however, this would require

another application to analyze each middlebox’s response and determine if a device’s

flows should still be sent to the server. This could be implemented at the router,

but it would add another round-trip time delay for each middlebox. The user would

then need to write rules on how to manage conflicting middlebox decisions and

middleboxes that take too long to respond. Instead, middleboxes forward the data

that they have inspected to the next middlebox; this process establishes a priority

order for the middleboxes.

The packets that are routed through the middleboxes all contain a message

authentication code to ensure integrity. While the middleboxes are able to decrypt

the payloads, they are unable to create a new matching hash. If any middlebox

manipulates the traffic, the server would detect the modifications by comparing the

message hash to the message authentication code. Only the client and server are able

22

to generate and authenticate hashes. This enforces the policy that middleboxes can

inspect data and drop flows, but cannot write to the packets. One of our intended

use cases for IF-TLS is for middleboxes to drop traffic containing excessive user

information. Therefore, we do not manipulate the contents of packets, but we do

allow flows to be dropped in transit. We do not consider dropping flows as a form of

manipulating packets since the contents of the packets themselves are not changed.

Finally, the client can send a closing message to the server. This procedure is

similar to the concept of FIN packets for TCP. The client first sends a closing packet

to the server. The server then responds with a closing ACK and closes the socket

on its side. When the client receives the server’s ACK, it closes its side of the socket

as well. To reset a connection, the client re-establishes a TCP connection with the

server and starts the IF-TLS initialization procedure from the beginning.

3.2 Software Implementation

This section explains the details of our implementation. The IF-TLS protocol itself

is a Python module containing roughly 800 lines of code. Our initial codebase

presented IF-TLS as a library of publicly callable functions. We later changed IF-

TLS to a class for the purpose of preserving private fields and features, such as the

session and MAC keys used for message encryption, decryption, and verification. We

also wrote short modules for each of the entities participating in the communication

(client, manager, middlebox, and server); each of these modules invoke an instance

of the IF-TLS class and call the relevant procedures. Figure 3.3 shows the IF-TLS

calls made between a client and server for the client/server initialization, as well

as the subroutines that are called for each entity. The blue arrows pointing to the

right represent the client sending messages to the server; the yellow arrows in the

23

Figure 3.3: A sequence diagram of client-server calls using the IF-TLS API.

opposite direction represent messages sent from the server to the client. We assume

in this diagram that the messages sent between the client and server are verified

through the process we described in Section 3.1.2; otherwise, the connection is shut

down before reaching the data sending step.

For our ciphers, we use PKCS1 OAEP (RSA) for the asymmetric cipher, AES

for the symmetric cipher, and Poly1305 for the MAC hash. These ciphers are all

actively supported in the pycryptodome library. The pre-master secret is comprised

of 128 hexadecimal characters (64 bytes). Its characters are used as follows: the

first 32 characters are for the session key, the following 32 are for the session key

salt, the next 32 are for the MAC key, and the final 32 are for the MAC key salt.

The key and salt are used to create 32 byte hashes (the session key and MAC key)

used by AES and Poly1305. The 32 byte hash is the longest length key we can use

for AES and allows us to use AES-256. When the client sends the pre-master secret

24

to the manager, it only sends the first 64 characters that are used to compute the

session key.

Our set-up for IF-TLS included virtual machines for a client, server, manager,

and middlebox. The client and manager ran on one network, while the server ran on

a separate network. The middlebox ran either in the same local network as the client

and manager or in the cloud. We only used one middlebox for our proof-of-concept.

In order to route traffic to a designated local middlebox, we added default gateway

rules to the client and manager’s routing tables. On the client VM, we added a rule

to forward all traffic on eth1 to the manager. Then, on the manager, we added a rule

to forward all traffic to the local middlebox VM. This worked because the middlebox

was within the local network and discoverable by the manager. The middlebox then

used Scapy to passively inspect the data passing through. The middlebox did not

hold any packets; rather, it simply decrypted and printed the data it saw using the

IF-TLS session key.

We had to use a different technique in order to forward traffic to a cloud middle-

box. For experimental purposes, we created direct TCP sockets between the client

and middlebox and between the middlebox and server to use a cloud middlebox.

In this set-up, the client sends data through the socket to the middlebox and the

middlebox forwards the data to the server. Like before, the middlebox inspects the

packets it receives, but does not hold any. Routing rules would not work with this

arrangement because the middlebox is outside the local network. We also could not

use the via flag option, which allows a gateway to the destination to be specified,

because the network router had security settings that would not allow us to use it

as a hop.

25

3.3 Tools and Devices

In our initial phases of testing, we experimented with a Sonos One Speaker to

obtain packet captures using Wireshark. These experiments helped us gain an

understanding of IoT device traffic patterns and behavior, including how long the

device maintains TLS and TCP sessions and how many packets are transmitted in

a TCP session. Later, we analyzed packet captures in Wireshark from a variety of

IoT devices; in Chapter 4, we describe the packet captures we used for evaluating

IF-TLS from a performance standpoint.

We decided to use virtual machines to host our network-based entities because

standardizing the operating system and environment made our performance evalua-

tion much simpler. We chose TinyCore virtual machines to host the client, manager,

and middleboxes based in the local network. The TinyCore virtual machines are

based on a lightweight Linux distribution that allowed us to run our manager and

middlebox modules after installing the necessary Python packages. It also allowed us

to easily configure our routing rules using basic Linux commands. A more detailed

set of instructions can be found in Appendix A.

We used the Amazon Elastic Compute Cloud, or EC2, web service to create and

run a server in the cloud that hosted our middlebox. We chose the Amazon Linux

AMI as a server template to launch our instance, and t2.micro as the instance type.

We connected to our instance in the cloud using a public/private SSH key pair and

ran the middlebox module on the server. We also had to modify the security group

to prevent TCP traffic from being blocked. Like TinyCore, Amazon EC2 was a

suitable choice for our cloud-based middlebox because it was simple to configure

and the middlebox itself did not require much processing power or resources to

function properly.

26

Chapter 4

Evaluation Plan

4.1 Metrics for Evaluation

We evaluated IF-TLS’s effectiveness as an alternative protocol to TLS 1.3 in two

different ways. First, we conducted a quantitative analysis of the protocol’s perfor-

mance; this involved timing how long the protocol components took to complete, as

well as testing packet throughput. Then, we conducted a qualitative analysis of the

protocol’s security. We discuss each part in detail below.

4.1.1 IF-TLS Performance

The primary metric we used to assess IF-TLS’s performance was delay. By in-

troducing additional configuration and processing in both parts of IF-TLS (the

initialization and data sending phases), the system will experience computational

overhead and delay. Our goal was to measure the wall clock delay associated with

each component of the protocol. To do this, we isolated portions of the protocol

that involved a sending procedure and acknowledgement procedure; breaking up the

components in this way allowed us to measure wall clock time on a single device. By

27

measuring time one a single entity, we avoid potential inconsistencies of the Network

Time Protocol (NTP) on different devices. Table 4.1 shows the different protocol

components we measured, as well as the start and end events that demarcate each

part. These protocol components are the same components we described in Section

3.1.2.

The Client-Server initialization measure is the time between the client-server

connection establishment and when an ACK is received from the server finalizing

the creation of session keys. This is the time it takes the client to establish a

TCP connection and IF-TLS connection, with a session key and mac key, with the

server. Our next measurement is the Client-Manager initialization. This measures

the amount of time it takes the client to send the session key to the manager and

then for the manager to successfully share the key with all middleboxes. The Client

initialization time is then the time it takes to fully initialize IF-TLS on the client,

which includes the components covered in Client-Server initialization and Client-

Manager initialization. The Manager-Middlebox initialization component measures

the individual transmission times between just the manager to a middlebox. Finally,

the round-trip time measures the time it takes for IF-TLS to send and receive data.

4.1.2 IF-TLS Security

We performed a qualitative analysis of the IF-TLS protocol by identifying strengths

and weaknesses related to the security goals that IF-TLS aims to provide: con-

fidentiality, integrity, and authentication. First, we explored a variety of threat

models that could be applied to IF-TLS. Shevchenko [24] outlines thirteen different

threat modeling methods that we considered; we include the discussion of DREAD

in addition to the twelve threat models explicitly analyzed. Many of the mod-

els involve business/organizational objectives (PASTA, VAST, OCTAVE), detailed

28

Component Start Event End Event

Client-Server
initialization

Client starts connection
with server

Client receives ACK from
server

Client-Manager
initialization

Client starts connection
with manager

Client receives ACK from
manager

Client Initializa-
tion

Client starts connection
with server

Client sends first message to
server

Manager-
Middlebox
initialization

Manager sends session key
to middlebox

Manager receives ACK from
middlebox

Round-trip time
(RTT)

Client sends a message to
server

Client receives message
ACK from server

Table 4.1: The components we used to measure delay.

scoring calculations (CVSS, Trike, Quantitative TMM), or creating attack personas

(PnG, Security Cards, hTMM) that would be difficult to apply to our user-oriented,

proof-of-concept project. We narrowed our search to the following frameworks:

STRIDE, DREAD, LINDDUN, and Attack Trees. LINDDUN maps data flows and

then applies a threat analysis. However, much of IF-TLS’s data flow is done over

TLS and assumed to be secure, so we determined that this was the wrong area to

focus on. Attack Trees depict how attacks can be achieved from a goal (the root

of the tree). Similar to LINDDUN, since IF-TLS relies on TLS and the security of

devices themselves, we wanted to focus on the attacks and their threat to IF-TLS

components; centering on the novel IF-TLS components would create thin trees and

diminish the purpose of Attack Trees.

Finally, we identified STRIDE and DREAD as the most comprehensive and rele-

vant threat models for our security analysis. STRIDE analyzes threats based on six

mnemonic categories: (S)poofing, (T)ampering, (R)epudiation, (I)nformation Dis-

closure, (D)enial of Service, and (E)levation of Privilege. This allows us to analyze

threats to IF-TLS based on the type of attack. Then, for each threat, we ap-

ply DREAD to assess their risk based on five criteria: (D)amage, (R)eproducibility,

29

Figure 4.1: The four evaluation scenarios we used for performance testing.

(E)xploitability, (A)ffected users, and (D)iscoverability. DREAD provides the frame-

work we need to determine the capabilities of attackers and the damage they can

cause. We also identified potential countermeasures that could mitigate these vul-

nerabilities, as well as areas for future work.

4.2 Experimental Setup

We constructed four different evaluation scenarios (Figure 4.1). In the first scenario,

we obtained performance data related to delay under a TLS 1.3 connection; these

measurements provided a baseline against which we could compare measurements

with the IF-TLS protocol. The second scenario involves an IF-TLS connection with

no middlebox; this scenario allowed us to directly measure how much overhead the

IF-TLS initialization procedure adds compared to TLS 1.3. In the third scenario, we

added a middlebox residing in the local network and routed IF-TLS traffic through

that middlebox. Finally, we moved the middlebox into the cloud and routed traffic

30

Capture Name
(File Extension: pcap)

Capture Size
(# packets)

Session Length
(seconds)

Cap A 24 0.5
Cap B 1070 39.5
Cap C 2052 12.1

Table 4.2: The packet capture samples we used for measuring delay.

in a similar manner.

To obtain quantitative performance data for TLS 1.3, we added timing compo-

nents to the client to measure how long the client-server and client-manager initial-

ization took to complete. We also measured the round-trip time, or the time it took

for the client to send a message to the server and receive it echoed back. The con-

tents of the message corresponded to the number of the generated message (“1” for

the first message, “2” for the second message, etc.). We collected 30 measurements

of the initialization time.

To more accurately mimic how a real IoT device would transmit data, the client

transmitted messages to the server at intervals from real IoT device pcap files.

Vishwajeet Bhosale from Colorado State University allowed us to use a collection of

IoT device packet traces; we chose to use 3 of these traces. We filtered each trace for

bursts of TCP traffic because the data transmissions occurred close enough to each

other in time for rapid testing, and because IF-TLS would run on top of this TCP

traffic in practice. The samples we used for testing are outlined in Table 4.2; these

samples encompass a variety of TLS sessions, from sessions that last less than a

second and transmit a small burst of packets to sessions that last closer to a minute

and transmit a much larger burst.

For each scenario, we first collected 30 measurements of the initialization com-

ponents in Table 4.1. Then, we performed the data sending procedure three times

with each of the packet captures and recorded the round-trip times.

31

Chapter 5

Results and Discussion

In this chapter, we present an overview of our findings and discuss the implications of

these results. The first part of our findings relates to the IF-TLS performance results

we obtained. In Chapter 3, we discussed how our original IF-TLS implementation

differed from the current implementation. We obtained performance results for both

implementations and found similar results, so we will only present results for the

current implementation. We found that IF-TLS introduces minor additional delay

to the initialization procedure compared to TLS 1.3. Additionally, we found that

IF-TLS experiences similar round-trip time delays to TLS 1.3. The second part of

our findings relates to our qualitative security analysis; we analyzed IF-TLS using

the STRIDE and DREAD threat models and developed potential attack vectors for

a variety of threat categories. We observed that compromising the access control

list (ACL) would cause the most damage to a system utilizing the IF-TLS protocol,

since the ACL governs data transit paths and specifies the middleboxes that have

decryption capabilities.

32

Figure 5.1: Average initialization times for the four scenarios we tested.

5.1 Performance Results

5.1.1 Total Initialization Time

Our first performance result highlights the total initialization overhead for IF-TLS;

this includes the client-server, client-manager, and manager-middlebox initialization

times. Figure 5.1 shows the average amount of time it took for the initialization

procedure to complete under the four scenarios we tested: TLS 1.3, IF-TLS without

a middlebox, IF-TLS with a local middlebox, and IF-TLS with a cloud middlebox.

On average, IF-TLS without a middlebox adds 21 percent additional delay to the

initialization procedure compared to TLS 1.3. The percentage increases for IF-

TLS with a local middlebox and cloud-based middlebox are 52 and 121 percent,

respectively.

Each scenario adds a layer of complexity to the initialization procedure, and thus

33

Middlebox Location
Cli-Manager

Init. Time (s)
Manager-MB
Init. Time (s)

% of Cli-Manager
Init. Time

Local Network 0.25980 0.18227 70.2%
The Cloud 0.37665 0.29664 78.5%

Table 5.1: The manager-middlebox initialization as a sub-component of client-
manager initialization.

the average initialization times increase compared to TLS 1.3. It is important to note

that the initialization time for the cloud we present here does not factor in the time

to establish TCP sockets for the purpose of forwarding traffic through the middlebox

(Section 3.2). Therefore, the time here would represent the measurements obtained

through the traditional use of forwarding rules. It is also important to note that the

latter two measurements are representative of having one middlebox in the path to

the server; adding more middleboxes to the chain of decryption would increase the

initialization time, which we will discuss in Section 5.1.2.

The effect of the initialization procedure on the protocol’s feasibility partially

depends on how often IF-TLS sessions need to be re-established between the IoT

device and the server. This frequency is synonymous with how long the session keys

are valid before new keys are required or how often the ACL rules are modified. In

Section 3.1.2, we mentioned that the user has control over how long their generated

session keys are valid for, with an upper limit of 24 hours mutuated from the TLS

1.2 standard. As the time period for the keys’ validity increases, the impact of

initialization overhead decreases because this procedure is performed less often. In

Section 5.2, we will discuss why a user may want to fine-tune this parameter to

achieve a desirable balance between performance and security.

34

Figure 5.2: A comparison of the initialization components for the scenarios using
IF-TLS.

5.1.2 IF-TLS Initialization Components

In addition to analyzing the total initialization time before data sending, we also

measured the individual components of the initialization across the three IF-TLS

scenarios. Figure 5.2 shows each component’s proportion of the total initialization

time for these scenarios; from left to right, the client-server initialization makes up

91, 76, and 75 percent of the initialization procedure. The absence of a middlebox

in the first IF-TLS scenario implies that the client-manager initialization consists

of a simple lookup in the access control list, followed by an acknowledgment to the

client that all middleboxes (in this case, 0) have computed the session key.

As in Section 5.1.1, the latter two measurements are representative of having

one middlebox in the path; thus, the client-manager proportion will increase by

a roughly constant factor as more middleboxes are added to the path. Table 5.1

shows the quantitative factor we obtained by measuring the manager-middlebox

35

Figure 5.3: A comparison of the data sending round-trip times for the four scenarios
we constructed using three capture files.

initialization time from Table 4.2. Because the manager-middlebox initialization is

a sub-component of the client-manager initialization, we also show the former as a

percentage of the latter. The times added for a middlebox in the local network and

the cloud are roughly 0.2 and 0.3 seconds, respectively. The cloud factor may vary

slightly depending on the physical location of the cloud server.

5.1.3 Round-Trip Time

Finally, we obtained round-trip time (RTT) data for each of the three packet cap-

tures from Section 4.2. Figure 5.3 shows a comparison of the average RTTs for the

four scenarios. We also averaged the RTT increase for the three IF-TLS scenarios

compared to TLS 1.3. From left to right, the RTT increased by 36, 22, and 80 per-

cent. Interestingly, IF-TLS with a local middlebox produced slightly faster RTTs

36

than IF-TLS without a middlebox in the connection; this may be due to the fact

that routing traffic through the local middlebox may be faster than routing directly

to the server. It is also important to note that the RTT for the cloud scenario is an

overestimation because we routed traffic through TCP sockets rather than through

traditional forwarding rules.

Similar to Sections 5.1.1 and 5.1.2, the RTT will increase with more middleboxes

in the connection. We assume that the middleboxes in the path do not hold packets

before forwarding them to the next middlebox, so the only factor that contributes

to the RTT increase would be the time to forward packets from one hop to the next,

which includes middlebox analysis/processing. The increase will be negligible for a

group of middleboxes that are all located in the local network because the next-hop

time is negligible. For a group of cloud-based middleboxes, this increase will depend

on where the middleboxes are located; it would take more time to forward packets

between two middleboxes that are geographically distant. Thus, it is more difficult

to estimate the RTT increase when the cloud is involved.

5.1.4 IF-TLS with Cloud-Based Middleboxes

One of our goals in our performance testing was to determine whether the additional

delay introduced by IF-TLS would still allow for an acceptable user experience with

an IoT device, even when placing a series of middleboxes in the cloud. One accepted

metric for how long users are willing to wait for loading a web page is 2 seconds [25];

this is analogous to the IF-TLS initialization time, which does not exceed 2 seconds

in the case of a single cloud-based middlebox. Furthermore, the majority of data

transmitted using IoT devices is sensor or streaming data, and does not require

frequent interaction, such as clicking between web pages, with the user. Other

studies [26] [27] have shown that the frequency of interaction with IoT devices is

37

not high enough for a user to notice a few seconds of initialization overhead, which

thus does not negatively impact the quality of the user experience. Based on the

initialization and round-trip time data we obtained, we conclude that IF-TLS can

still perform reasonably with a series of cloud-based middleboxes.

Our second goal was to determine the performance impacts of placing a mid-

dlebox in the local network versus placing it in the cloud. In the previous three

sections, we observed that placing a middlebox in the cloud resulted in higher ini-

tialization and data sending times; thus, utilizing the cloud presents a performance

trade-off between cloud-based benefits, such as scalability and reduced IT costs, and

a faster connection. Depending on the use case for IF-TLS, the middlebox could

remain in a local network or be placed in the cloud; a homeowner with a few IoT

devices may forego the benefits of cloud computing for faster data sending and re-

ceiving, whereas a company making use of IoT devices can tolerate a slight decrease

in IF-TLS performance to reap the benefits cloud computing offers.

5.2 Security Analysis

In this section, we present a security analysis of IF-TLS. This analysis includes

potential threat models that span adversaries with varying capabilities and re-

sources, as well as potential attacks on the system and their associated defenses.

After exploring different threat modeling methods [24], as discussed in Section

4.1.2, we chose to use Microsoft’s STRIDE threat modeling [28] accompanied by

their DREAD method [29]; these models allow us to evaluate different threats and

their associated risks. STRIDE analyzes threats based on six mnemonic categories:

(S)poofing, (T)ampering, (R)epudiation, (I)nformation Disclosure, (D)enial of Ser-

vice, and (E)levation of Privilege. Then, for each threat, we use DREAD to assess

38

attacks on five criteria: (D)amage, (R)eproducibility, (E)xploitability, (A)ffected

users, and (D)iscoverability.

One of our core goals for IF-TLS is to preserve the security properties offered

in TLS 1.3. This includes authentication, integrity, and confidentiality; we will

discuss how these could be violated in IF-TLS. The security of IF-TLS depends

partially on the security of its components: the IoT device, the manager/router,

the middleboxes, and the server. These are briefly discussed as they relate to each

threat, but we will not discuss them in detail as they are outside the control of

our protocol. Finally, some of the defenses we mention will be further evaluated in

Chapter 6.

5.2.1 (S)poofing

The first threat category we evaluate is identity spoofing. Spoofing is when an

adversary attempts to conceal their identity or purposefully takes the identity of

something else. In networking, this commonly means modifying the source IP of a

packet so it cannot be easily traced back or appears to be from a trusted source.

This manipulation violates the property of authentication since it is more difficult

to differentiate between the actual source and a spoofed source.

In IF-TLS, it is possible for an attacker to use media access control (MAC)

address spoofing to imitate an IoT device. The IF-TLS manager uses MAC addresses

to identify the IoT device and look it up in the ACL. If an adversary impersonates

an IoT device, their traffic would also be routed through the assigned middleboxes.

However, since the IF-TLS manager never sends any confidential information to

the device, the attacker has little incentive to spoof an IoT device if that is their

only capability. The adversary would not be able to trick any device besides the

IF-TLS manager without the IoT device’s session and message authentication code

39

keys. Given that both media access control and message authentication code are

abbreviated as MAC, we will only refer to the former as MAC address for the

remainder of this section. The MAC address is assigned to identify devices, whereas

a message authentication code is a hash that is created to check the integrity of a

packet’s payload.

Since the session and message authentication code keys are separately derived,

they can be independently compromised; we will consider these different scenarios.

If the attacker has the capability to attain a device’s session key, then they will be

able to decrypt any messages between the device and server. However, they will

not be able to spoof messages since they do not have the message authentication

code to create hashes; the server will reject messages with unverifiable hashes. The

attacker, on the other hand, would only gain the ability to verify messages if they

just have the message authentication code key. In order to fully imitate a device,

they need both keys to get decryption/encryption and message authentication ca-

pabilities. However, it is difficult to obtain the keys. Either the client, server,

client/server IF-TLS session, or a manager/middlebox’s TLS session would need to

be compromised to obtain the session key. We assume the TLS protocol is secure

and free of vulnerabilities. The client and server’s security depends on the entities

themselves. An attacker would need to access the device’s memory to extract the

stored keys. If an attacker has compromised a device to this point, then our se-

curity goals have already been violated. The security of the client/server IF-TLS

session depends on the ciphers used and the randomness of the pre-master secret.

As detailed in Section 3.2, we use actively supported cipher suites, salts when gener-

ating keys, and a cryptographically secure random number generator. To obtain the

message authentication code key, the client, server, or client/server IF-TLS session

would need to be undermined. The security of these components is equivalent to

40

the explanation above. The attacker would also need to re-obtain the session and

message authentication code keys every session in order to continue spoofing the

device. While the damage is severe, the adversary needs advanced capabilities in

order to carry out a full device spoofing attack.

Another MAC spoofing attack could be from the IoT device itself. If the IoT de-

vice changes the MAC of its own packets, it can bypass whatever rules were assigned

for it in the ACL. By applying the DREAD model, we can assess this risk. The

damage is significant since this enables a misbehaving client to circumvent IF-TLS.

This evades the purpose of IF-TLS—to allow users to control their devices’ data.

MAC spoofing is also a very simple attack since the MAC address is unencrypted

in the data link layer. However, this attack can be mitigated. The IF-TLS manager

can implement finer device authentication so it does not rely solely on the MAC

address. We will discuss this possibility in Chapter 6.

Finally, since the ACL relies on the IP of the middlebox, if a middblebox changes

their IP, it is possible for another device to take the old and trusted IP. In this

scenario, the other device would receive session keys and traffic because the IF-

TLS manager believes it is still the assigned middlebox. This would continue until

the user updates the IP in the ACL. If the new device is owned by an adversary,

then they will be able to read all of the user’s data from the designated IoT device.

While this spoofing attack would be easier than compromising a device to obtain the

session key, it can be mitigated by implementing middlebox authentication. This is

also discussed in Chapter 6.

5.2.2 (T)ampering

Tampering encompasses a variety of attacks that are related to intentional modifi-

cation of a product or system, especially modifications that would cause harm to

41

an end user. Tampering violates the integrity property of a system by making it

difficult or impossible to discern between legitimate and illegitimate data or system

processes.

In the context of IF-TLS, the most dangerous form of tampering is unauthorized

modification of the access control list (ACL) on the manager. If an adversary were

able to obtain write permission on the ACL, a simple attack may consist of wiping

the ACL’s contents, thus removing all middleboxes as points of IF-TLS communica-

tion. A more subtle attack would be to strategically modify the order or addresses

of middlebox processing, such as re-routing a user’s IoT traffic to the adversary’s

personal network. An adversary could also tamper with the IoT devices themselves

and change the cipher suites used for an IF-TLS session, forcing servers that use

IF-TLS to reject sessions initiated by the client.

Following the DREAD model, tampering attacks can pose grave effects on an

IF-TLS session, because the ACL acts as the central point for access control in an

IF-TLS session. Once the attacker seizes control of the ACL, they can add, delete,

or modify routes easily since write permissions are enabled on the ACL. Tampering

attacks are typically difficult to discover as well; it would take a diligent end user

who checks the ACL frequently to verify that the routes have not been modified by

an unauthorized entity. However, the attack is reproducible and exploitable only to

the extent to which the manager itself is vulnerable. Since the manager is designed

to run on the user’s home router, the attacker would have to compromise the user’s

router to launch this type of attack. A router’s overall security depends on a variety

of factors, such as the router’s age and the presence or absence of security holes;

thus, it is difficult to indicate how much of a threat tampering poses to IF-TLS.

42

5.2.3 (R)epudiation

In information security, non-repudiation is the guarantee that someone cannot deny

the validity of an action or a piece of data. Thus, repudiation would allow an ad-

versary to commit a malicious action and successfully deny that they performed the

action. Repudiation is closely related to tampering because an adversary can more

easily tamper with a system, such as modifying the access control list, if the system

does not have the non-repudiation property. In other words, the system cannot au-

thenticate which user performed the action, so all changes made to the system would

have to be either allowed or prohibited. Obtaining access and tampering with the

ACL is also considered a repudiation attack because the adversary can now make

changes to the ACL without needing to establish their identity.

Repudiation follows the DREAD analysis for tampering. Attacks related to

repudiation are damaging because it cannot be proven whether or not a specific

entity launched an attack. The security of the ACL on the manager, and thus the

router, determines how reproducible and exploitable a repudiation attack is. Finally,

because of the inability to associate an entity with an action, repudiation attacks

cannot be discovered. As long as each access to the manager is authenticated and

logged, non-repudiation holds.

5.2.4 (I)nformation Disclosure

Information disclosure encompasses intentional attacks on a system, such as a data

breach, or unintentional system vulnerabilities, such as data leaks. These kinds of

disclosures violate the security property of confidentiality because the data is no

longer contained in a private session. Furthermore, information disclosures are a

violation of the end user’s privacy, a property that IF-TLS was designed to protect.

43

By virtue of enabling middleboxes to access traffic, IF-TLS introduces inher-

ent risks related to information disclosure that do not exist when using TLS 1.3.

First, the risk of information disclosure increases as the number of devices with ac-

cess to system-specific data increases. Although we assumed in our protocol design

that the middleboxes in the path of communication are trusted and authenticated,

adding even one middlebox to the path increases the attack space that adversaries

can exploit. As one example, an exceedingly liberal ACL configuration may grant

a middlebox access to more IoT data streams than to which it needs access. The

access control policies should be optimized to only include middleboxes in the com-

munication that need access to unencrypted payloads; this would help minimize the

extent to which device- and user-specific data becomes accessible over a network.

Furthermore, if we assume middleboxes can misbehave or be compromised, sharing

application-specific data now poses a harm to the user, since the middlebox can

decrypt and analyze payloads for malicious purposes, such as tracking a user based

on the data their IoT devices transmit.

The damage that information disclosure can cause depends on the amount and

types of data that are exposed. Accessing a stream of encrypted data is much less

useful than obtaining the pre-master that is used to generate the IF-TLS session key.

A compromised middlebox, on the other hand, has access to the IF-TLS session key

and decrypted payloads, and is free to share this information with malicious parties.

Similar to repudiation, a disclosure attack is only reproducible and exploitable to

the extent which the system component is vulnerable. For example, obtaining the

session and MAC keys would require breaching the secure session established by the

client and server during the IF-TLS initialization procedure. Disclosure attacks are

typically difficult to discover, although explicitly breaching the database is easier to

detect than a data leak that the end user is unaware of.

44

5.2.5 (D)enial of Service

Denial of service (DoS) attacks are when a service or entity is rendered unavailable.

An adversary often accomplishes this by flooding a device with packets that occupy

all of its resources. Then, there is none available for any real communication. In IF-

TLS, we will focus on a DoS against the IF-TLS manager. While it is also possible

to launch a DoS on a middlebox or server, those entities exist independently of

IF-TLS and thus are outside our scope.

We will evaluate the risk of a DoS using DREAD. The level of damage is high

since the IF-TLS manager routes all the traffic on a local network. In our implemen-

tation, we assume it is running on the local router itself. If an entity successfully

disables the router, then all devices connected to it would be unusable. Nonetheless,

using IF-TLS will not make a router more vulnerable to conventional DoS attacks

than it already is. Since the IF-TLS manager only performs lightweight dictionary

lookups to the ACL, it would take the same amount of traffic that would crash the

router to DoS the IF-TLS manager.

5.2.6 (E)levation of Privilege

As the name implies, elevation of privilege refers to granting a party the author-

ity to do something that that party should not have the ability to do. Elevating

privileges in this manner violates the authorization security property, which would

allow privileged users to perform a variety of actions that could infringe on the main

user’s security or privacy. Although protecting against elevation privilege is orthog-

onal to the goals of IF-TLS, we still consider the effects of such attacks on IF-TLS’s

functionality.

The attacks that are possible through elevation of privilege depend on the ac-

45

tions or information that other parties have been granted access to, as well as the

intentions of the parties that have these privileges. Similar to tampering, a party

could have the ability to read from and write to the access control list, and thus

have control over the IoT device flows. The party could also instruct middleboxes

to forward IoT traffic to unknown locations, such as to an attacker that is interested

in learning about an end user based on their IoT device traffic patterns.

Similarly, the amount of damage a privilege elevation can do to IF-TLS depends

on the privilege that was granted, and to whom the privilege was granted. In

most situations, the end user has control over the parties that receive the increased

privilege; thus, attacks in this category largely depend on the end user’s knowledge

of who should have the ability to perform specific actions and who should not.

46

Chapter 6

Future Work

In this chapter we present opportunities for future work associated with IF-TLS.

The protocol is still in its infancy, and there are many areas to explore related to

the IF-TLS performance and security measures we described in Chapter 5. Some of

the ideas we describe here focus on the implementation details of IF-TLS that we

were unable to implement, whereas other ideas focus on further improvements to

IF-TLS.

6.1 Implementation Challenges

As we created our proof-of-concept implementation of IF-TLS, we encountered chal-

lenges that led to us being unable to fully implement certain features. The forward-

ing functionality of IF-TLS, described in Section 3.2, still needs to be expanded.

With a middlebox in the cloud, we were only able to use a crude solution that di-

rectly connected the client to the middlebox and the middlebox to the server. Ideally,

this traffic could be forwarded by the router and sustain multiple middleboxes on

the path.

Also, as outlined in Section 3.1.3, an IF-TLS connection needs to be manually

47

reset by the user in order to apply changes to the ACL. Instead, whenever a mod-

ification is made to the ACL file, any devices that have new values should have

their IF-TLS connections reset automatically by the IF-TLS manager to apply the

changes immediately.

Additionally, authentication should be included for all entities in IF-TLS. The

IF-TLS manager should incorporate IoT device and middlebox authentication. IoT

device authentication would prevent misbehaving IoT devices from circumventing

IF-TLS, as explained in Section 5.2.1. Middlebox authentication would prevent

unauthorized entities from purposefully using a man-in-the-middle attack to receive

IF-TLS traffic. It would also prevent data from being sent accidentally to formerly

used middlebox IP addresses, as mentioned in Section 5.2.6, if a middlebox were to

have its IP address changed. Finally, the client should authenticate the server it is

communicating with. While we are sending the server’s certificate as part of the

IF-TLS handshake, we are not actively verifying it in our implementation.

6.2 Extensions to IF-TLS

Other implementation details are more accurately described as limitations of the IF-

TLS protocol. Currently, our implementation of IF-TLS only routes traffic from the

client to the server through the middlebox(es). We created this stipulation because

we deemed that only the data from the IoT devices was relevant to IF-TLS’s purpose

of inspecting collected user data. However, routing rules could be added to redirect

and inspect traffic from the server to the client as well. This may require additional

configurations on the server to support routing through the middlebox(es). Also,

allowing bi-directional traffic inspection may impact the performance results and

security analysis we presented in Chapter 5.

48

As we discussed in Section 5.2, the access control list (ACL) is also the target

of most threats and creates a single point of security failure for the system. If the

ACL is compromised, the attacker can control IF-TLS as if they were the user.

Decentralization is not as critical for a small home network because there are fewer

connected devices in the system. However, in a larger setting such as a smart city or

company office, measures should be incorporated to mitigate the effects of a single

point of failure. One preventive measure is to de-centralize the ACL over an entire

system. A distributed system could reduce the risk of tampering and elevation of

privilege threats to IF-TLS, since the access control rules exist and can be cross-

verified on multiple systems.

6.3 Additional Performance Measures

The primary performance metric we collected and analyzed for IF-TLS was delay.

Measuring initialization and round-trip times allowed us to draw comparisons be-

tween IF-TLS and TLS 1.3 for a variety of scenarios, including the placement of a

middlebox in the cloud. However, additional network performance measurements

may also be useful to more accurately observe the overall quality of service IF-TLS

provides. One potentially useful measurement is jitter, or the variation in time delay

for data sent over a network [30]. IoT devices that transmit continuous streams of

data, such as smart video cameras, may experience network disruptions in the pres-

ence of high jitter values, and thus decrease the quality of service to the user. Since

jitter depends on the average spread of packet delays, an analysis of the round-trip

delays we collected in our performance measurements can provide insight on how

much jitter IF-TLS introduces on average.

49

6.4 Formal Methods for Security Verification

The last area of future work we consider is applying formal verification methods to

IF-TLS. Formal methods aim to prove or disprove the correctness of cryptographic

algorithms related to system properties or specifications. Previous efforts have used

various tools to verify components of the TLS protocol. [31] provided libraries to

formally verify C-written TLS packet processing applications using Coq, a theorem

prover that uses the Gallina specification language. [32] utilized the Casper/FDR2

toolbox and model verification techniques to conduct a formal verification of the TLS

Handshake protocol. [33] utilized the Tamarin prover, a security protocol verification

tool, to perform automated analysis of revision 10 of the TLS 1.3 specification prior

to the specification’s deployment. Together, these methods provide a more detailed

analysis of a security protocol; in some cases, this analysis can uncover vulnerabilities

or implementation errors in a protocol before its deployment, thus decreasing the

attack space that adversaries can exploit.

The same methods used to verify components of TLS can be applied to IF-TLS.

The components of interest for verification in IF-TLS are the IF-TLS handshake,

the sharing of session and MAC keys, and the transmission of data from the IoT

device to the server. Each component involves one or more cryptography schemes,

such as AES for generating the MAC key and RSA asymmetric encryption for the

IF-TLS handshake. Thus, the implementation details for each of these components

could be verified using any of the methods mentioned in the previous efforts above.

Although formal methods are primarily used for proving the correctness of crypto-

graphic algorithms, they can also provide insight into weak points for information

leaks or breaches, since an incorrectly implemented algorithm may expose sensitive

information. As we discussed in Section 5.2.4, it is critical that the session keys,

50

MAC keys, and access control list remain confidential in an IF-TLS session; proving

that this property holds would minimize the risk of violating confidentiality.

51

Chapter 7

Conclusion

In this paper, we presented IF-TLS, a protocol that balances the security bene-

fits that TLS offers and the privacy considerations that analysis by network-based

middleboxes help to enforce. Delegating control to the end user regarding traffic

processing allows the protocol to be parametrized in a way that meets each end

user’s needs. IF-TLS is designed particularly for users who have concerns over how

much identifying information is sent from their smart devices; the protocol empow-

ers users to make more informed decisions about which devices they elect to use.

The concepts we introduce in our protocol, such as key sharing according to a set

of access control policies, do not introduce unreasonable complexity or undermine

the security properties of TLS 1.3.

One of our hopes with the IF-TLS protocol design is to find a medium between

the goals of service providers and network security researchers. With most of the

modern Internet using TLS 1.2, there are still opportunities to revise properties of

TLS 1.3 before it becomes mainstream. End users deserve to know how and when

their data is being collected, in the same way that they deserve reliable and secure

service for the devices they use in their homes. Workarounds to the restrictions

52

TLS 1.3 imposes are not secure, and do not fix the fundamental issues related to

end-to-end encryption. Our design aims to shed light on how these issues can be

handled feasibly.

53

Bibliography

[1] R. van der Meulen. (2017) Gartner says 8.4 billion connected “things” will

be in use in 2017, up 31 percent from 2016. [Online]. Available: https:

//www.gartner.com/en/newsroom/press-releases/2017-02-07-gartner-says-8-

billion-connected-things-will-be-in-use-in-2017-up-20-31-percent-from-2016

[2] H. M. Moghaddam, G. Acar, B. Burgess, A. Mathur, D. Y. Huang, N. Feamster,

E. W. Felten, P. Mittal, and A. Narayanan, “Watching you watch: The tracking

ecosystem of over-the-top tv streaming devices,” 2019.

[3] S. Fussell. (2019, February) The microphones that may be hidden in your

home. [Online]. Available: https://www.theatlantic.com/technology/archive/

2019/02/googles-home-security-devices-had-hidden-microphones/583387/

[4] J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy, “Blindbox: Deep

packet inspection over encrypted traffic,” SIGCOMM Comput. Commun.

Rev., vol. 45, no. 4, pp. 213–226, Aug. 2015. [Online]. Available:

http://doi.acm.org/10.1145/2829988.2787502

[5] D. Naylor, K. Schomp, M. Varvello, I. Leontiadis, J. Blackburn, D. R. López,

K. Papagiannaki, P. Rodriguez Rodriguez, and P. Steenkiste, “Multi-context

tls (mctls): Enabling secure in-network functionality in tls,” ACM SIGCOMM

Computer Communication Review, vol. 45, no. 4, pp. 199–212, 2015.

54

https://www.gartner.com/en/newsroom/press-releases/2017-02-07-gartner-says-8-billion-connected-things-will-be-in-use-in-2017-up-20-31-percent-from-2016
https://www.gartner.com/en/newsroom/press-releases/2017-02-07-gartner-says-8-billion-connected-things-will-be-in-use-in-2017-up-20-31-percent-from-2016
https://www.gartner.com/en/newsroom/press-releases/2017-02-07-gartner-says-8-billion-connected-things-will-be-in-use-in-2017-up-20-31-percent-from-2016
https://www.theatlantic.com/technology/archive/2019/02/googles-home-security-devices-had-hidden-microphones/583387/
https://www.theatlantic.com/technology/archive/2019/02/googles-home-security-devices-had-hidden-microphones/583387/
http://doi.acm.org/10.1145/2829988.2787502

[6] V. Zakharevich and M. Rakhmanov, “Intercepting ssl and https

traffic with mitmproxy and sslsplit,” Apr 2016. [Online]. Avail-

able: https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/

intercepting-ssl-and-https-traffic-with-mitmproxy-and-sslsplit/

[7] Fortinet. (2018) Threat landscape report q3 2018. [Online]. Avail-

able: https://www.fortinet.com/content/dam/fortinet/assets/threat-reports/

threat-report-q3-2018.pdf

[8] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS) Protocol

Version 1.2,” Internet Requests for Comments, RFC Editor, RFC 5246,

August 2008. [Online]. Available: https://tools.ietf.org/rfc/rfc5246.txt

[9] “What happens in a tls handshake?” https://www.cloudflare.com/learning/

ssl/what-happens-in-a-tls-handshake/, accessed: 2019-10-07.

[10] E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.3,”

Internet Requests for Comments, RFC Editor, RFC 8446, August 2018.

[Online]. Available: https://tools.ietf.org/rfc/rfc8446.txt

[11] F. Andreasen, N. Cam-Winget, and E. Wang, “Tls 1.3 impact on

network-based security,” Working Draft, IETF Secretariat, Internet-Draft

draft-camwinget-tls-use-cases-00, October 2017, http://www.ietf.org/internet-

drafts/draft-camwinget-tls-use-cases-00.txt. [Online]. Available: http://www.

ietf.org/internet-drafts/draft-camwinget-tls-use-cases-00.txt

[12] Z. Durumeric, Z. Ma, D. Springall, R. Barnes, N. Sullivan, E. Bursztein, M. Bai-

ley, J. A. Halderman, and V. Paxson, “The security impact of https intercep-

tion.” in NDSS, 2017.

55

https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/intercepting-ssl-and-https-traffic-with-mitmproxy-and-sslsplit/
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/intercepting-ssl-and-https-traffic-with-mitmproxy-and-sslsplit/
https://www.fortinet.com/content/dam/fortinet/assets/threat-reports/threat-report-q3-2018.pdf
https://www.fortinet.com/content/dam/fortinet/assets/threat-reports/threat-report-q3-2018.pdf
https://tools.ietf.org/rfc/rfc5246.txt
https://www.cloudflare.com/learning/ssl/what-happens-in-a-tls-handshake/
https://www.cloudflare.com/learning/ssl/what-happens-in-a-tls-handshake/
https://tools.ietf.org/rfc/rfc8446.txt
http://www.ietf.org/internet-drafts/draft-camwinget-tls-use-cases-00.txt
http://www.ietf.org/internet-drafts/draft-camwinget-tls-use-cases-00.txt
http://www.ietf.org/internet-drafts/draft-camwinget-tls-use-cases-00.txt
http://www.ietf.org/internet-drafts/draft-camwinget-tls-use-cases-00.txt

[13] M. Bierma, A. Brown, T. DeLano, T. M. Kroeger, and H. Poston, “Locally

operated cooperative key sharing (locks),” in 2017 International Conference on

Computing, Networking and Communications (ICNC), Jan 2017, pp. 356–362.

[14] M. Rouse, S. Shea, and M. Haughn. (2018) Iot devices (internet of things

devices). [Online]. Available: https://internetofthingsagenda.techtarget.com/

definition/IoT-device

[15] N. Apthorpe, D. Reisman, and N. Feamster, “A smart home is no castle:

Privacy vulnerabilities of encrypted iot traffic,” CoRR, vol. abs/1705.06805,

2017. [Online]. Available: http://arxiv.org/abs/1705.06805

[16] J. Ren, D. J. Dubois, D. Choffnes, A. M. Mandalari, R. Kolcun, and H. Had-

dadi, “Information exposure from consumer iot devices,” 2019.

[17] P. Gill, N. Jain, and N. Nagappan, “Understanding network failures in data

centers: measurement, analysis, and implications,” ACM SIGCOMM Computer

Communication Review, vol. 41, no. 4, pp. 350–361, 2011.

[18] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and V. Sekar,

“Making middleboxes someone else’s problem: network processing as a cloud

service,” ACM SIGCOMM Computer Communication Review, vol. 42, no. 4,

pp. 13–24, 2012.

[19] C. Lan, J. Sherry, R. A. Popa, S. Ratnasamy, and Z. Liu, “Embark: Securely

outsourcing middleboxes to the cloud,” in 13th USENIX Symposium on

Networked Systems Design and Implementation (NSDI 16). Santa Clara, CA:

USENIX Association, Mar. 2016, pp. 255–273. [Online]. Available: https:

//www.usenix.org/conference/nsdi16/technical-sessions/presentation/lan

56

https://internetofthingsagenda.techtarget.com/definition/IoT-device
https://internetofthingsagenda.techtarget.com/definition/IoT-device
http://arxiv.org/abs/1705.06805
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/lan
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/lan

[20] Cisco. (2019) Software-defined networking. [Online]. Available: https://www.

cisco.com/c/en/us/solutions/software-defined-networking/overview.html

[21] C. R. Taylor and C. A. Shue, “Validating security protocols with cloud-based

middleboxes,” in 2016 IEEE Conference on Communications and Network Se-

curity (CNS). IEEE, 2016, pp. 261–269.

[22] C. R. Taylor, T. Guo, C. A. Shue, and M. E. Najd, “On the feasibility of cloud-

based sdn controllers for residential networks,” in 2017 IEEE Conference on

Network Function Virtualization and Software Defined Networks (NFV-SDN).

IEEE, 2017, pp. 1–6.

[23] J. Wilson, R. S. Wahby, H. Corrigan-Gibbs, D. Boneh, P. Levis, and K. Win-

stein, “Trust but verify: Auditing the secure internet of things,” in Proceedings

of the 15th Annual International Conference on Mobile Systems, Applications,

and Services. ACM, 2017, pp. 464–474.

[24] N. Shevchenko. (2018, Dec) Threat modeling: 12 available methods. [Online].

Available: https://insights.sei.cmu.edu/sei blog/2018/12/threat-modeling-12-

available-methods.html

[25] F. F.-H. Nah, “A study on tolerable waiting time: how long are web users

willing to wait?” Behaviour & Information Technology, vol. 23, no. 3, pp. 153–

163, 2004. [Online]. Available: https://doi.org/10.1080/01449290410001669914

[26] C. Axel, G. Ravindra, and O. W. Tsang, “Towards characterizing users

interaction with zoomable video,” in Proceedings of the 2010 ACM Workshop

on Social, Adaptive and Personalized Multimedia Interaction and Access, ser.

SAPMIA 10. New York, NY, USA: Association for Computing Machinery,

2010, p. 2124. [Online]. Available: https://doi.org/10.1145/1878061.1878069

57

https://www.cisco.com/c/en/us/solutions/software-defined-networking/overview.html
https://www.cisco.com/c/en/us/solutions/software-defined-networking/overview.html
https://insights.sei.cmu.edu/sei_blog/2018/12/threat-modeling-12-available-methods.html
https://insights.sei.cmu.edu/sei_blog/2018/12/threat-modeling-12-available-methods.html
https://doi.org/10.1080/01449290410001669914
https://doi.org/10.1145/1878061.1878069

[27] N. Q. M. Khiem, G. Ravindra, and W. T. Ooi, “Towards understanding user

tolerance to network latency in zoomable video streaming,” in Proceedings of

the 19th ACM International Conference on Multimedia, ser. MM 11. New

York, NY, USA: Association for Computing Machinery, 2011, p. 977980.

[Online]. Available: https://doi.org/10.1145/2072298.2071917

[28] A. Shostack. (2007, Sep) Stride chart. [Online]. Available: https:

//www.microsoft.com/security/blog/2007/09/11/stride-chart/

[29] Microsoft. (2018, June) Threat modeling for drivers. [Online]. Available:

https://docs.microsoft.com/en-us/windows-hardware/drivers/driversecurity/

threat-modeling-for-drivers#the-dread-approach-to-threat-assessment

[30] Viavi, “How to measure network performance,” https://www.viavisolutions.

com/en-us/how-measure-network-performance, accessed: 2019-10-18.

[31] R. Affeldt and N. Marti, “Towards formal verification of tls network packet

processing written in c,” in Proceedings of the 7th Workshop on Programming

Languages Meets Program Verification, ser. PLPV 13. New York, NY, USA:

Association for Computing Machinery, 2013, p. 3546. [Online]. Available:

https://doi.org/10.1145/2428116.2428124

[32] M. Tobarra, D. Cazorla, F. Cuartero, and G. Dı́az, “Formal verification of tls

handshake and extensions for wireless networks,” in Proc. of IADIS Interna-

tional Conference on Applied Computing (AC06), San Sebastian, Spain, IADIS

Press, 2006, pp. 57–64.

[33] C. Cremers, M. Horvat, S. Scott, and T. v. d. Merwe, “Automated analysis and

verification of tls 1.3: 0-rtt, resumption and delayed authentication,” in 2016

IEEE Symposium on Security and Privacy (SP), May 2016, pp. 470–485.

58

https://doi.org/10.1145/2072298.2071917
https://www.microsoft.com/security/blog/2007/09/11/stride-chart/
https://www.microsoft.com/security/blog/2007/09/11/stride-chart/
https://docs.microsoft.com/en-us/windows-hardware/drivers/driversecurity/threat-modeling-for-drivers#the-dread-approach-to-threat-assessment
https://docs.microsoft.com/en-us/windows-hardware/drivers/driversecurity/threat-modeling-for-drivers#the-dread-approach-to-threat-assessment
https://www.viavisolutions.com/en-us/how-measure-network-performance
https://www.viavisolutions.com/en-us/how-measure-network-performance
https://doi.org/10.1145/2428116.2428124

[34] P. Singh, “Configure tiny core linux as dhcp server using udhcpd,” https:

//iotbytes.wordpress.com/configure-dhcp-server-on-microcore-tiny-linux/, ac-

cessed: 2019-10-18.

[35] ——, “Configure tiny core linux as nat (p-nat) router using ipta-

bles,” https://iotbytes.wordpress.com/configure-microcore-tiny-linux-as-nat-

p-nat-router-using-iptables/, accessed: 2019-10-18.

[36] J. Turcotte and E. Zhou, “If-tls,” https://github.com/edamamez/IF-TLS,

2020.

59

https://iotbytes.wordpress.com/configure-dhcp-server-on-microcore-tiny-linux/
https://iotbytes.wordpress.com/configure-dhcp-server-on-microcore-tiny-linux/
https://iotbytes.wordpress.com/configure-microcore-tiny-linux-as-nat-p-nat-router-using-iptables/
https://iotbytes.wordpress.com/configure-microcore-tiny-linux-as-nat-p-nat-router-using-iptables/
https://github.com/edamamez/IF-TLS

Appendix A: IF-TLS Setup

Instructions

Configuring the TinyCore Virtual Machines

To mimic the behavior of a router in a network, we configured the management

TinyCore VM to act as a NAT router so that the management system can observe

traffic from the client and redirect it to a middlebox (or series of middleboxes).

First, we followed the instructions from [34] to configure the VM as a DHCP server

using udhcpd; unlike the tutorial, we used eth1 instead of eth0. Then, we configured

the VM as a P-NAT router using [35].

Additionally, the network settings need to be modified in VirtualBox. Figure

7.1 below shows the network adapter settings that should be changed. The gate-

way VMs first adapter (eth0 interface) should be configured with NAT to enable

communication with the host machine. The second adapter (eth1 interface) should

be configured with the internal network to allow other local machine traffic to be

routed through the gateway.

The other TinyCore virtual machines representing the client and local middlebox

do not need to be configured as NAT routers, but should be assigned their own static

IPs. The network settings in VirtualBox should also be modified as above to attach

60

Figure 7.1: The VirtualBox settings we configured for our TinyCore VMs.

Figure 7.2: Adding a port forwarding rule on VirtualBox to allow for SSH.

one adapter to the internal network. Additionally, to enable SSH for the TinyCore

machines, port forwarding needs to be enabled, which allows SSH to be used through

an application such as PuTTY. The TinyCore VM has some trouble with scrolling

and full-screening, so using SSH on the host machine is more convenient. In Figure

7.1 above, clicking the drop-down for Advanced under the NAT tab shows a Port

Forwarding button. This will bring up a screen similar to Figure 7.2; adding a new

rule simply requires pressing the green plus button in the top right part of the screen

and filling in the rule. The guest port must be 22, but the host port can be any

number (a number larger than 5000 is generally safe). Each VM use a different port.

61

Configuring the IF-TLS Repository

The IF-TLS repository [36] can be cloned or downloaded from GitHub and trans-

ferred to each of the virtual machines using the scp command, or through a file

transfer utility such as WinSCP or FileZilla. The repository comes with a setup

script called setup.sh that installs all the necessary Python libraries that the IF-TLS

API relies on. This script must be run every time the TinyCore VM is restarted,

since these libraries are not stored in the virtual machine at shutdown. Any files

that should be saved, including the IF-TLS repository and the setup script, need to

be backed up in /opt/.filetool.lst before shutting the machine down. The command

$ filetool.sh -b will save the changes to filetool and the network configurations (note

that this command may take a while to finish). Once the setup script finishes, uti-

lizing the protocol simply requires changing into the source directory and running

the script that corresponds to the machine (e.g. client.py for the client VM). Note:

python3.6 and python3.6-dev can be installed using $ tce-load -wi [package name].

62

	Introduction
	Background
	TLS
	IoT Devices
	Middleboxes
	Related Work

	Implementation Plan
	System Design
	User Initialization
	Key Sharing
	Data Sending Procedure

	Software Implementation
	Tools and Devices

	Evaluation Plan
	Metrics for Evaluation
	IF-TLS Performance
	IF-TLS Security

	Experimental Setup

	Results and Discussion
	Performance Results
	Total Initialization Time
	IF-TLS Initialization Components
	Round-Trip Time
	IF-TLS with Cloud-Based Middleboxes

	Security Analysis
	(S)poofing
	(T)ampering
	(R)epudiation
	(I)nformation Disclosure
	(D)enial of Service
	(E)levation of Privilege

	Future Work
	Implementation Challenges
	Extensions to IF-TLS
	Additional Performance Measures
	Formal Methods for Security Verification

	Conclusion
	Appendix A: IF-TLS Setup Instructions

